

1.3 Sequences & Series

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

a) For a geometric sequence the common ratio, r_1 is given by $f = \frac{U_2}{U_1} = \frac{U_3}{U_2} = \frac{U_4}{U_3}$... $U_2 = 44$ $U_3 = 55$

sub us and us into r tormula

Exam Paper Practice

6)

 $f = \frac{55}{44}$

rearrange for un

 $\mathcal{U}_1 = \frac{44}{\left(\frac{5}{4}\right)}$

 $U_1 = 35.2$

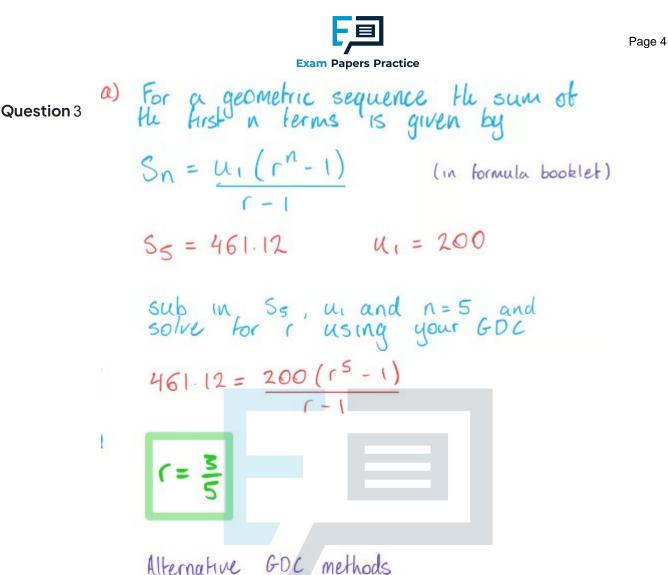
For more help visit our website www.exampaperspractice.co.uk

c) For a geometric sequence the sum of
the first n terms is given by
$$S_n = \underbrace{\mu_1(r^n - 1)}_{r-1}$$
 (in formula booklet)

