

1.2 Exponentials & Logs Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

(b) Write 16 as a power with the same base number as the log so they cancel out $2^4 = 16$ $\log_2 2^4 = 4$

= 2

(d)
$$\log_a \frac{x}{y} = \log_a x - \log_a y$$
 = Formula booklet

 $\log_s 500 - \log_s 4 = \log_s 125$ = Rewrite 125 as a power of 5

= $\log_s 5^3$ = The bases are the same so they cancel

= 3

 $\log_s 500 - \log_s 4 = 3$

(a)
$$\log_a \frac{x}{y} = \log_a x - \log_a y$$
 = Formula booklet

 $\ln 5 = \ln 15 - \ln 3$

Exantage ers Practice

(c)
$$\log_a xy = \log_a x + \log_a y + \sum_{booklet}^{Formula} \log_a x + \log_a x + \log_a y + \sum_{booklet}^{Formula} \log_a x + \log_a$$

(a)
$$\log_a xy = \log_a x + \log_a y + \frac{\text{Formula}}{\text{booklet}}$$

$$\log_a 24 = \log_a 2 + \log_a 2$$

$$\log_a 24 = r + s$$
(b) $\log_a xy = \log_a x + \log_a y + \frac{\text{Formula}}{\text{booklet}}$

$$\log_a 4 = \log_a 2 + \log_a 2$$

$$\log_a \frac{\infty}{y} = \log_a \infty - \log_a y = \frac{\text{Formula}}{\text{booklet}}$$

(c)
$$\log_{\alpha} \frac{x}{y} = \log_{\alpha} x - \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} x + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} xy + \log_{\alpha} y$$
 = s Formula
$$\log_{\alpha} xy = \log_{\alpha} xy + \log_{\alpha} yy + \log_{\alpha$$

b)
$$(2x^{-1}y^{-2})^{-3} (4x^{2}y^{5})^{4}$$
 $(4x^{2}y^{5})^{4}$
 $(2x^{-1}y^{-2})^{3}$
 $(2x^{-1}y^{-2})^{3}$

$$2 - x\sqrt{3} = \frac{7x}{\sqrt{3}}$$

$$2\sqrt{3} - 3x = 7x$$

$$2\sqrt{3} = 10\infty$$

$$\frac{2\sqrt{3}}{10} = \infty$$

$$\frac{\sqrt{3}}{5} = \infty$$

Question 6

(a)
$$\log_a x^m = m \log_a x + \frac{5}{5}$$
 Formula booklet $\log_a 64 = \log_a 8^2$ = $2\log_a 8$

Exam Papers Practice

$$a = \sqrt[3]{8}$$

(c)
$$a^{x} = b \iff x = \log_{a}b \Rightarrow formula | \log_{a} \cdot 8 = x \Rightarrow (2^{a})^{x} = 8$$

$$2^{2x} = 8$$

$$2^{2x} = 3$$

$$2x = 3$$

$$x = \frac{3}{2}$$
Question 7
(a) $\log_{b} 9 = \log_{b} 3^{x}$

$$= 2\log_{b} 3$$

$$= 2x$$

$$\log_{b} 9 = 2x$$

$$\log_{b} 4 = \log_{b} \sqrt{16}$$

$$= \log_{b} 16^{x}$$

$$= \frac{1}{2}\log_{b} 16$$

$$= \frac{1}{2}\log_{b} 16$$

(a) Expand the numerator

$$\frac{16 - 16\sqrt{x} + 4x}{8x}$$

Split into 3 separate terms and cancel
$$\frac{^{2}16}{^{1}8x} - \frac{^{1}6\sqrt{x}}{^{1}8x} + \frac{^{1}4x}{^{1}8x}$$

$$\frac{2}{x} - \frac{2\sqrt{x}}{x} + \frac{1}{x}$$

Exame Powers of x

Exame Partice

Rewrite powers of x

Partice

$$2x^{-1} - 2x^{-1/2} + \frac{1}{2}$$

$$2x^{-1} - 2x^{-\frac{1}{2}} + \frac{1}{2}$$

(b)
$$8 = 2^3$$
, $\sqrt{2} = 2^{\frac{1}{2}}$
 $8\sqrt{2} = 2^3 \times 2^{\frac{1}{2}}$
 $= 2^{\frac{7}{2}}$

$$a = \frac{7}{2}$$

(c) Expand the numerator

$$\frac{2x^{5}-x^{3/2}}{x^{2}}$$
Simplify the powers of x

$$2x^{3}-x^{-1/2}$$

Rewrite expression using powers of 4

$$(4^2)^x - 3(4^x)(4^1) = 28$$
 $(4^x)^2 - 12(4^x) = 28$

Let $m = 4^x$
 $m^2 - 12m - 28 = 0$

Solve the quadratic by hand or using the GDC

 $(m - 14)(m + 2) = 0$
 $m = 14$ or $m = -2$

meantot be negative because you can't take a log of a negative

Take In of both sides

 $\ln 4^x = \ln 14$
 $\ln 4^x = \ln 14$
 $\log_a x^m = m \log_a x^{-5}$

Formula booklet

Exam Paper

Practice

Find the largest square number that goes into 425
$$\sqrt{425} = \sqrt{25} \times 17$$

$$= 5\sqrt{17}$$
Question 11
$$2^{2x} - 3(2^{x})(2^{1}) = -8$$

$$(2^{x})^{2} - 6(2^{x}) + 8 = 0$$
Let $X = 2^{x}$

$$X^{2} - 6X + 8 = 0$$
Example 12
$$X = 4$$

$$X = 4$$

$$X = 4$$

$$X = 2$$

$$2^{x} = 4$$

$$X = 2$$

$$x = 2$$

$$x = 2$$