

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

IB Chemistry: SL

1.2 Reacting Masses & Volumes

CHEMISTRY

SL

1.2 Reacting Masses & Volumes

Question Paper

Course	DP IB Chemistry
Section	1. Stoichiometric Relationships
Торіс	1.2 Reacting Masses & Volumes
Difficulty	Hard

EXAM PAPERS PRACTICE

Time allowed: 20

Score: /12

Percentage: /100

A periodic table is needed for this question

When a sample of potassium oxide, K₂O, is dissolved in 250 cm³ of distilled water, 25 cm³ of this solution is titrated against sulfuric acid with a concentration of 2.00 mol dm⁻³. Complete neutralisation takes place with 15 cm³ of sulfuric acid.

What is the mass of the original sample of potassium oxide dissolved in 250 cm³ of distilled water?

A.
$$\frac{0.015 \times 250 \times 94.20}{25}$$

[1 mark]

Question 2

A periodic table is needed for this question

Iron and chromium can be made into an alloy called ferrochrome. Ferrochrome can be dissolved in dilute sulfuric acid to produce FeSO₄ and Cr₂ (SO₄)₃. The FeSO₄ reacts with acidified K₂ Cr₂ O₇ as shown in this equation:

$$14H^{+} + 6Fe^{2+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_{2}O_{7}^{2-}$$

When 1.00 g of ferrochrome is dissolved in dilute sulfuric acid and then titrated, 13.1 cm³ of 0.100 mol dm⁻³ K₂Cr₂O₇ is needed for the complete reaction. n

In the sample of ferrochrome, what is the percentage by mass of Fe?

A.
$$\frac{13.1 \times 0.1 \times 6 \times 55.85 \times 100}{1000 \times 1}$$

D.
$$\frac{13.1 \times 0.1 \times 6 \times 55.85 \times 1000}{100 \times 1}$$

[1 mark]

Question 3

A periodic table is needed for this question

When a 1.00 g sample of carbon is burned in a limited supply of oxygen, 0.72 g of the carbon combusts to form CO_2 and 0.28 g of the carbon combusts to form CO.

These gases were passed through excess NaOH(aq) which absorbs the CO₂, but not the CO. The remaining gas was then dried and collected.

Assuming that all gas volumes were taken at 25° and 100° kPa pressure, what was the volume of gas at the end of then reaction? (Molar Volume of a gas at stp = 22.7 dm^3)

A. 0.01 dm³

B. 100 cm³

C. 2.27 dm³

D. 227cm³

[1 mark]

EXAM PAPERS PRACTICE

Question 4

A periodic table is needed for this question

Chicken eggs are made up of 5% by mass of egg shell. The average egg has a mass of 50 g.

Assume that chicken eggshell is pure calcium carbonate.

How many complete chicken's egg shells would need to neutralise 50 cm³ of 2.0 mol dm⁻³ ethanoic acid?

- A. 4
- B. 3
- C. 2
- D. 1

10cm³ of methane and 10 cm³ of ethane were sparked with an excess of oxygen. Once cooled, the remaining gas was passed through aqueous potassium hydroxide, which absorbs carbon dioxide.

Assume all measurements were taken at 25°C and 1 atm pressure.

What volume of gas is absorbed by the alkali?

- A. 45 cm3
- B. 30 cm3
- C. 20 cm3
- D. 10 cm3

[1 mark]

Question 6

A solution of Sn^{2+} ions will reduce MnO_4^- ions to Mn^{2+} ions when acidified. The Sn^{2+} ions are oxidised to Sn^{4+} ions in this reaction.

How many moles of Mn²⁺ ions are formed when a solution containing 18.96 g of SnCl₂ (M_r : 189.60) is added to an excess of acidified KMnO₄ solution?

A. 0.010

B. 0.015

C. 0.040

D. 0.050

AM PAPERS PRACTICE

The concentration of calcium ions in a sample of water can be determined by using an ion-exchange column, shown in the diagram below:

A 50 cm³ sample of water containing dissolved calcium sulfate was passed through the ion-exchange resin.

Each calcium ion in the sample was exchanged for two hydrogen ions. The resulting acidic solution collected in the flask required 25 cm 3 of 1.0×10^{-2} mol dm $^{-3}$ potassium hydroxide for complete neutralisation.

What was the concentration of the calcium sulfate in the original sample?

A.
$$\frac{0.050 \times 1.0 \times 10^{-2}}{2 \times 0.025}$$

C.
$$\frac{25 \times 1.0 \times 10^{-2}}{2 \times 0.050}$$

D.
$$\frac{20.\ 025 \times 1.0 \times 10^{-2}}{2 \times 0.050}$$

Some fireworks can use the reaction between aluminum powder and anhydrous barium nitrate as a propellant. Metal oxides and nitrogen are the only products when this happens.

$$10AI + 3Ba(NO_3)_2 \rightarrow 5AIO + 3BaO_3 + 3N_2$$

When 0.783 g of anhydrous barium nitrate (M_r 261.35) reacts with an excess of aluminium what is the volume of nitrogen produced in cm³?

(Molar volume of a gas at stp = 22.7 dm³)

A.
$$\frac{0.783 \times 22.7 \times 3}{261.35}$$

B.
$$\frac{261.35 \times 22700}{0.783 \times 1000}$$

[1 mark]

EXAM PAPERS PRACTICE

Question 9

A periodic table is needed for this question

Excess acidified potassium dichromate(VI) was mixed with 2.76 g of ethanol. The reaction mixture was then boiled under reflux for one hour. Once the reaction had completed, the organic product was collected by distillation.

The yield of the product was 75.0%

What is the mass of the product collected?

A.
$$\frac{2.76 \times 60.06}{46.08}$$

B.
$$\frac{75 \times 2.76 \times 60.06}{100 \times 46.08}$$

C.
$$\frac{100 \times 2.76 \times 60.06}{75 \times 46.08}$$

D.
$$\frac{75 \times 2.76 \times 46.08}{100 \times 60.06}$$

[1 mark]

Question 10

lodine is a shiny, black solid. Solid iodine sublimes easily when heated to produce a purple vapour.

A block of solid iodine is put into a closed container and completely sublimed to produce 1.3 dm³ of iodine vapour. It is then kept at a constant temperature and pressure of 100kPa.

The empty container had a mass of 3.22 g and when iodine was added the mass increased to 9.57 g. ($M_r I_2 = 253.8$)

If iodine vapour acts as an ideal gas, what is the approximate temperature of the iodine vapour? (9.57–.) ×0.0013

A tube of volume 0.3 dm³ is filled with a gas at 27 C and 100kPa, the mass of the tube increases by 1.01×10⁻³ kg.

Assume the gas is obeying the ideal gas laws.

If M_r is the Molar mass of the gas, what is the mass of this sample of gas?

Question 12

The glass containers X and Y are connected by a closed valve.

X contains pure CO_2 gas at 25 °C and a pressure of 1×10^5 Pa. Container Y has been evacuated prior to the experiment and has a volume three times bigger than container X.

During the experiment, the valve is opened, and the temperature of the whole apparatus is raised to 160 °C.

What is the final pressure in the system?

A.
$$\frac{1 \times 10^{5} \times 160}{4 \times 25}$$

C.
$$\frac{1 \times 105 \times 433}{3 \times 298}$$

D.
$$\frac{1 \times 105 \times 433}{3 \times 298}$$

[1 mark]

EXAM PAPERS PRACTICE