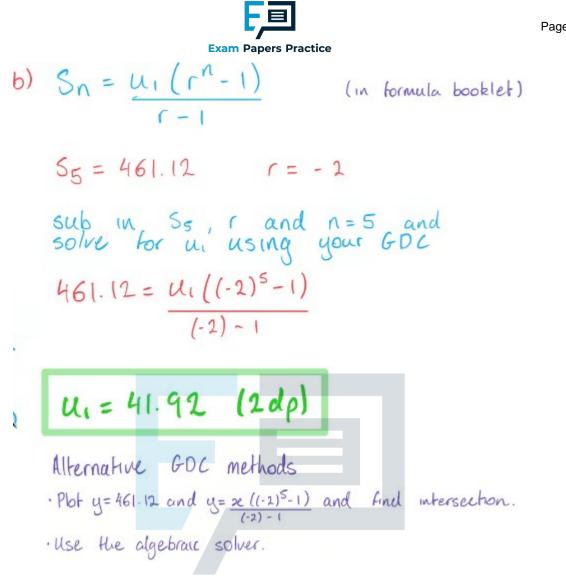
sub u, r and n=5

$$S_{5} = \frac{35 \cdot 2((\frac{5}{4})^{5} - 1)}{(\frac{5}{4}) - 1}$$

$$S_{5} = 288 \cdot 8875$$


$$S_{5} = 289 (3sf)$$

Exam Papers Practice

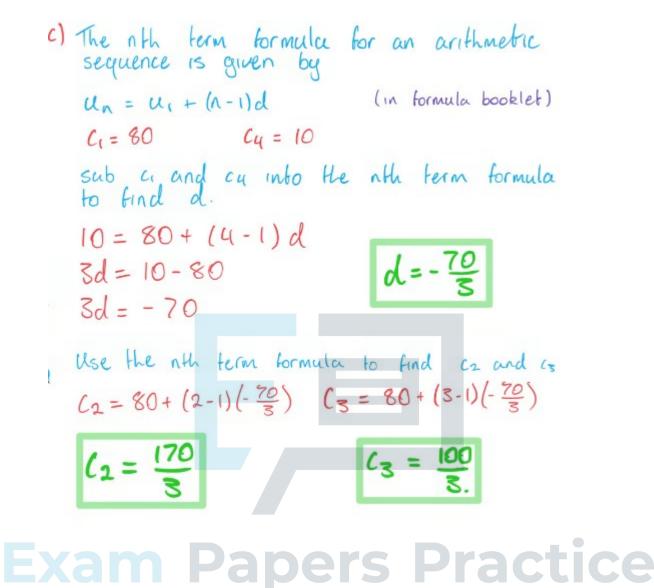


Question 2
A) For an antimetic sequence the sum of the host n terms is given by

$$S_n = \frac{n}{2} (2u_1 + (n-1)d)$$
 (in formula booklet)
 $S_{16} = 920$ $u_1 = 27.5$
sub in Si6, u and $n = 16$
 $920 = 8(55 + 15d)$
 $115 = 55 + 15d$
 $60 = 15d$
 $d = 4$
b) $S_n = \frac{n}{2} (2u_1 + (n-1)d)$ (in formula booklet)
Example of the sum of the sum

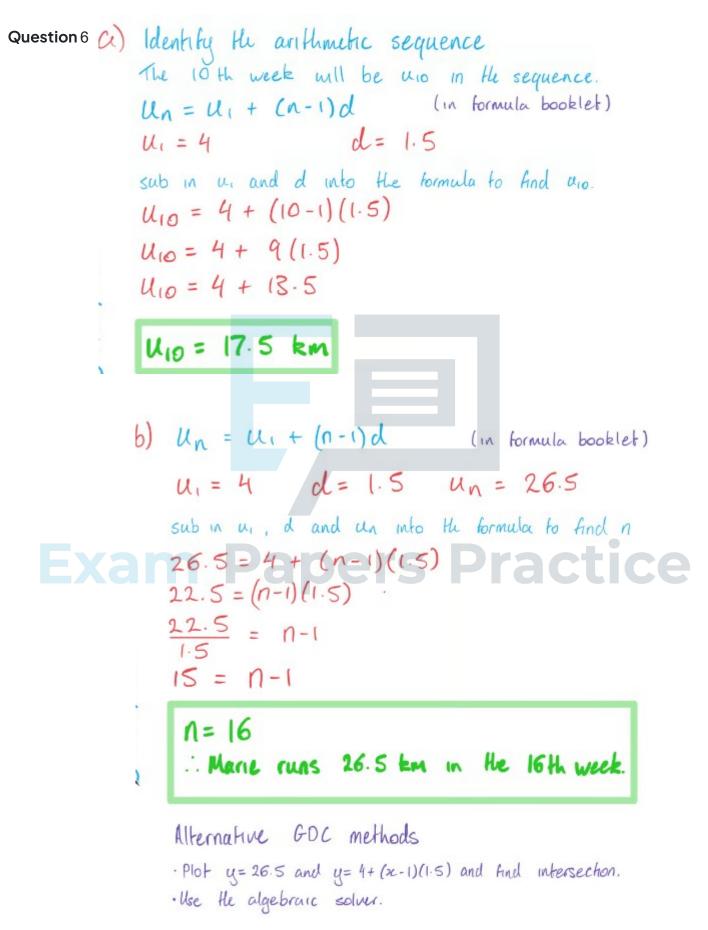
Alternative our methods · Plot y=461.12 and y= $\frac{200(x^{5}-1)}{x-1}$ and find intersection. EXA. Use the algebraic solver. S Plactice

Exam Papers Practice

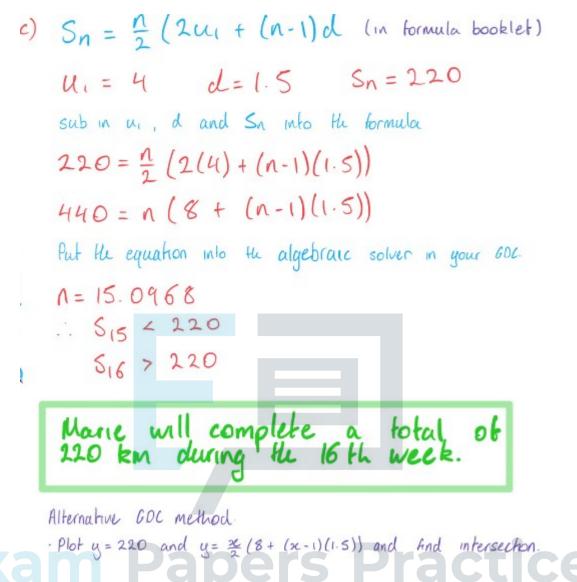


a) For an arithmetic sequence the common difference, d, is given by $d = u_2 - u_1 = u_3 - u_2 = u_4 - u_3 \dots$ $a_3 = 30$ a2=12 sub in us and us into d tormula d = 30 - 12d = 18 Use d= 18 to find a, and ay $18 = a_4 - 30$ 18 = Qy = 48 $a_1 = -6$ Practice

