

Exam Papers Practice

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark schemes
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.2 Reacting Masses \& Volumes

|B Chemistry - Revision Notes
www.exampaperspractice.co.uk

1.2.1 Reacting Masses

Reacting Masses \& Limiting Re actants

- The number of moles of a substance can be found by using the following equation:

$$
\text { number of moles }=\frac{\text { mass of substance in grams }}{\text { molar mass }\left(\mathrm{g} \mathrm{~mol}^{-1}\right)}
$$

- It is important to be clear about the type of particle you are referring to when dealing with moles
- Eg. 1 mole of CaF_{2} contains one mole of CaF_{2} formula units, but one mole of Ca^{2+} and two moles of F^{-}ions

Reacting masses

- The masses of reactants are useful to determine how much of the reactants exactly react with each otherto prevent waste
- To calculate the reacting masses, the chemical equation is required
- This equation shows the ratio of moles of all the reactants and products, also called the stoichiometry, of the reaction
- To find the mass of products formed in a reaction the following pieces of information are needed:
- The mass of the reactants
- The molar mass of the reactants
- The balanced equation

Worked example
Calculate the mass of magnesium oxide that can be made by completely burning 6.0 g of magnesium in oxygen.

$$
\text { magnesium }(\mathrm{s})+\text { oxygen }(\mathrm{g}) \rightarrow \text { magnesium oxide }(\mathrm{s})
$$

Answer:

Step 1: The symbol equation is:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

Step 2: The relative ato mic masses are:

Exam Papers Practice

Step 3: Calculate the moles of magnesium used in reaction

Step 4: Find the ratio of magnesium to magnesium oxide using the balanced chemical equation

	Magnesium	Magnesium Oxide
Mol	2	2
Ratio	1	1
Change in mol	-0.25	+0.25

Therefore, 0.25 mol of MgO is formed
Step 5: Find the mass of magnesium oxide

$$
\text { mass }=0.25 \mathrm{~mol}^{2} 40.31 \mathrm{~g} \mathrm{~mol}^{-1}
$$

mass $=10.08 \mathrm{~g}$
Therefore, mass of magnesium oxide produced is 10 g (2 sig figs)

Excess \& limiting reactants

- Sometimes, there is an excess of one ormore of the reactants (excess reactant)
- The reactant which is not in excess is called the limiting reactant
- To determine which reactant is limiting:
- The number of moles of the reactants should be calculated
- The ratio of the reactants shown in the equation should be taken into account eg:

$$
\mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}
$$

What is limiting when 10 mol of carbon are reacted with 3 mol of hydrogen?

- Hydrogen is the limiting reactant and since the ratio of $\mathrm{C}: \mathrm{H}_{2}$ is $1: 2$ o nly 1.5 mol of C will react with 3 mol of H_{2}

(-) Exam Tip

An easy way to determine the limiting reactant is to find the moles of each substance and divide the moles by the coefficient in the equationThe lowest number resulting is the limiting reactant

- In the example above:
- divide 10 moles of C by 1 , giving 10
- divide 3 moles of H by 2, giving 1.5, so hydrogen is limiting

Worked example

9.2 g of so dium metal is reacted with 8.0 g of sulfurto produce so dium sulfide, $\mathrm{Na}_{2} \mathrm{~S}$. Which reactant is in excess and which is limiting?

Answer:

Step 1: Calculate the moles of each reactant

$$
\text { number of moles }(\mathrm{Na})=\frac{9.2 \mathrm{~g}}{22.99 \mathrm{~g} \mathrm{~mol}^{-1}}=0.40 \mathrm{~mol}
$$

$$
\text { number of moles }(S)=\frac{8.0 \mathrm{~g}}{32.07 \mathrm{~g} \mathrm{~mol}^{-1}}=0.25 \mathrm{~mol}
$$

Step 2: Write the balanced equation and determine the coefficients

$$
2 \mathrm{Na}+\mathrm{S} \rightarrow \mathrm{Na}_{2} \mathrm{~S}
$$

Step 3: Divide the moles by the coefficient and determine the limiting reagent

- divide 0.40 moles of Na by 2 , giving 0.20 - lowest
- divide 0.25 moles of S by 1 , giving 0.25

Therefore, sodium is limiting and sulfur is in excess

1.2.2 Reaction Yields

Reaction Yields

Percentage yield

- In a lot of reactions, not all reactants react to form products which can be due to several factors:
- Other reactions take place simultaneously
- The reaction does not go to completion
- Products are lost during separation and purification
- The percentage yield shows how much of a particular product you get from the reactants compared to the maximum theoretical amo unt that you can get:

- The actualyield is the number of moles ormass of product obtained experimentally
- The theoreticalyield is the number of moles ormass obtained by a reacting mass calculation

Worked example

In an experiment to dis place copper from copper(II)sulfate, 6.5 g of zinc was added to an excess of copper(II)sulfate solution. The resulting copper was filtered off, washed and dried.The mass of copper obtained was 4.8 g .Calculate the percentage yield of copper.

