

Page 1 of 50

1.2 Programming
paradigms

Name: ________________________

Class: ________________________

Date: ________________________

Time: 499 minutes

Marks: 318 marks

Comments:

Page 2 of 50

Q1.
(a) This question refers to the subroutine CreateTileDictionary.

The points values for the letters J and X are to be changed so that they are not
worth as many points as the letters Z and Q.

Adapt the subroutine CreateTileDictionary so that the letters J and X are worth 4

points instead of 5 points.

Test that the changes you have made work:
• run the Skeleton Program
• enter 2 at the main menu

• enter 1 to view the letter values.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the amended subroutine
CreateTileDictionary.

(1)

(ii) SCREEN CAPTURE(S) showing the results of the requested test.

(1)

(b) This question refers to the subroutine Main.

Currently each player starts with 15 letter tiles. In the Main subroutine

StartHandSize is set to a value of 15.

Change the subroutine Main so that the user can choose what the value for

StartHandSize will be.

Before the main menu is displayed and before the first iteration structure in Main the

message “Enter start hand size: ” should be displayed and the user's input

should be stored in StartHandSize. This should happen repeatedly until the user

enters a value for the start hand size that is between 1 and 20 inclusive.

Test that the changes you have made work:

• run the Skeleton Program
• enter 0 when asked to enter the start hand size

• enter 21 when asked to enter the start hand size

• enter 5 when asked to enter the start hand size

• enter 1 at the main menu.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the amended subroutine Main.

(4)

(ii) SCREEN CAPTURE(S) showing the requested test. You must make sure that
evidence for all parts of the requested test is provided in the SCREEN
CAPTURE(S).

(1)

Page 3 of 50

(c) This question refers to the subroutine CheckWordIsValid.

When a player enters a word, a linear search algorithm is used to check to see if the
word entered is in the list of AllowedWords. The subroutine CheckWordIsValid is to

be changed so that it uses a more time-efficient search algorithm.

Change the CheckWordIsValid subroutine so that it uses a binary search algorithm

instead of a linear search algorithm.

You must write your own search routine and not use any built-in search function
that might be available in the programming language you are using.

Each item in AllowedWords that is compared to the word that the user entered

should be displayed on the screen.

Figure 2 shows examples of how the new version of CheckWordIsValid should

work if AllowedWords contained the items shown in Figure 1.

Figure 1

BIG

BUG

FED

GET

JET

NOT

SIP

WON

Figure 2

1) If the user enters the word BIG then a value of True should be

returned and the words GET, BUG, BIG should be displayed, in that
order.

2) If the user enters the word JET then a value of True should be

returned and the words GET, NOT, JET should be displayed, in that
order.

3) If the user enters the word ZOO then a value of False should be

returned and the words GET, NOT, SIP, WON should be displayed, in
that order.

Test that the changes you have made work:

• run the Skeleton Program

• if you have answered part (b), enter 15 when asked to enter the start hand

size; if you have not answered part (b) yet then skip this step
• enter 2 at the main menu

• enter the word jars.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the amended subroutine
CheckWordIsValid.

(8)

(ii) SCREEN CAPTURE(S) showing the requested test.

Page 4 of 50

(1)

(d) This question extends the functionality of the game.

After spelling a valid word the player decides which one of four options to select to
determine how many tiles will be added to their hand. Before choosing they can look
at the values of the tiles.

It would help the player make their decision if they were aware of how useful each
letter was by knowing the frequency with which each letter appears in the list of
allowed words.

The program is to be extended so that when the player chooses to view the tile
values they are also shown the number of times that each letter appears in the list of
allowed words.

What you need to do

Task 1
Create a new subroutine called CalculateFrequencies that looks through the list

of allowed words and displays each of the 26 letters in the alphabet along with the
number of times that the letter appears in the list of allowed words, which the
subroutine has calculated.

Task 2

Modify the DisplayTileValues subroutine so that after displaying the tile values it

also calls the CalculateFrequencies subroutine.

