Exam Papers Practice

1.2 Reacting Masses \& Volumes Question Paper

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

Question 1

A periodic table is needed for this question
A $2.27 \mathrm{dm}^{3}$ sample of nitrogen gas, measured under standard conditions, reacted with a large excess volume of hydrogen gas to produce ammonia. Only 20.0% of the nitrogen gas reacted to produce ammonia.

What mass of ammonia was made?
A. 0.20 g
B. 0.34 g
C. 0.68 g
D. 1.36 g

Question 2

A periodic table is needed for this question
Excess aqueous cold sodium hydroxide is reacted with 0.10 mol of chlorine $\mathrm{gas}, \mathrm{Cl}_{2}$. One of the products is a compound of sodium, oxygen and chlorine.

What mass of the product is formed?
A. 3.54 g
B. 7.44 g
C. 14.8 g
D. 26.6 g

[1 mark]

Question 3

A periodic table is needed for this question
When heated, anhydrous magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, will decompose into magnesium oxide and a mixture of gases shown in the following equation

$$
2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

1.48 g of anhydrous magnesium nitrate is heated until no further reaction takes place.

What mass of nitrogen dioxide is produced?
A. 0.92 g
B. 0.46 g
C. 1.48 g
D. 1.84 g

Question 4

A periodic table is needed for this question
A hydrocarbon, X, was burned in excess oxygen to give carbon dioxide and water as the only products. $0.1 m o l$ of X produced $9.08 \mathrm{dm}^{3}$ of carbon dioxide at standard conditions.

What is the molecular formula of X ?
A. CH_{4}
C. $\mathrm{C}_{3} \mathrm{H}_{8}$
D. $\mathrm{C}_{4} \mathrm{H}_{10}$
[1 mark]

Page 3

Question 5

A periodic table is needed for this question
A Group Il metal of mass 0.65 g reacted with $606.9 \mathrm{~cm}^{3}$ of oxygen at 273 K and 100 kPa pressure, to form an oxide which contains O^{2-} ions.

The molar mass of the metal is found using which of the following calculations?
A. $\frac{22.7 \times 0.65}{606.9}$
B. $\frac{22.7 \times 1000 \times 0.65}{606.9}$
C. $\frac{606.9 \times 1000 \times 0.65}{22.7}$
D. $\frac{22.7 \times 1000 \times 606.9}{0.65}$

Question 6

A periodic table is needed for this question
Solid fertilisers often contain the elements N, P and K in a ratio of $20 \mathrm{~g}: 30 \mathrm{~g}: 10 \mathrm{~g}$ per 100 g of fertiliser. It is recommended that the fertiliser is used at 14 g of fertiliser per $5 \mathrm{dm}^{3}$ of water.

What is the concentration of nitrogen atoms in the solution?
A. $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$
B. $0.03 \mathrm{~mol} \mathrm{dm}^{-3}$
C. $0.04 \mathrm{~mol} \mathrm{dm}^{-3}$
D. $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$

Question 7

An experiment is conducted to calculate the M_{r} of an unknown gas of known mass.
Measurements of pressure, volume and temperature are taken during the experiment.
Which conditions of temperature and pressure would give the most accurate value of M_{r} ?
[1 mark]

Exam Papers Practice

	pressure	temperature	
A	low	high	Question 8
B	low	low	0.96 g of hydrogen gas is contained in a sealed vessel of volume
C	high	high	of $7.0 \times 10^{-3} \mathrm{~m}^{3}$ at a temperature of 303 K .
D	high	low	Assume the gas behaves as an ideal gas. What is the pressure of the vessel in Pa ?

A. $\frac{2.02 \times 7.0 \times 10^{-3}}{0.96 \times 8.314 \times 303}$
B. $\frac{0.96 \times 8.314 \times 303}{2.02 \times 7.0 \times 10^{-3}}$
C. $\frac{0.96 \times 8.314 \times 303}{7.0 \times 10^{-3}}$
D. $\frac{0.96 \times 8.314 \times(303+273)}{2.02 \times 7.0 \times 10^{-3}}$