Answer:
Step 1:The symbol equation is:

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

Step 2: Calculate the amount of z inc reacted in moles

$$
\text { number of moles }=\frac{6.5 \mathrm{~g}}{65.38 \mathrm{~g} \mathrm{~mol}^{-1}}=0.10 \mathrm{~mol}
$$

Step 3: Calculate the maximum amo unt of copper that could be formed from the molar ratio:
Since the ratio of $\mathrm{Zn}(\mathrm{s})$ to $\mathrm{Cu}(\mathrm{s})$ is 1:1 a maximum of 0.10 moles can be produced

Exam Papers Practice

Step 4: Calculate the maximum mass of copper that could be formed (theoreticalyield)

$$
\text { mass }=\operatorname{mol} \times M
$$

$=0.10 \mathrm{~mol}^{2} 63.55 \mathrm{~g} \mathrm{~mol}^{-1}$
$=6.4 \mathrm{~g}$ (2 sig figs)
Step 5: Calculate the percentage yield of copper

$$
\text { percentage yield }=\frac{4.8 \mathrm{~g}}{6.4 \mathrm{~g}} \times 100=\underline{75 \%}
$$

Exam Papers Practice
© 2024 Exam Papers Practice

1.2.3 Avogadro's Law \& Molar Gas Volume

Avogadro's Law

Volumes of gases

- In 1811 the Italian scientist Amedeo Avo gadro develo ped a theory abo ut the volume of gases
- Avogadro's law (also called Avogadro's hypothesis) enables the mole ratio of reacting gases to be determined from volumes of the gases
- Avogadro deduced that equal volumes of gases must contain the same number of molecules
- At standard temperature and pressure(STP) one mole of any gas has a volume of $\mathbf{2 2 . 7} \mathbf{~ d m}^{\mathbf{3}}$
- The units are normally written as $\mathbf{d m}^{3} \mathbf{~ m o l}^{-1}$ (since it is 'permole')
- The conditions of STP are
- a temperature of $0^{\circ} \mathrm{C}(273 \mathrm{~K})$
- pressure of 100 kPa

Stoichiometric relationships

- The stoichiometry of a reaction and Avogadro's Law can be used to deduce the exact volumes of gaseous reactants and products
- Eg. in the combustion of $50 \mathrm{~cm}^{3}$ of propane, the volume of oxygen needed is $(5 \times 50) 250$ cm^{3}, and $(3 \times 50) 150 \mathrm{~cm}^{3}$ of carbon dioxide is formed, using the ratio of pro pane: oxygen: carbon dioxide, which is $1: 5: 3$ respectively, as seen in the equation

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

- Remember that if the gas volumes are not in the same ratio as the coefficients then the amount of product is determined by the limiting reactant so it is essential to identify it first

Worked example

What is the total volume of gases remaining when $70 \mathrm{~cm}^{3}$ of ammonia is combusted completely with $50 \mathrm{~cm}^{3}$ of oxygen according to the equation shown?

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Answer:

Step 1: From the equation deduce the molar ratio of the gases, which is $\mathrm{NH}_{3}: \mathrm{O}_{2}: \mathrm{NO}$ or $4: 5: 4$ (water is not included as it is in the liquid state)

Step 2: We can see that oxygen will run out first (the limiting react ant) and so $50 \mathrm{~cm}^{3}$ of O_{2} requires $4 / 5 \times 50 \mathrm{~cm}^{3}$ of NH_{3} to react $=40 \mathrm{~cm}^{3}$

Step 3: Using Avo gadro 's Law, we cansay $40 \mathrm{~cm}^{3}$ of NO will be produced
Step 4 : There will be of $70-40=30 \mathrm{~cm}^{3}$ of NH_{3} left over
Therefore the to tal remaining volume will be $40+30=70 \mathrm{~cm}^{3}$ of gases

- Exam Tip

Since gas volumes work in the same way as moles, we can use the 'lo west is limiting' technique in limiting reactant problems involving gas volumes. This can be hand y if you are unable to spot which gas reactant is going to run out first.Divide the volumes of the gases by the cofficients and whichever gives the lowest number is the limiting reactant

- E.g.in the previous problem we can see that
- For $\mathrm{NH}_{3} 70 / 4$ gives 17.5
- For $\mathrm{O}_{2} 50 / 5$ gives 10 , so oxy gen is limiting

Exam Papers Practice
© 2024 Exam Papers Practice

Molar Gas Volume

- The molar gas volume of $22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{c}$ an be used to find:
- The volume of a given number of moles of gas:

$$
\text { volume of gas }\left(\mathrm{dm}^{3}\right)=\text { amount of gas }(\mathrm{mol}) \times 22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}
$$

- The number of moles of a given volume of gas:

$$
\text { amount of gas (moles) }=\frac{\text { volume of gas in } \mathrm{dm}^{3}}{22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}
$$

- The relationships can be expressed using a formula triangle

To use the gas formula triangle cover the one you want to find out about with your finger and follow the instructions

Worked example

What is the volume occupied by 3.0 moles of hydrogen at stp?

