

1.2 Reacting Masses & Volumes

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry SL Students of other boards may also find this useful

The correct answer is **C** because:

	Steps	Calculation
1	Calculate the moles of the gas using the formula: Amount of gas (mol) = $\frac{\text{Volume of gas (dm^3)}}{22.7 \text{dm}^3}$	$\frac{2.27}{22.7} = 0.1$ mol
2	Only 20% of the nitrogen was used	0.1x 0.20 = 0.020 mol
3	Mass of Ammonia Moles = Mass Mr Re-arrange for mass Mass = moles x Mr	0.020 x 17.04 = 0.34 g
4	Nitrogen is a diatomic molecule so for each molecule of nitrogen 2 ammonia molecules will be produced $N_2 \Rightarrow 2NH_3$	0.34x2= 0.68 g

2

The correct answer is **B** because:

	Steps	Calculation
1	Balanced symbol equation for the cold reaction	2NaOH (aq) + Cl ₂ (g) → NaOCI (aq) + H ₂ O (I) + NaCI (aq)
2	Calculate the relative formula mass of the compound M _r	22.99 + 16.00 + 35.45 = 74.44
3	Find the moles of the product	The balanced equation shows the ratio of the Cl_2 to $NaOCl$ is 1:1, so 0.10 mol of Cl_2 gives 0.10 mol of the $NaOCl$
4	Do arrange formase	0.10 x 74.44 = 7.44 g

The correct answer is A because:

	Steps	Calculation
1	Calculate the relative formula mass (M_r) of compound $Mg(NO_3)_2$	24.31 + (14.01 × 2) + (16.00 × 6) = 148.33
2	Moles of Mg(NO ₃) ₂ Moles = $\frac{Mass}{Mr}$	Moles = $\frac{1.48}{148.33}$ = 0.010 mol
3	Ratio of moles in equation: 2 moles of Mg(NO ₃) ₂ produces 4 moles of NO ₂	0.010 x 2 = 0.020 mol
4	Mass of NO ₂ Moles = $\frac{Mass}{Mr}$ a pe Re-arrange for mass Mass = moles x M _r	0.02x46.01=0.92g CtiC

The correct answer is D because:

4

	Steps	Calculation
1	Find the volume of carbon dioxide that 1 mole of X would produce	0.1 mol of X \Rightarrow 9.08 dm ³ of CO ₂ 1.0 mol of X \Rightarrow 90.8 dm ³ of CO ₂
2	Find the moles of carbon dioxide using the formula, moles = $\frac{\text{volume in dm}^3}{22.7 \text{dm}^3}$	$\frac{90.8}{22.7 \text{dm}^3} = 4.0 \text{ mol}$
3	Use the number of moles of carbon dioxide to deduce the moles of carbon	1.0 mol C \Rightarrow 1.0 of CO ₂ 4.0 mol C \Rightarrow 4.0 of CO ₂
4	Deduce the number of carbon atoms in X	X must contain 4 carbon atoms

Exam Papers Practice

The correct answer is **B** because:

	Steps	Calculation	
1	The molar mass of an element would be found using the formula, $M_r = \frac{mass}{moles}$	$M_r = \frac{0.65}{moles}$	
2	The moles of a gas at stp would be found using the formula, moles = $\frac{\text{volume in dm}^3}{22.7 \text{dm}^3}$	<u>606.9/1000</u> 22.7 <u>606.9</u> <u>22.7 × 1000</u>	
3	The question tells you it is a Group II metal so the reacting ratio is 1:1 $M(s) + O_2(g) \rightarrow 2MO(s)$ From this you can deduce the number of moles	Moles of metal= moles of oxygen = <u>606.9</u> 22.7 × 1000	
4	Putting these two terms together in $M_r = \frac{mass}{moles}$	$ \begin{array}{r} 606.9 \\ 0.65 \div \overline{22.7 \times 1000} \\ 0R \\ \underline{22.7 \times 1000 \times 0.65} \\ 606.9 \\ \end{array} $	

The correct answer is C because:

	Steps	Calculation
1	Mass of nitrogen in 14 g of fertiliser- you are told it contains 20% nitrogen	$14 \times \frac{20}{100} = 2.8 \text{ g of N}$
2	Moles of nitrogen Moles = $\frac{Mass}{M_r}$	$\frac{2.8}{14.01} = 0.20 \text{ mol}$
3	Concentration of nitrogen Concentration (mol /dm ³) = <u>Amount of substance (mol)</u> Volume of solution (dm ³)	$\frac{0.20}{5} = 0.04 \text{ mol dm}^{-3}$