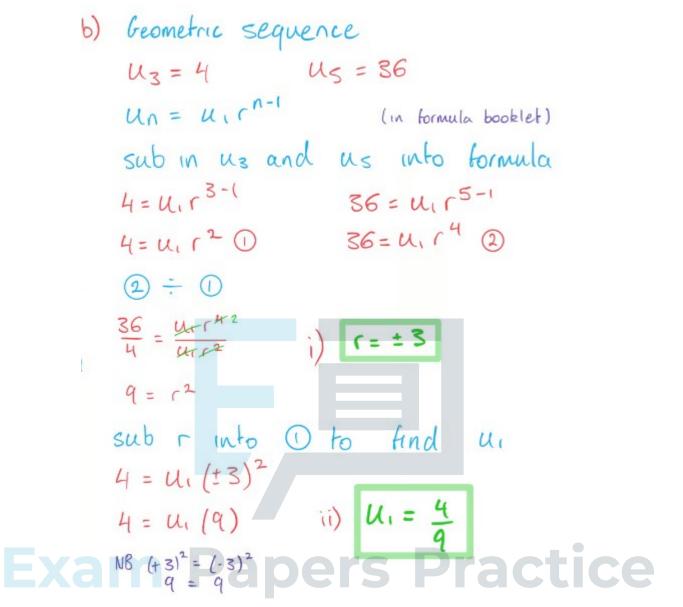
b) For a geometric sequence the common
ratio, r, is given by
$$\begin{aligned} & (= \frac{U_2}{U_1} = \frac{U_3}{U_2} = \frac{U_4}{U_3} \cdots \\ & b_2 = 12 \qquad b_3 = 30 \\ & sub in b_2 and b_3 into r formula \\ & (= \frac{30}{12} \\ \hline r = 2.5 \\ & use r = 2.5 \\ & to find b_1 \\ & and b_4 \\ & 2.5 = \frac{b_4}{30} \\ \hline b_1 = 4.8 \\ \hline b_1 = 4.8 \\ \hline b_2 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 4.8 \\ \hline common b_2 \\ & b_1 = 4.8 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 4.8 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 4.8 \\ \hline common b_1 \\ & b_1 = 4.8 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 4.8 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 4.8 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_1 \\ & b_1 = 4.8 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_2 \\ & b_1 = 4.8 \\ \hline common b_2 \\ & b_1 = 4.8 \\ \hline common b_2 \\ & b_1 = 4.8 \\ \hline common b_2 \\ & b_2 = 75 \\ \hline common b_2 \\ & b_1 = 4.8 \\ \hline common b_1 \\ & b_2 = 75 \\ \hline common b_2 \\ & b_1 = 4.8 \\ \hline common b_2 \\ & b_1 = 4.8 \\ \hline common b_2 \\ & b_1 = 4.8 \\ \hline common b_1 \\ &$$