Answer:
volume of gas $\left(\mathrm{dm}^{3}\right)=$ amount of gas $(\mathrm{mol}) \times 22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$

Worked example

How many moles are in the following volumes of gases?
$1.7 .2 \mathrm{dm}^{3}$ of carbon monoxide
$2.960 \mathrm{~cm}^{3}$ of sulfur dioxide

Answer 1:

Use the formula:

$$
\text { amount of gas (moles) }=\frac{\text { volume of gas in } \mathrm{dm}^{3}}{22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}
$$

$$
\text { amount of gas }(\text { moles })=\frac{7.2 \mathrm{dm}^{3}}{22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}=0.32 \mathrm{~mol}
$$

Answer 2:

Step 1: Convert the volume from cm^{3} to dm^{3}

$$
960 / 1000=0.960 \mathrm{dm}^{3}
$$

Step 2: Use the formula

$$
\text { amount of gas (moles) }=\frac{0.960 \mathrm{dm}^{3}}{22.7 \mathrm{dm}^{3} \mathrm{~mol}^{-1}}=4.22 \times 10^{-2} \mathrm{~mol}
$$

1.2.4 The Ide al Gas Equation

Ideal Gas Equation

Kinetic theory of gases

- The kinetic theory of gases states that molecules in gases are constantly moving
- The theorymakes the following assumptions:
- The gas molecules are moving veryfast and randomly
- The molecules hardly have anyvolume
- The gas molecules do not attract orrepel each other(no intermolecular forces)
- No kinetic energy is lost when the gas molecules collide with each other (elastic collisions)
- The temperature of the gas is directly proportional to the average kinetic energy of the molecules
- Gases that follow the kinetic theory of gases are called ideal gases
- However, in reality gases do not fit this description exactlybut maycome veryclose and are called real gases
- The volume that a gas occupies depends on:
- Its pressure
- Its temperature

Idealgasequation

- The id eal gas equation shows the relationship between pressure, volume, temperature and number of moles of gas of an ideal gas:

$$
\begin{aligned}
& \mathrm{P}=\text { pressure (pascals, Pa) } \\
& \text { xam Papers Praytice } \\
& \mathrm{V}=\text { volume }\left(\mathrm{m}^{3}\right) \\
& \mathrm{n}=\text { number of moles of gas (mol) } \\
& \mathrm{R}=\text { gas constant }\left(8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\
& \mathrm{T}=\text { temperature }(\text { Kelvin, } \mathrm{K})
\end{aligned}
$$

- The ideal gas equation can also be used to calculate the molar mass (M) of a gas

Exam Papers Practice

Worked example

Calculate the volume, in dm^{3}, occupied by 0.781 mol of oxygen at a pres sure of 220 kPa and a temperature of $21^{\circ} \mathrm{C}$.

Answer:

Step 1: Rearrange the ideal gas equation to find volume of the gas

$$
\mathrm{V}=\frac{n R T}{P}
$$

Step 2: Convert into the correct units and calculate the volume the oxygen gas occupies

$$
\begin{aligned}
& \mathrm{P}=220 \mathrm{kPa}=220000 \mathrm{~Pa}_{\mathrm{n}=0.781 \mathrm{~mol}}^{\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}} \\
& \mathrm{~T}=21^{\circ} \mathrm{C}=294 \mathrm{~K} \\
& \qquad \mathrm{~V}=\frac{0.781 \mathrm{~mol} \times 8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 294 \mathrm{~K}}{220000 \mathrm{~Pa}^{2}}
\end{aligned}
$$

E Exam Tip

A word about units...Students oftenmess up gas calculations by getting their unit conversions wrong, particularly fro mcm^{3} to m^{3}. Think abo ut what a cubic metre actually is - a cube with sides 1 m or 100 cm long.The volume of this cube is $100 \times 100 \times 100=1000000$ or $10^{6} \mathrm{~cm}^{3}$ So when you convert from m^{3} to cm^{3} you MULT IPLY by 10^{6} and when you convert from cm^{3} to m^{3} you DIVIDE by 10^{6} (or multiply by 10^{-6} which is the same thing)

Worked example

Calculate the pressure of a gas, in kPa, given that 0.20 moles of the gas occupy $10.1 \mathrm{dm}^{3}$ at a temperature of $25^{\circ} \mathrm{C}$.

Answer:
Step 1: Rearrange the id eal gas equation to find the pressure of the gas

$$
\mathrm{P}=\frac{n R T}{V}
$$

Step 2: Convert to the correct units and calculate the pressure

$$
\begin{aligned}
& \mathrm{n}=0.20 \mathrm{~mol} \\
& \mathrm{~V}=10.1 \mathrm{dm}^{3}=0.0101 \mathrm{~m}^{3}=10.1 \times 10^{-3} \mathrm{~m}^{3} \\
& \mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{~T}=25^{\circ} \mathrm{C}=298 \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{P}=\frac{0.20 \mathrm{~mol} \times 8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 298 \mathrm{~K}}{10.1 \times 10^{-3} \mathrm{~m}^{3}}
$$

$P=49037 \mathrm{~Pa}=49 \mathrm{kPa}$ (2sig figs)

Worked example

Calculate the temperature of a gas, in ${ }^{\circ} \mathrm{C}$, if 0.047 moles of the gas occupy $1.2 \mathrm{dm}^{3}$ at a pressure of 100 kPa .