Question 9

A $5370 \mathrm{~cm}^{3}$ sample of oxygen is measured at a temperature of $60^{\circ} \mathrm{C}$. The pressure measured was $103,000 \mathrm{~Pa}$.
Assume the gas behaves as an ideal gas.
What is the mass of the sample of oxygen?
A. $\frac{103000 \times 0.00537 \times 32.00}{8.314 \times 60}$
B. $\frac{103000 \times 0.00537 \times 32.00}{8.314 \times 333}$
C. $\frac{103 \times 0.00537 \times 32.00}{8.314 \times 333}$
D. $\frac{103000 \times 5370 \times 32.00}{8.314 \times 333}$

Question 10

A sample of chlorine gas with a of mass 5.35 g has a volume of $1.247 \times 10^{-3} \mathrm{~m}^{3}$ at a pressure of $1.00 \times 10^{5} \mathrm{~Pa}$.
Assuming that the gas acts as an ideal gas, what is the temperature of the gas in K ?
A. $\frac{5.35 \times 1.0 \times 1.247}{(70.90 \times 8.314)}$
B. $\frac{5.35 \times\left(1.0 \times 10^{5}\right) \times\left(1.247 \times 10^{-3}\right)}{(8.314)}$
C. $\frac{5.35 \times\left(1.0 \times 10^{5}\right) \times\left(1.247 \times 10^{-3}\right)}{(70.90 \times 8.314)}$
D. $\frac{70.90 \times\left(1.0 \times 10^{5}\right) \times\left(1.247 \times 10^{-3}\right)}{(5.35 \times 8.314)}$

Question 11

A bubble travelled up from the sea bed to the surface. Just below the surface of the sea the bubble had a volume of $200 \mathrm{~cm}^{3}$ at a pressure of 101 kPa . The temperature at the surface is the same as at the sea bed.

The pressure at the sea bed is 2020 kPa .
What is the volume of the bubble at the sea bed?
A. $10 \mathrm{~cm}^{3}$
B. $200 \mathrm{~cm}^{3}$
C. $100 \mathrm{~cm}^{3}$
D. $1000 \mathrm{~cm}^{3}$

Question 12

Sodium reacts with water in the equation below.

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Which mass of sodium reacts with water to produce $960 \mathrm{~cm}^{3}$ of hydrogen gas at 100 kPa and $20^{\circ} \mathrm{C}$?
A. $\frac{8.314 \times 293}{100000 \times 0.00096 \times 2 \times 22.99}$
B. $\frac{100000 \times 0.00096 \times 2 \times 22.99}{8.314 \times 293}$
C. $\frac{100000 \times 960 \times 2 \times 22.99}{8.314 \times 293}$
D. $\frac{100000 \times 0.00096 \times 22.99}{8.314 \times 293}$

Question 13

When a sample of a gas is compressed at room temperature from 101 kPa to 300 kPa , its volume changes from $50.0 \mathrm{~cm}^{3}$ to $17.5 \mathrm{~cm}^{3}$.

Which statement best describes why this happens?
A. the gas is behaving ideally
B. the gas behaves non-ideally
C. gas is absorbed on to the vessel walls
D. the gas partially liquifies

Question 14

A periodic table is needed for this question
What mass of a methane, CH_{4}, would occupy a volume of $3 \mathrm{dm}^{3}$ at $25^{\circ} \mathrm{C}$ and 100 kPa pressure?
A. $\frac{100000 \times 3 \times 16.05}{8.314 \times 298}$
B. $\frac{100 \times 0.003 \times 16.05}{8.314 \times 298}$
C. $\frac{100000 \times 0.003 \times 16.05}{8.314 \times 25}$
D. $\frac{100000 \times 0.003 \times 16.05}{8.314 \times 298}$

Question 15

Which expression gives the pressure exerted by 1.5×10^{-2} mol of carbon dioxide in a container of volume $2 \mathrm{dm}^{-3}$ at $275^{\circ} \mathrm{C}$?
A. $\frac{\left(1.5 \times 10^{-2}\right) \times 8.31 \times 275}{2 \times 10^{-6}}$
B. $\frac{\left(1.5 \times 10^{-2}\right) \times 8.31 \times(275+273)}{2 \times 10^{-6}}$
C. $\frac{\left(1.5 \times 10^{-2}\right) \times 8.31 \times(275+273)}{2 \times 10^{-3}}$
D. $\frac{\left(1.5 \times 10^{-2}\right) \times 8.31 \times 275}{2 \times 10^{-3}}$