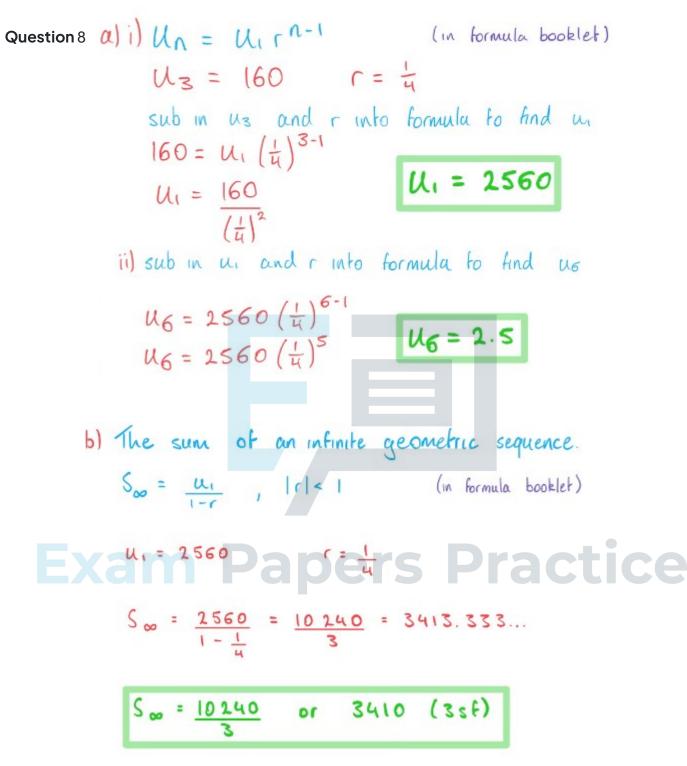


d) The nth term tormula for a geometric sequence is given by (in formula booklet) Un= Urr-1 $d_1 = 80$ $d_4 = 10$ sub di and dy into the nth term formula to find r 10=80 r⁴⁻¹ $(^3 = \frac{10}{80}$ (= $f = \left(\frac{1}{8}\right)^{1/3}$ Use the nth term formula to find dz and dz $d_3 = 80(\frac{1}{2})^{3-1}$ $d_2 = 80(\frac{1}{2})^{2-1}$ $d_3 = 80(\frac{1}{2})^{2-1}$ $d_2 = 40$ $d_3 = 20$ ractice

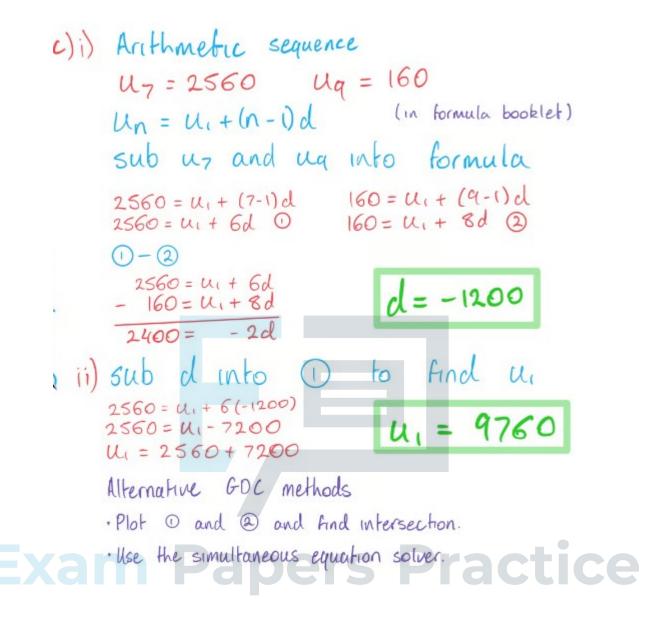

Question 5 a);
$$u_n = u_{1+} (n-1)d$$
 (in formula booklet)
 $u_q = 20$ $u_{10} = 44$
 $20 = u_{1+} (q-1)d$ $44 = u_{1+} (10-1)d$
 $20 = u_{1+} sd$ $44 = u_{1+} 9d$ (2)
(2) - (0)
 $44 = u_{1} + 9d$
 $-20 = u_{1+} sd$ $d = 4$
 $24 = 6d$ $d = 4$
(i) Sub $d = 4$ into () to find u_1
 $20 = u_{1+} + 3(4)$ $u_1 = 8$
 $20 = u_{1+} + 12$
 $20 - 12 = u_1$
EX b) $S_n = n (2u_1 + (n-1)d)$ (in formula booklet) e^{-1}
 $n = 20$ $u_1 = 8$ $d = 4$
Sub n, u_1 and d into Sn formula
 $S_{20} = \frac{20}{2} (2(6) + (20-1)/4))$
 $S_{20} = 10 (16 + 76)$
 $S_{20} = 920$ students

For more help visit our website www.exampaperspractice.co.uk




Question 7
a) i)
$$U_n = U_1 + (n-1)$$
 (in formula booklet)
 $U_8 = 18$ $d = 2$
sub in us and d into the formula to find u.
 $18 = U_1 + (8-1)(2)$
 $18 = U_1 + 14$
 $U_1 = 4$
(i) sub in u, and d into the formula to find u_{17}
 $u_{17} = 4 + (17-1)(2)$
 $u_{17} = 36$