Answer:

Step 1: Rearrange the ideal gas equation to find the temperature of the gas

$$
\mathrm{T}=\frac{P V}{n R}
$$

Step 2: Convert to the correct units and calculate the pressure

$$
\begin{aligned}
& \mathrm{n}=0.047 \mathrm{~mol} \\
& \mathrm{~V}=1.2 \mathrm{dm}^{3}=0.0012 \mathrm{~m}^{3}=1.2 \times 10^{-3} \mathrm{~m}^{3} \\
& \mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{P}=100 \mathrm{kPa}=100000 \mathrm{~Pa}
\end{aligned}
$$

$$
\mathrm{T}=\frac{100000 \times 1.2 \times 10^{-3} \mathrm{~m}^{3}}{0.047 \mathrm{~mol} \times 8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}}
$$

$\mathrm{T}=307.24 \mathrm{~K}=34.24^{\circ} \mathrm{C}=34^{\circ} \mathrm{C}$ (2 sigfigs)

Worked example

A flask of volume $1000 \mathrm{~cm}^{3}$ contains 6.39 g of a gas. The pressure in the flask was 300 kPa and the temperature was $23^{\circ} \mathrm{C}$. Calculate the molar mass of the gas.

Answer:

Step 1: Rearrange the id eal gas equation to find the number of moles of gas

$$
\mathrm{n}=\frac{p V}{R T}
$$

Step 2: Convert to the correct units and calculate the number of moles of gas

$$
\begin{aligned}
& \mathrm{B}=300 \mathrm{kPa}=300000 \mathrm{~Pa} \\
& \mathrm{~V}=1000 \mathrm{~cm}^{3}=0.001 \mathrm{~m}^{3}=1.0 \times 10^{-3} \mathrm{~m}^{3} \\
& \mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{~T}=23^{\circ} \mathrm{C}=296 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{n} & =\frac{300000 \mathrm{~Pa} \times 1 \times 10^{-3} \mathrm{~m}^{3}}{8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 296 \mathrm{~K}} \\
\mathrm{n} & =0.12 \mathrm{~mol}
\end{aligned}
$$

Step 3: Calculate the molarmass using the number of moles of gas

Exam Papers Practice

$$
\begin{gathered}
\text { molar mass }=\frac{\text { mass }}{\text { moles }} \\
M=\frac{6.39 \mathrm{~g}}{0.12 \mathrm{~mol}}=53 \mathrm{~g} \mathrm{~mol}^{-1}(2 \text { sig figs })
\end{gathered}
$$

(9) Exam Tip

To calculate the temperature in Kelvin, add 273 to the Celsius temperature, eg. $100^{\circ} \mathrm{C}$ is 373 Kelvin.

1.2.5 Gas Law Relationships

Gas Law Relationships

- Gases in a container exert a pressure as the gas molecules are constantlycolliding with the walls of the container

Gas particles exert a pressure by constantly colliding with the walls of the container

Changing gas volume

- Decreasing the volume (at constant temperature) of the container causes the molecules to be squashed together which results in more frequent collisions with the container wall
- The pressure of the gas increases

Exam Papers Practice

Decreasing the volume of a gas causes an increased collision frequency of the gas particles with the container wall

- The pressure is therefore inversely proportional to the volume (at constant temperature)
- This is known as Boyle's Law
- Mathematic ally, we sayP $\alpha 1 / \mathrm{V}$ orPV = a constant
- We can show a graphical representation of Boyle's Law in three different ways:
- A graph of pressure of gas plotted against $1 /$ volume gives a straight line
- A graph of pressure against volume gives a curve
- A graph of PV versus P gives a straight line

Three graphs that show Boyle's Law

Changing gastemperature

- When a gas is heated (at constant pressure) the particles gain more kinetic energy and und ergo more frequent collisions with the container walls
- To keep the pressure const ant, the molecules must get further apart and therefore the volume increases
- The volume is therefore directly proportional to the temperature in Kelvin (at constant pressure)
- This is known as Charles' Law
- Mathematic ally, $\mathrm{V} \propto \mathrm{T}$ orV/T = a constant
- A graph of volume against temperature in Kelvin gives a straight line

Exam Papers Practice
© 2024 Exam Papers Practice

Exam Papers Practice

Increasing the temperature of a gas causes an increased collision frequency of the gas particles with the containerwall (a); volume is directly proportional to the temperature in Kelvin (b)

Changing gaspressure

- Increasing the temperature (at constant volume) of the gas causes the molecules to gain more kinetic energy
- This means that the particles will move faster and collide with the containerwalls more frequently
- The pressure of the gas increases
- The temperature is therefore directly proportional to the pressure (at constant volume)
- Mathematic ally, we say that $P \propto T$ or $P / T=$ a constant
- A graph of temperature in Kelvin of a gas plotted against pressure gives a straight line

A MORE FREQUENT COLLISIONS OF GAS MOLECULES WITH THE CONTAINER WALL AS THE PARTICLES HAVE MORE ENERGY

B

Increasing the temperature of a gas causes an increased collision frequency of the gas particles with the containerwall (a); temperature is directly proportional to the pressure (b)