Exam Papers Practice

The correct answer is **A** because:

- The ideal gas equation is *pV = nRT*
 - Where p is pressure (Pa), V is the volume (m³), n is the number of moles, R is the gas constant (8.314 J K⁻¹ mol⁻¹), and T is the temperature (K)
- The closer the conditions are for ideal behaviour, the more accurate calculations are
- Ideal behaviour is identical particles with no internal structure, no volume, random motion, no intermolecular forces and no loss of momentum in collisions
- At low pressure, a gas minimises contact with other particles (intermolecular force tends towards zero as distance tends towards infinity)
- At high temperatures intermolecular forces are massively outweighed by kinetic energy and any collision between particles is less likely to be inelastic (i.e. lose momentum)

B is incorrect as at low temperatures gases deviate from ideal behaviour C is incorrect as at high pressures gases deviate from ideal behaviour

D is incorrect as at high pressures and low temperatures gases deviate from ideal behaviour

The correct answer is **A** because:

- The ideal gas equation is *pV = nRT*
 - Where p is pressure (Pa), V is the volume (m³), n is the number of moles, R is the gas constant (8.314 J K⁻¹ mol⁻¹), and T is the temperature (K)
- The closer the conditions are for ideal behaviour, the more accurate calculations are
- Ideal behaviour is identical particles with no internal structure, no volume, random motion, no intermolecular forces and no loss of momentum in collisions
- At low pressure, a gas minimises contact with other particles (intermolecular force tends towards zero as distance tends towards infinity)
- At high temperatures intermolecular forces are massively outweighed by kinetic energy and any collision between particles is less likely to be inelastic (i.e. lose momentum)

B is incorrect as at low temperatures gases deviate from ideal behaviour C is incorrect as at high pressures gases deviate from ideal behaviour

D is incorrect as at high pressures and low temperatures gases deviate from ideal behaviour

The correct answer is B because:

8

- The ideal gas equation is pV = nRT
 - Where p is pressure (Pa), V is the volume (m³), n is the number of moles, Ris the gas constant (8.314 J K⁻¹ mol⁻¹), and T is the temperature (K)
- Rearranged for pressure:

$$p = \frac{nRT}{V}$$

Number of moles of hydrogen:

moles (n) = $\frac{\text{mass}(m)}{\text{molar mass}(M_r)} = \frac{0.96}{2.02}$

- Known quantities:
 - Number of moles; $\frac{0.96}{2.02}$
 - Volume; 7.0 x 10⁻³ m³
 - Temperature; 303 K
- Substitution into the equation:

stitution into the equation:

$$p = \frac{nRT}{V} = \frac{0.96 \times 8.314 \times 303}{2.02 \times 7.0 \times 10^{-3}} \text{ pa}$$

The correct answer is **B** because:

The ideal gas equation is pV = nRT
 Where p is pressure (Pa), V is the volume (m³), n is the number of moles, R is the gas constant (8.314 J K⁻¹ mol⁻¹), and T is the

temperature (K)

• Rearranged for number of moles: $n = \frac{pV}{pT}$

Known quantities:

- Pressure; 103000 Pa
- Volume; 5730 cm³ = 0.00537 m³
- Temperature; 60°C = 333 K
- Substitution into the equation:

 $n = \frac{103000 \times 0.00537}{8.314 \times 333}$

Mass of oxygen, O₂ (M_r = 32):

mass (m) = moles (n) × molar mass (Mr)

Exam = 103000 × 0.00537 × 32.00 Practice

10

The correct answer is **D** because:

- The ideal gas equation is pV = nRT
 - Where p is pressure (Pa), V is the volume (m³), n is the number of moles, R is the gas constant (8.314 J K⁻¹ mol⁻¹), and T is the temperature (K)
- Rearranged for temperature:

$$T = \frac{pV}{nR}$$

Known quantities:

- Pressure; 1.00 × 10⁵ Pa
- Volume; 1.247 x 10⁻³ m³

• moles (n) =
$$\frac{\text{mass}(m)}{\text{molar mass}(M_r)} = \frac{5.35}{70.90}$$

Substitution into the equation:

$$T = \frac{70.90 \times (1.0 \times 10^5) \times (1.247 \times 10^{-3})}{(5.35 \times 8.314)}$$

Exam Papers Practice

The correct answer is A because:

- · The temperature and number of moles remain constant throughout
- Boyle's Law: *P*₁*V*₁ = *P*₂*V*₂
 - Where: *P*₁ is the initial pressure, *V*₁ is the initial volume, *P*₂ is the final pressure, *V*₂ is the final volume
- Therefore:

$$V_2 = \frac{p_1}{p_2} \times V_1$$

- Known quantities:
 - Pressure (P₁); 101,000 Pa
 - Pressure (*P*₂); 2,020,000 Pa
 - Volume (V₁); 200cm³ = 0.0002m³
- Substitution into the equation

$$V_2 = \frac{101000}{2020000} \times 0.0002 = 0.00001 \text{ m}^3 \text{ or } 10 \text{ cm}^3$$

Exam Papers Practice

ce

The correct answer is **B** because:

- The ideal gas equation is pV = nRT
 - Where p is pressure (Pa), V is the volume (m³), n is the number of moles, R is the gas constant (8.314 J K⁻¹ mol⁻¹), and T is the temperature (K)
- Rearranged for number of moles:

$$n = \frac{pV}{RT}$$

- Known quantities:
 - Pressure; 100,000 Pa
 - Volume; 960 cm³ = 0.00096 m³
 - Temperature; 20°C= 293 K
- Substitution into the equation:

n =
$$\frac{100000 \times 0.00096}{8.314 \times 293}$$

• 2 moles of sodium produce 1 mole of H₂ gas therefore double the

moles of sodium was used $\begin{pmatrix} 100000 \times 0.00096 \times 2 \\ 8.314 \times 293 \end{pmatrix}$

Mass of Sodium, Na (M_r = 22.99):

 $mass(m) = (n) \times molar mass(M_r)$

 $=\frac{100000 \times 0.00096 \times 2 \times 22.99}{8.314 \times 293}$

13

The correct answer is **B** because:

- Ideal gas behaviour is seen with identical particles with no internal structure, no volume, random motion, no intermolecular forces and no loss of momentum in collisions
- As the pressure increases the volume decreases, showing the pressure of the gas is inversely proportional demonstrated by Boyle's Law:

$$\mathsf{P}_1\mathsf{V}_1 = \mathsf{P}_2\mathsf{V}_2$$

- Where: *P*₁ is the initial pressure, *V*₁ is the initial volume, *P*₂ is the final pressure, *V*₂ is the final volume
- As the pressure increases the chances of inelastic collisions between the particles increases, so the gas behaves non-ideally

A is incorrect as the increase in pressure is not going to make the real gas behave more like an ideal gas

C is incorrect as the particles will not be absorbed by the vessel wall, but they are more likely to collide inelastically

D is incorrect as the gas is behaving less like an ideal gas if it is partially liquified

1		
- 1	71	
- 1	-	

The correct answer is **D** because:

- The ideal gas equation is *pV* = *nRT*
 - Where p is pressure (Pa), V is the volume (m³), n is the number of moles, R is the gas constant (8.314 J K⁻¹ mol⁻¹), and T is the temperature (K)
- Rearranged for number of moles:

$$n = \frac{pV}{RT}$$

- Known quantities:
 - Pressure; = 100kPa=100,000 Pa
 - Volume; 3 dm³ = 0.003 m³
 - Temperature; 25°C = 298 K
- Substitution into the equation:

n =
$$\frac{100000 \times 0.003}{8.314 \times 298}$$

Mass of methane gas:

$$E_{xa} = \frac{\text{moles}(n) \times \text{Molarmass}(M_{r})}{\frac{100000 \times 0.003 \times 16.05}{8.314 \times 298}} \text{Practice}$$

• So the answer is option D

A is incorrect as the volume has been left in dm³ instead of converting to m³

B is incorrect as the pressure has been left in kPa instead of converting to Pa

C is incorrect as the temperature has been left in °C instead of converting to Kelvin

Exam tip: make sure you know how the units are converted; pressure Pa, volume m³, temperature K

ractice

15

The correct answer is **C** because:

- The ideal gas equation is *pV* = *nRT*
 - Where p is pressure (Pa), V is volume (m³), n is the number of moles, R is the gas constant (8.314 J K⁻¹ mol⁻¹) and T is temperature (K)
- Rearranged for pressure:

$$p = \frac{nRT}{V}$$

Known quantities:

- Volume; 2 dm³ = 0.002 m³
- Temperature; 275°C + 273 = 548 K
- Number of moles $(n) = 1.510^{-2}$ mol

Substitution into the equation:

$$p = \frac{nRT}{V} = \frac{(1.5 \times 10^{-2}) \times 8.314 \times (275 + 273)}{2.0 \times 10^{-3}}$$

Exam tip: make sure the units are converted; pressure Pa, volume m³,

The conversions are

temperature K

 $1 \text{ m}^3 = 1000 \text{ dm}^3 = 1,000,000 \text{ cm}^3$

temp in °C + 273 = temp in Kelvin