Exam Papers Practice

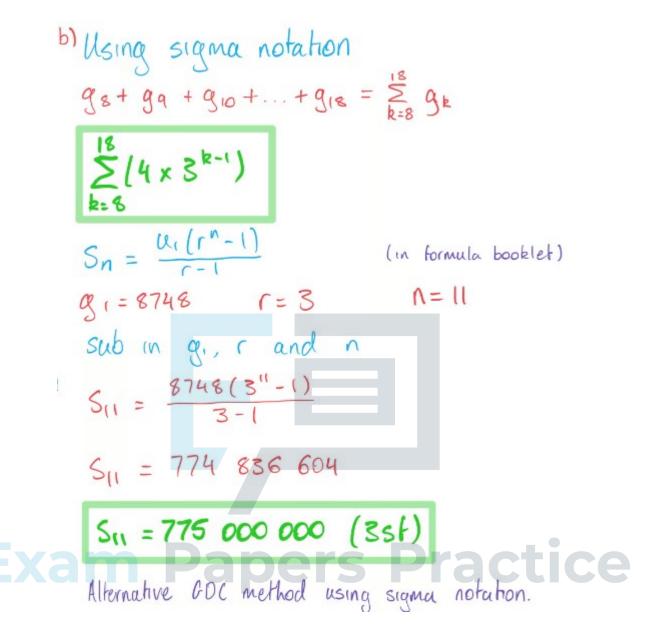

For more help visit our website www.exampaperspractice.co.uk

estion 9
a) Using sigma notation

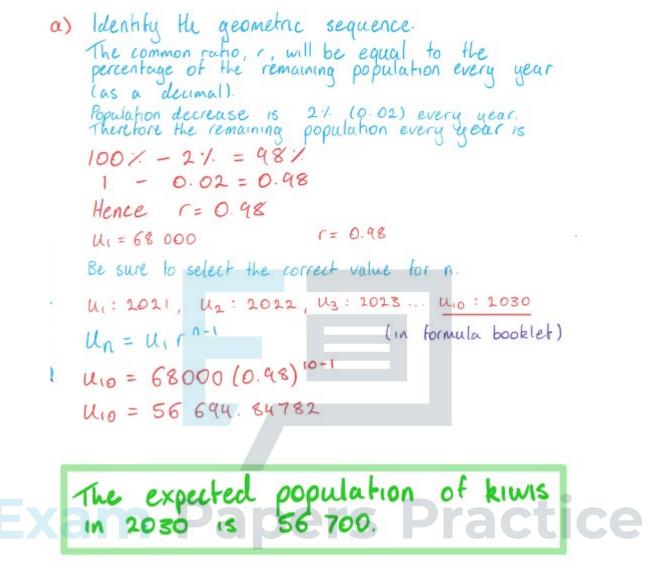
$$a_1 + a_2 + a_3 + ... + a_{12} = \sum_{k=1}^{12} a_k$$

 $\sum_{k=1}^{12} (32 - 7k)$
 $S_n = \frac{n}{2} (2u_1 + (n - 1)d) (1n \text{ formula booklet})$
 $a_1 = 25$ $d = -7$ $N = 12$
Sub in a_1 , d and n
 $S_{12} = \frac{12}{2} (2(25) + (12 - 1)(-7))$
 $S_{12} = -162$
Alternative GOC method using sigma notation.
Example papers Practice

b) Using sigma notation


$$a_{4} + a_{5} + a_{6} + ... + a_{15} = \sum_{k=4}^{15} a_{k}$$

 $\sum_{k=4}^{15} (32 - 7k)$
 $S_{n} = \frac{n}{2} (2u_{1} + (n - 1)d) (in formula booklet)$
 $a_{1} = 4$ $d = -7$ $n = 12$
Sub in a_{1} , d and n
 $S_{12} = \frac{12}{2} [2(4) + (12 - 1)(-7)]$
 $S_{12} = -414$
Alternative GDC method using sigma notation.