Pressure, volume and temperature

- Combining these three relationships to gether:
- $P / V=a \operatorname{constant}$
- $\mathrm{V} / \mathrm{T}=\mathrm{a}$ constant
- $P / T=a \operatorname{constant}$
- We can see how the ideal gas equation is constructed
- PV/T = a constant
- $P V=$ a constant $x T$
- This constant is made from two components, the numberof moles, \mathbf{n}, and the gas constant, \mathbf{R}, resulting in the overall equation:
- PV=nRT

Changing the conditions of a fixed amount of gas

- For a fixed amount of gas, \mathbf{n} and R will be constant, so if you change the conditions of a gas we can ignore \mathbf{n} and \mathbf{R} in the ideal gas equation
- This leads to a very us eful expression forproblem solving

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

- Where P_{1}, V_{1} and T_{1} are the initial conditions of the gas and P_{2}, V_{2} and T_{2} are the final conditions

Worked example

At $25^{\circ} \mathrm{C}$ and 100 kPa a gas occupies a volume of $20 \mathrm{dm}^{3}$. Calculate the new temperature, in ${ }^{\circ} \mathrm{C}$, of the gas if the volume is decreased to $10 \mathrm{dm}^{3}$ at constant pressure.

Answer:
Step 1: Rearrange the formula to change the conditions of a fixed amount of gas. Pressure is constant so it is left out of the formula

$$
T_{2}=\frac{V_{2} T_{1}}{V_{1}}
$$

Step 2: Convert the temperature to Kelvin. There is no need to convert the volume to m^{3} bec ause the formula is using a ratio of the two volumes

$$
\begin{aligned}
& \mathrm{V}_{1}=20 \mathrm{dm}^{3} \\
& \mathrm{~V}_{2}=10 \mathrm{dm}^{3}
\end{aligned}
$$

$$
\mathrm{T}_{1}=25+273=298 \mathrm{~K}
$$

Step 3: Calculate the new temperature

$$
T_{2}=\frac{10 \mathrm{dm}^{3} \times 298 \mathrm{~K}}{20 \mathrm{dm}^{3}}=149 \mathrm{~K}=-124^{\circ} \mathrm{C}
$$

Worked example

A $2.00 \mathrm{dm}^{3}$ container of oxygen at a pressure of 80 kPa was heated from $20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ The volume expanded to $2.25 \mathrm{dm}^{3}$. What was the final pressure of the gas?

Answer:

Step 1: Rearrange the formula to change the conditions of a fixed amount of gas

$$
P_{2}=\frac{P_{1} V_{1} T_{2}}{V_{2} T_{1}}
$$

Step 2: Substitute in the values and calculate the final pressure

$$
\mathrm{P}_{1}=80 \mathrm{kPa}
$$

$\square-1$
Copyright

$$
\begin{aligned}
& \mathrm{V}_{1}=2.00 \mathrm{dm}^{3} \\
& \mathrm{~V}_{2}=2.25 \mathrm{dm}^{3} \\
& \mathrm{~T}_{1}=20+273=293 \mathrm{~K}
\end{aligned}
$$

$$
\text { © } 2024 \text { Exam Pap } \mathrm{T}_{2}=70+273=343 \mathrm{~K}
$$

$$
P_{2}=\frac{80 \mathrm{kPa} \times 2.00 \mathrm{dm}^{3} \times 343 \mathrm{~K}}{293 \mathrm{~K} \times 2.25 \mathrm{dm}^{3}}=83 \mathrm{kPa}
$$

1.2.6 Real Gases

Real Gas Behaviour

- The ideal gas equation does not fit all measurements and observations taken at all conditions with real gases
- The relationship between pressure, volume and temperature shows significant deviation from PV $=n R T$ when the temperature is very low or the pressure is very high
- This is because the ideal gas equation is built on the kinetic theory of matter
- The kinetic theory of matter makes some key assumptions about the behaviour of gases

At low temperatures and high pressures real gases deviate significantly from the ideal gas equation. The higher the pressure and the lower the temperature the greater the deviation

Assumptions about volume

- The kinetic theory assumes that the volume the actual gas molecules themselves take up is tiny compared to the volume the gas occupies in a container and can be ignored
- This is broadly true forgases at normal conditions, but becomes increasingly inaccurate at low temperatures and high pressures
- At these conditions the gas molecules are very close to gether, so the fraction of space taken up by the molecules is substantial compared to the total volume

Exam Papers Practice

At low temperatures and high pressures, the fraction of space taken up by the molecules is substantial
Assumptions about attractive forces

- Another assumption about gases is that when gas molecules are far apart there is verylittle interaction between the molecules
- As the gas molecules become closerto each otherintermolecular
forces cause attraction between molecules
- This reduces the number of collisions with the walls of the container
- The pressure is less than expected bythe ideal gas equation

O Exam Tip

The id eal gas equation and the gas constant are given in the IB Chemistry Data Booklet which can be usedinPaper 2, but not in Paper 1.

