Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.4 Financial Applications

1.4.1 Compound Interest \& Depreciation

Compound Interest

What is compound interest?

- Interest is a small percentage paid by a bank or company that is added on to an initial investment
- Interest can also referto an amount paid on a lo an ordebt, howeverlB compound interest questions will always refer to interest on investments
- Compound interest is where interest is paid onboththe initial investment and any interest that has already been paid
- Make sure you know the difference between compound interest and simple interest
- Simple interest pays interest only on the initial inves tment
- The interest paid each time will increase as it is a percentage of a higher number
- Compound interest will be paid in instalments in a given timeframe
- The interest rate, r, will be per annum (peryear)
- This could be written r\%p.a.
- Look out for phrases such as compounding annually (interest paid yearly) or compounding monthly (interest paid monthly)
- If $\alpha \%$ p.a. (per annum) is paid compounding monthly, then $\frac{\alpha}{12} \%$ will be paid each month
- The formula for compound interest allows for this so you do not have to compensate separately

Howis compound interest calculated?

- The formula for calculating compound interest is:
© 2024 Exam Papers Practice

$$
F V=P V \times\left(1+\frac{r}{100 k}\right)^{k n}
$$

- Where
- $F V$ is the future value
- $P V$ is the present value
- n is the number of years
- k is the number of compounding perio ds peryear
- $r \%$ is the no minal annual rate of interest
- This formula is given in the formula booklet, you do not have to remember it
- Becareful with the k value
- Compounding annually means $k=1$
- Compounding half-yearly means $k=2$
- Compounding quarterly means $k=4$
- Compounding monthly means $k=12$
- Your GDC will have a finance solver app on it which you can use to find the future value
- This may also be called the TVM (time value of money) solver
- You will have to enter the information from the question into your calculator
- Be aware that many questions will be set up such that yo u will have to use the formula
- So for compound interest questions it is better to use the formula from your formula booklet than your GDC

(-) Exam Tip

- Your GDC will be able to solve some compound interest problems so it is a good idea to make sure you are confident using it, however you must also familiarise yourself with the formula and make sure you can find it in the formula bo oklet

Worked example

Kim invests MYR 2000 (Malaysian Ringgit) in an account that pays a nominal annual interest rate of 2.5% compounded monthly. Calculate the amount that Kim will have in her account after 5 years.

Compound interest formula:
$F V=P V\left(1+\frac{r^{k}}{100 k}\right)^{k n \leftarrow \text { number of years }} \begin{aligned} & \text { interest rate } \\ & \lambda \\ & \text { future present compounding } \\ & \text { value value periods } \\ & \text { substitute values in: }\end{aligned}$
Copyright
© 2024 Exam Papers Practice

$$
\begin{aligned}
P V & =2000 \text { (initial investment) } \\
k & =12(\text { compounding monthly) } \\
r & =2.5 \% \\
n & =5 \text { (number of years) } \\
F V & =2000\left(1+\frac{2.5}{(100)(12)}\right)^{(12 \times 5)} \\
& =2266.002 \ldots
\end{aligned}
$$

$f V \approx$ MIR 2270 ($3 s f$)

Depreciation

What is depreciation?

- Depreciation is when the value of something falls over time
- The most common examples of depreciation are the value of cars and technology
- If the depreciation is occurring at a constant rate then it is compound depreciation

Howis compound depreciation calculated?

- The formula for calculating compound depreciation is:

$$
F V=P V \times\left(1-\frac{r}{100}\right)^{n}
$$

- Where
- $F V$ is the future value
- $P V$ is the present value
- n is the number of years
- $r \%$ is the rate of depreciation
- This formula is not given in the formula booklet, however it is almost the same as the formula for compound interest but
- with a subtraction instead of an ad dition
- the value of k will always be 1
- Your GDC could again be used to solve some compound depreciation questions, but watch out for those which are set up such that you will have to use the formula

- Exam Tip

- You can use your GDC's "Finance Solver" (TI) or "Compound Interest" (Casio) feature to solve most depreciation questions, by entering the interest rate as a negative value

Kyle buys a new car for AUD \$14 999. The valuepors Practice depreciates by 15\% each year.
a) Find the value of the car after 5 years.

Depreciation formula:
FD $V=P V\left(1-\frac{r^{2}}{100}\right)^{n} \leftarrow$ number of years
入
future value \uparrow present value

Substitute values in:

$$
\begin{aligned}
P V & =14999 \text { (initial cost) } \\
r & =15 \% \\
n & =5 \text { (number of years) } \\
F V & =14999\left(1-\frac{15}{100}\right)^{5} \\
& =6655.13 \ldots
\end{aligned}
$$

$F V \approx A U D \$ 6660(3 s f)$
b) Find the number of years and months it will take for the value of the car to be approximately AUD $\$ 9999$.

$$
F V=P V\left(1-\frac{r}{100}\right)^{n}
$$

© 2024 Exam Papers Practice

$$
\begin{aligned}
F V & \approx 9999 \\
P V & =14999 \\
r & =15 \%
\end{aligned}
$$

substitute values in:
$9999 \approx 14999\left(1-\frac{15}{100}\right)^{n}$
Use GDC to solve:

$$
\begin{aligned}
n & =2.495 \ldots \\
& 2 \text { years } 0.49 s^{t h} \text { of a year }
\end{aligned}
$$

Convert to years and months:
2 years $+0.495 \ldots \times 12$ months
≈ 2 years and 6 months
For more help visit our website www.exampaperspractice.co.uk

1.4.2 Amortisation \& Annuities

Amortisation

What is amortisation?

