铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.4 Proof \& Reasoning

AA SL

1.4.1 Proof

Language of Proof

What is proof?

- Proof is a series of logical steps which show a result is true for all specified numbers
- 'Seeing' that a result works for a few numbers is not enough to show that it will work for all numbers
- Pro of allows us to show (usually algebraically) that the result will work for all values
- You must be familiar with the notation and language of pro of
- LHS and RHS are stand ard abbreviations for left-hand side and right-hand side
- Integers are used frequently in the language of pro of
- The set of integers is denoted by \mathbb{Z}
- The set of positive integers is denoted by \mathbb{Z}^{+}

How do we prove a statement is true for all values?

- Most of the time you will need to use algebra to show that the left-hand side (LHS) is the same as the right-hand side (RHS)
- You must not move terms fromone side to the other
- Start with one side (usually the LHS) and manipulate it to show that it is the same as the o ther
- A mathematicalidentity is a statement that is true for all values of x (or θ in trigonometry)
- The symbol \equiv is used to identify an identity
- If you see this symbol then you can use proof metho ds to show it is true
- You can complete your pro of bystating that RHS = LHS or writing QED

- Exam Tip

- You will need to show each step of your pro of clearly and set out your method in a logical mannerin the exam
- Be careful not to skip steps

Worked example

Prove that $(2 x-2)(x-3)+2(x-1)=2(x-2)(x-1)$.
Work with LHS first:
Expand brackets:
LHS: $(2 x-2)(x-3)+2(x-1)$
$2 x^{2}-6 x-2 x+6+2 x-2$
Simplify, take care with negatives:
$2 x^{2}-6 x+4$
Factorise the 2:
$2\left(x^{2}-3 x+2\right)$
Factorise remaining quadratic:

$$
2(x-2)(x-1)=\text { RHS as required. }
$$

$(2 x-2)(x-3)+2(x-1)=2(x-2)(x-1)$

Proof by Deduction

What is proof by deduction?

- A mathematical and lo gic al argument that shows that a result is true

How do we do proof by deduction?

- A proof by deduction question will often involve showing that a result is true for all integers, consecutive integers oreven orodd numbers
- You can begin byletting an integer be n
- Use conventions foreven ($2 n$) and odd ($2 n-1$) numbers
- You will need to be familiar with sets of numbers $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R})$
- \mathbb{N}-the set of natural numbers
- \mathbb{Z} - the set of integers
- \mathbb{Q} - the set of quotients (rational numbers)
- \mathbb{R} - the set of real numbers

- Exam Tip

- Try the result you are proving with a few different values
- Use a sequence of them (eg 1,2,3)
- Try different types of numbers (positive, negative, zero)
- This may help you see a pattern and spot what is going on

Exam Papers Practice

Worked example

Prove that the sum of any two consecutive odd numbers is always even.

Let $2 n-1$ be an odd number \Rightarrow
must be even
Let two consecutive odd integers be:
$2 n-1,2 n+1$

Then their sum is: $2 n-1+2 n+1 \equiv 4 n$ $=2(2 n)$

Any multiple of 2 must be even.

Exam Papers Practice
© 2024 Exam Papers Practice