1.2.7 Standard Solutions

Concentrations of Solutions

Standard solutions

- Chemists routinely prepare solutions needed for analysis, whose concentrations are known precisely
- These solutions are termed stand ard solutions
- They are made as accurately and precisely as possible using three decimal place balances and volumetric flasks to reduce the impact of measurement uncertainties
- The steps are:

1

WEIGH OUT A PRECISE AMOUNT OF THE SOLID

PRE-DISSOLVE THE SOLID

Volumes \& concentrations of solutions

- The concentration of a solution is the amount of solute dissolved in a solvent to make $1 \mathrm{dm}^{3}$ of solution
- The solute is the substance that dissolves in a solvent to form a solution
- The solvent is often water
- A concentrated solution is a solution that has a high concentration of solute
- A dilute solution is a solution with a low concentration of solute
- Concentration is usually expressed in one of three ways:
- moles perunit volume
- mass perunit volume
- parts permillion

Molesper unit volume

- The formula forexpressing concentration using moles is:

Exam Papers Practice

$$
\text { concentration }\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=\frac{\text { number of moles of solute }(\mathrm{mol})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)}
$$

- You must make sure you change cm^{3} to dm^{3} (by dividing by 1000)
- The relationships can be expressed using this formula triangle:

To use the concentration formula triangle cover the one you want to find out about with your finger and follow the instructions

Worked example

Calculate the mass of so dium hydroxide, NaOH , required to prepare $250 \mathrm{~cm}^{3}$ of a $0.200 \mathrm{~mol} \mathrm{dm}{ }^{-}$ ${ }^{3}$ solution

Answer:

Step 1: Use the formula triangle to find the number of moles of NaOH needed
numberof moles $=$ concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right) \times$ volume $\left(\mathrm{dm}^{3}\right)$

$$
\begin{aligned}
& \mathrm{n}=0.200 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.250 \mathrm{dm}^{3} \\
& \mathrm{n}=0.0500 \mathrm{~mol}
\end{aligned}
$$

Step 2: Find the molarmass of NaOH

$$
M=22.99+16.00+1.01=40.00 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Step 3: Calculate the mass required

$$
\text { mass }=\text { moles } \times \text { molarmass }
$$

$$
\text { mass }=0.0500 \mathrm{~mol}^{2} 40.00 \mathrm{~g} \mathrm{~mol}^{-1}=2.00 \mathrm{~g}
$$

Mass per unit volume

- Sometimes it is more convenient to express concentration interms of mass per unit volume
- The formula is:

$$
\text { concentration }\left(g \mathrm{dm}^{-3}\right)=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume of solution }\left(\mathrm{dm}^{3}\right)}
$$

- To change a concentration frommoldm ${ }^{-3}$ to $\mathrm{g} \mathrm{dm}^{-3}$
- Multiply the moles of solute by its molarmass
mass of solute $(g)=$ numberof moles $(\mathrm{mol}) \times$ molarmass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$

Partsper million

- When expressing extremely low concentrations a unit that can be used is parts per millionorppm
- This is useful when giving the concentration of a pollutant in water or the air when the absolute amount is tiny compared the the volume of water or air
- 1ppmis defined as
- A mass of $\mathbf{1 m g}$ dissolved in $\mathbf{1 d m}{ }^{3}$ of water
- Since $1 \mathrm{dm}^{3}$ weighs 1 kg we can also sayit is
- A mass of $\mathbf{1 m g}$ dissolved in $\mathbf{1 k g}$ of water, or $10^{-3} \mathrm{~g}$ in $10^{3} \mathrm{~g}$ which is the same as saying the concentration is 1 in 10^{6} or 1 in a million

(Worked example

The concentration of chlorine in a swimming pool should between between 1 and 3 ppm .
Calculate the maximum mass, in kg , of chlorine that should be present in an olympic swimming pool of size 2.5 million litres.

Answer:

Step 1: calculate the total mass in mg assuming 3ppm(1 litre is the same as $1 \mathrm{dm}^{3}$)

$$
3 \times 2.5 \times 10^{6}=7.5 \times 10^{6} \mathrm{mg}
$$

Step 2: convert the mass into kilograms ($1 \mathrm{mg}=10^{-6} \mathrm{~kg}$)
$7.5 \times 10^{6} \times 10^{-6} \mathrm{~kg}=7.5 \mathrm{~kg}$

1.2.8 Concentration Calculations

Concentration Calculations

Step bystep

- Concentration calculations involve bringing to gether the skills and knowledge you have acquired previo usly and applying them to problem solving
- Youshould be able to easilyconvert between moles, mass, concentrations and volumes (of solutions and gases)
- The four steps involved in problem solving are:
- write the balanced equation forthe reaction
- determine the mass/moles/concentration/volume of the of the substance(s) you know about
- use the balanced equation to deduce the mole ratio s of the substances present
- calculate the mass/moles/concentration/volume of the of the unknown substance(s)

Worked example

$25.0 \mathrm{~cm}^{3}$ of $0.050 \mathrm{~mol} \mathrm{dm}^{-3}$ so dium carbo nate was completely neutralised by $20.0 \mathrm{~cm}^{3}$ of dilute hydrochloric acid.Calculate the concentration in moldm^{-3} of the hydrochloric acid.