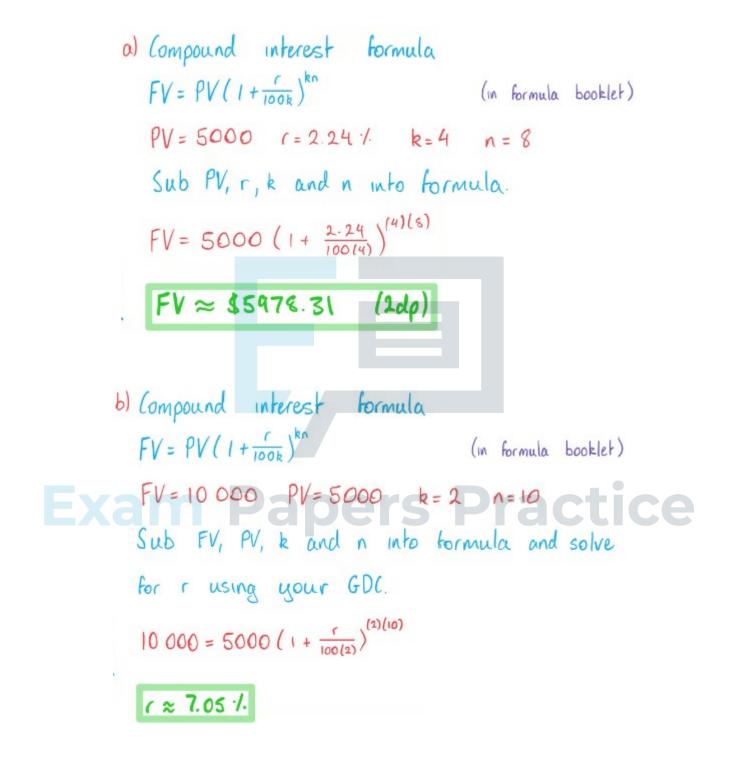

a) Using sigma notation

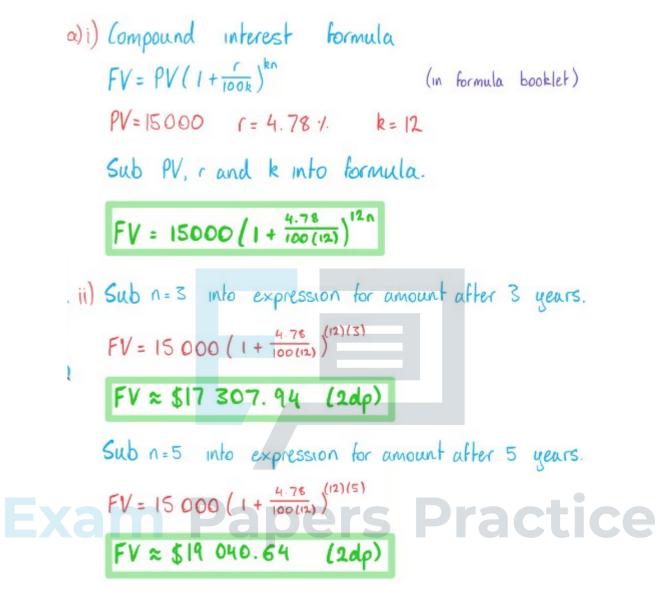
$$g_1 + g_2 + g_3 + ... + g_{10} = \bigvee_{k=1}^{10} g_k$$

 $\bigvee_{k=1}^{10} (4 \times 3^{k-1})$
 $g_n = \frac{U_1(n-1)}{n-1}$ (in formula booklet)
 $g_1 = 4$ (in formula booklet)
 $g_2 = 4$ (in formula booklet)
 $g_1 = 4$ (in formula booklet)
 g


Question 12 a) Identify the geometric sequence

$$u_n = u_i r^{n-1}$$
 (in formula booklet)
 $u_i = 240$ $r = 1.125$ $n = 5$
sub in u_i, r and n
 $u_s = 240 (1.125)^4$
 $u_s = 384$ km (Ssf)
b) $S_n = u_i (r^n - 1)$ (in formula booklet)
 $u_i = 240$ $r = 1.125$ $n = 10$
sub in u_i, r and n
Example = 240 (1.125¹⁰-1)
 $u_i = 240$ (1.125¹⁰-1)
 $u_i = 240$ (1.125¹⁰-1)
 $u_i = 240$ (1.125¹⁰-1)
Sub in u_i, r and n
Example = 240 (1.125¹⁰-1)
 $u_i = 1.125 - 1$


a) i)
$$U_n = U_1 r^{n-1}$$
 (in formula booklet)
 $U_1 = 0.5 r = 3 n = 4$
sub in U_1, r and n
 $U_4 = 0.5 (3)^{4-1}$
 $U_4 = (3.5)$
ii) $S_n = U_1 (r^{n-1})$ (in formula booklet)
 $U_1 = 0.5 r = 3 n = 5$
sub in U_1, r and n
 $S_5 = 0.5 (3^5 - 1)$
Xangeors Practice
 $S_5 = 60.5$



Exam Papers Practice