- Amortis ation is the process of repaying a lo an over a fixed period of time
- Most commonly questions will be about mortgages (loans taken out to buy a home) orloans taken out for a large purchase
- Interest will be paid on the original amount
- Each repayment that is made will partlyrepay the original lo an and partly pay the interest on the Ioan
- As payments are made the amo unt owed will decrease and so the interest paid will decrease
- As you continue to repay aloan more of the repayment goes on the lo an and less on the interest

How can the GDC be used to make calculations involving loans?

- Your GDC should be used to solve questions involving loans
- Use the finance solver mode (sometimes called the TVM(time value of money) solver)
- Nwill be the number of repayment periods (rememberto include months and years if necessary)
- I(\%) is the interest rate
- PVis the amount that was borrowed at the start - as this has been received it will be entered as a positive number
- PMTis the payments made per period - this is repaying the lo an so will be a negat ive number
- FV is the future value (this will be zero as the lo an will be paid off at the end of the period)
- P / Y is the number of payments peryear, usually 12 as payments are made monthly
- C / Y is the compounding perio ds peryear
- PMT@is the time of the year ormonth the payment is made (assume this is the end unless told otherwise)
- Leave the section that you need to find out blank and fill in all other sections
- Your GDC will fill in the last part foryou
- It is sensible to check your final answer, youcan do this by finding the total amo unt paid back overall and comparing it to the original lo an
- The total amount repaid will be a lit tle more than the original lo an plus / \% of the original loan

- Exam Tip

- Be sure to write down the values that you put into the financial solver on your GDC, don't just write down the final answer as if it is incorrect you won't get any marks if there is no working shown!
- Make sure that you are clear on what the signage of any mo netaryvalue is, if it's po sitive then money is coming in to you, if it's negative then you are paying money out

E旦
 Exam Papers Practice

Worked example

Olivia takes a mortgage of EUR € 280000 to purchase a house at a nominal annual interest rate of 3.2%, compounded monthly. She agrees to pay the bank EUR € 1500 at the end of every month to amortise the lo an. Find
i) the number of years and months it will take Olivia to pay back the lo an,
Use the finance / TVM solver on your GDC:


```
2 1 \text { years and } 7 \text { months}
```

ii) the to al amount Olivia will pay to purchase the house

Total amount paid $=258.61 \times 1500$

Total amount paid $=€ 387915$

Annuities

What is an annuity?

- An annuity is a fixed sum of money paid to someone at specified intervals over a fixed period of time
- Most commonly this will be because of an initial lump sum investment which will be returned at fixed intervals of time with a fixed interest rate
- Eitherfrom personal savings or from receiving an inheritance

How are annuities calculated?

- Your GDC should be used to solve questions involving annuities
- Use the finance solver mode (sometimes called the TVM (time value of money) solver)
- Nwill be the number of payment periods (remember to include months and years if necessary)
- I(\%) is the interest rate
- PVis the amount that was invested - as this has been invested it will be entered as a negative number
- PMTis the amo unt paid perperiod - as this is being received it will be a positive number
- FVis the future value (for an annuity this will be zero as the balance at the end of the payment period will bezero)
- P / Y is the number of payments peryear
- C / Y is the compounding periods peryear
- PMT@is the time of the year ormonth the payment is made (usually the start)
- Leave the section that you need to find out blank and fill in all o ther sections
- Your GDC will fill in the last part foryou
- Although you are unlikely to need to use it, the formula for calculating an annuity is:

Copyright

$$
F V=A \frac{(1+r)^{n}-1}{r}
$$

© 2024 Exam Papers Practice

- Where
- FVis the future value
- A is the amount invested
- n is the numberofyears
- $r \%$ is the interest rate as a decimal (e.g. at $6 \%, r=0.06$)
- This formula is not given in the formula booklet, howeveryour GDC will work out annuities for youso youdo not need to rememberit

旦
 Exam Papers Practice

(-) Exam Tip

- Be sure to write down the values that you put into the financial solver on your GDC, don't just write down the final answer as if it is incorrect you won't get any marks if there is no working shown!
- Try to remember the difference between amortiz ation and annuities:
- with amortization you are paying moneyout
- with annuities you are receiving money

Worked example

Janni invests 2 million DKK (Danish krone) into an annuity for her retirement. The annuityreturns 3\% compo unded annually. Find the monthly payments Janni will receive if she wants the annuity to last for 25 years.