Answer:

Step 1: Write the balanced equation for the reaction

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Step 2: Determine the moles of the known substance, in this case sodium carbonate. Don't forget to divide the volume by 1000 to convert cm^{3} to dm^{3}
moles $=$ volume \times concentration
amount $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=0.0250 \mathrm{dm}^{3} \times 0.050 \mathrm{moldm}^{-3}=0.00125 \mathrm{~mol}$
Step 3: Use the balanced equation to deduce the mole ratio of sodium carbo nate to hydro chloric acid:

1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ reacts with 2 mol of HCl , so the mole ratio is $1: 2$
Therefore 0.00125 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ react with 0.00250 moles of HCl
Step 4: Calculate the concentration of the unknown substance, hydrochloric acid

$$
\begin{gathered}
\text { concentration }=\frac{\text { moles }}{\text { volume }} \\
\text { concentration }(\mathrm{HCl})=\frac{0.00250 \mathrm{~mol}}{0.0200 \mathrm{dm}^{3}}=0.125 \mathrm{~mol} \mathrm{dm}^{-3}
\end{gathered}
$$

Worked example

Calculate the volume of hydrochloric acid of concentration $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ that is required to react completely with 2.5 g of c alcium carbo nate.

Answer:

Step 1: Write the balanced equation for the reaction

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Step 2: Determine the moles of the known substance, calcium carbonate

$$
\text { amount of } \mathrm{CaCO}_{3}=\frac{2.5 \mathrm{~g}}{100.09 \mathrm{~g} \mathrm{~mol}^{-1}}=0.025 \mathrm{~mol}
$$

Step 3: Use the balanced equation to deduce the mole ratio of calcium carbonate to hydrochloric acid:

$$
\begin{aligned}
& 1 \mathrm{~mol}^{2} \mathrm{CaCO}_{3} \text { requires } 2 \mathrm{~mol} \text { of } \mathrm{HCl} \\
& \text { So } 0.025 \mathrm{~mol}^{2} \mathrm{CaCO}_{3} \text { requires } 0.050 \mathrm{~mol} \text { of } \mathrm{HCl}
\end{aligned}
$$

Step 4: Calculate the volume of HCl required

$$
\text { Volume of } \mathrm{HCl}=\frac{\text { moles }}{\text { concentration }}=\frac{0.050 \mathrm{~mol}}{1.0 \mathrm{~mol} \mathrm{dm}^{-3}}=0.050 \mathrm{dm}^{3}
$$

1.2.9 Titrations

Titrations

- Volumetric analysis is a process that uses the volume and concentration of one chemical reactant (a standard solution) to determine the concentration of another unknown solution
- The technique most commonlyused is atitration
- The volumes are measured using two precise pieces of equipment, a volumetric or graduated pipette and aburette

A GRADUATED PIPETTE

Equipment used to measure volumes precisely in titrations

A BURETTE

- Burettes are usuallymarked to a precision of $0.10 \mathrm{~cm}^{3}$
- Since they are analo gue instruments, the uncertainty is recorded to half the smallest marking, in other words to $\pm 0.05 \mathrm{~cm}^{3}$
- The end point or equivalence point occurs when the two solutions have reacted completely and is shown with the use of an indicat or

Exam Papers Practice
 JUST CHANGES COLOUR

The steps in a titration

- The steps in a titration are:
- Meas uring a known volume (usually 20 or $25 \mathrm{~cm}^{3}$) of one of the solutions with a volumetric or graduated pipette and placing it into a conical flask
- The other solution is placed in the burette
- A few drops of the indicator are added
- The tap on the burette is carefully opened and the solution added, portion by portion, to the conical flask until the indicat or just changes colour
- Multiple trials are carried out until concordant results are obtained

Recording and processing titration results

- Both the initial and final burette readings should be recorded and shownto a precision of ± 0.05 cm^{3}, the same as the uncertainty

Exam Papers Practice

A typical layout and set of titration results

- The volume delivered (titre) is calculated and recorded to an uncertainty of $\pm 0.10 \mathrm{~cm}^{3}$
- The uncertainty is doubled, because two burette readings are made to obtain the titre (V final - V initial), following the rules for propagation of uncert ainties (you can find more about this in Topic 11)
- Concordant results are then averaged, and non-concordant results are discarded
- Concordance is usually considered to be a consistencyof ± 0.05 between results, depending on the quality of the burette
- The calculation then follows the steps given in 1.2.8 Concentration calculations

(9) Exam Tip

When performing titration calculations using monoprotic acids (meaning one H^{+}) such as HCl , the number of moles of the acid and alkali will be the same. This allows you to use the relationship

$$
\mathrm{C}_{7} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}
$$

where C_{1} and V_{1} are the concentration and volume of the acid and C_{2} and V_{2} are the concentration and volume of the alkali. There is no need to convert the units of volume to dm^{3} as this is a ratio. Simply re-arrange the formula to solve for the unknown quantity.

Worked example

A 0.675 g sample of a solid acid, HA, was dissolved in distilled water and made up to $100.0 \mathrm{~cm}^{3}$ in a volumetric flask. $25.0 \mathrm{~cm}^{3}$ of this solution was titrated against $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ solution and $12.1 \mathrm{~cm}^{3}$ were required for complete reaction. Determine the molar mass of the acid.

Answer:

Step 1: Write the equation for the reaction:

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Step 2: Calculate the number of moles of the NaOH

$$
n(\mathrm{NaOH})_{\text {sample }}=\left(\frac{12.1}{1000}\right) \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=1.21 \times 10^{-3} \mathrm{~mol}
$$

Step 3: Deduce the number of moles of the acid
Since the acid is monoprotic the number of moles of HA is also $1.21 \times 10^{-3} \mathrm{~mol}$
This is present in $25.0 \mathrm{~cm}^{3}$ of the solution
Step 4: Scale up to find the amount in the original solution

$$
n(\mathrm{NaOH})_{\text {original }}=\frac{1.21 \times 10^{-3} \mathrm{~mol} \times 100.0 \mathrm{~cm}^{3}}{25.0 \mathrm{~cm}^{3}}=4.84 \times 10^{-3} \mathrm{~mol}
$$

Step 5: Calculate the molar mass
moles $=\frac{\text { mass }}{\text { molar mass }}$

$$
\text { molar mass }=\frac{\text { mass }}{\text { moles }}=\frac{0.675 \mathrm{~g}}{4.84 \times 10^{-3} \mathrm{~mol}}=139 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Backtitration

- Aback titration is a commontechnique used to find the concentrationoramount of an unknown substance indirectly
- The principle is to carry out a reaction with the unknown substance and an excess of a further reactant such as an acid or an alkali
- The excess reactant, afterreaction, is then analysed bytitration and the mole ratios are used to deduce the moles orconcentration of the original substance being analysed

Worked example

The percentage bymass of calcium carbonate, CaCO_{3}, in a sample of marble was determined by ad ding excess hydrochloric acid to ensure that all the calcium carbonate had reacted. The excess acid left was then titrated with aqueous sodium hydroxide. A student added $27.20 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HC} /$ to 0.188 g of marble. The excess acid required $23.80 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-}$ ${ }^{3} \mathrm{NaOH}$ for neutralization. Calculate the percentage of calcium carbo nate in the marble.

Answer:

Step 1: Write the equation for the titration reaction:

$$
\mathrm{HC} /(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaC} /(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Step 2: Calculate the number of moles of the NaOH

$$
n(\mathrm{NaOH})=0.02380 \mathrm{dm}^{3} \times 0.100 \mathrm{~mol} \mathrm{dm}^{-3}=2.380 \times 10^{-3} \mathrm{~mol}
$$

Step 3: Deduce the number of moles of the excess acid
Since the reacting ratio is $1: 1$ the number of moles of $\mathrm{HC} /$ is also $2.380 \times 10^{-3} \mathrm{~mol}$
Step 4 : Find the amount of HCl in the original solution and then the amount reacted

$$
\begin{aligned}
& n(\mathrm{HC})_{\text {original }}=0.02720 \mathrm{dm}^{3} \times 0.200 \mathrm{~mol} \mathrm{dm}^{-3}=5.440 \times 10^{-3} \mathrm{~mol} \\
& n(\mathrm{HC})_{\text {reacted }}=5.440 \times 10^{-3} \mathrm{~mol}-2.380 \times 10^{-3} \mathrm{~mol}=3.060 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

Step 5: Write the equation for the reaction with the calcium carbonate

$$
2 \mathrm{HC} /(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Step 6: Deduce the number of moles of the calcium carbo nate that reacted
Since the reacting ratio is $2: 1$ the number of moles of CaCO_{3} is $\left(3.060 \times 10^{-3} \mathrm{~mol}\right) \div 2$

$$
n\left(\mathrm{CaCO}_{3}\right)=1.530 \times 10^{-3} \mathrm{~mol}
$$

Step 7: Calculate the mass of calcium carbonate in the sample of marble

$$
\text { mass }=\text { moles } \times \text { molarmass }=1.530 \times 10^{-3} \mathrm{~mol} \times 100.09 \mathrm{~g} \mathrm{~mol}^{-1}=0.1531 \mathrm{~g}
$$

Step 8: Calculate the percentage of calcium carbo nate in the marble

$$
\text { Percentage of } \mathrm{CaCO}_{3} \text { in marble }=\frac{0.1531 \times 100}{0.188}=81.5 \%
$$

- Exam Tip

Rounding off when yo u take averagesWhen yo u have an average of burette readings that comes to three decimal places, e.g. $\left(23.20 \mathrm{~cm}^{3}+23.25 \mathrm{~cm}^{3}\right) \div 2=23.225 \mathrm{~cm}^{3}$ You CANNOT show more than two decimal places because that would make the average more precise than the readings. To manage this situation you need to follow a simple rule. If the last digit is between a 5 and 9 then you round up; if the digit is between 0 and 4 you round down. So in this case the value recorded would be $23.23 \mathrm{~cm}^{3}$