Task 3
Test that the changes you have made work:

• run the Skeleton Program
• if you have answered part (b), enter 15 when asked to enter the start hand

size; if you have not answered part (b) yet then skip this step
• enter 2 at the main menu

• enter 1 to display the letter values.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the new subroutine
CalculateFrequencies, the amended subroutine DisplayTileValues and

any other subroutines you have modified when answering this question.

(8)

(ii) SCREEN CAPTURE(S) showing the requested text.

(1)

(e) The scoring system for the game is to be changed so that if a player spells a valid
word they score points for all valid words that are a prefix of the word entered. A
prefix is the first x characters of a word, where x is a whole number between one
and the number of characters in the word.

In the Skeleton Program, AllowedWords contains the list of valid words that have

been read in from the Data File aqawords.txt.

Example

Page 5 of 50

If the user enters the word TOO they will be awarded points for the valid words TOO
and TO as TO is a prefix of the word TOO. They will not be awarded points for the
word OO even though it is a valid word and is a substring of TOO because it is not a
prefix of TOO.

Example
If the user enters the word BETTER they will be awarded points for the words
BETTER, BET and BE as these are all valid prefixes of the word entered by the
user. They would not be awarded points for BETT or BETTE as these are not valid
English words. They would not be awarded points for BEER as even though it is

contained in the word BETTER it is not a prefix.

Example
If the user enters the word BIOGASSES they will be awarded points for the words
BIOGASSES, BIOGAS, BIOG, BIO and BI as these are all valid prefixes of the word
entered by the user. They would not be awarded points for BIOGA, BIOGASS or
BIOGASSE as these are not valid English words. They would not be awarded points
for GAS as even though it is contained in the word BIOGASSES it is not a prefix.

Example
If the user enters the word CALMIEST they will not be awarded any points as even
though CALM at the start is a valid word the original word entered by the user,
CALMIEST, is not.

Example

If the user enters the word AN they will be awarded points for the word AN. They
would not be awarded points for A even though A at the start is a valid word as
points are only awarded for words that are at least two letters long.

What you need to do

Task 1
Write a recursive subroutine called GetScoreForWordAndPrefix that, if given a

valid word, returns the score of the word added to the score for any valid words that
are prefixes of the word.

To get full marks for this task the GetScoreForWordAndPrefix subroutine must

make use of recursion in an appropriate way to calculate the score for any prefixes
that are also valid words.

If your solution uses an alternative method to recursion you will be able to get most
but not all of the available marks for this question.

Task 2
Modify the UpdateAfterAllowedWord subroutine so that it calls the new

GetScoreForWordAndPrefix subroutine instead of the GetScoreForWord

subroutine.

Task 3
Test that the changes you have made to the program work:

• run the Skeleton Program
• if you have answered part (b), enter 15 when asked to enter the start hand

size; if you have not answered part (b) yet then skip this step
• enter 2 at the main menu

• enter the word abandon

• enter 4 so that no tiles are replaced.

Page 6 of 50

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the new subroutine
GetScoreForWordAndPrefix, the amended subroutine

UpdateAfterAllowedWord and any other subroutines you have modified

when answering this question.

(11)

(ii) SCREEN CAPTURE(S) showing the results of the requested test.

(1)

(Total 37 marks)

Q2.
The class diagram in Figure 1 is a partial representation of the relationships between
some of the classes in the Skeleton Program.

Note: In Figure 1 a + sign denotes a public attribute/method.

Figure 1

A class diagram can show a variety of features used in object-oriented programming.

(a) Write Yes or No in the unshaded cells in the table to identify if the given feature is
present in the class diagram shown in Figure 1.

Page 7 of 50

Feature
Is present in Figure 1?

(Yes/No)

Inheritance

Protected method

Private attribute

(3)

(b) State the name of an identifier for a subclass in the Skeleton Program.

(1)

(c) Explain the difference between a protected attribute and a private attribute.

(2)

(d) In the Warren class there is an attribute RabbitCount and a method

GetRabbitCount.

Explain the need for the GetRabbitCount method and explain why this approach is

favoured in object-oriented programming.

(2)

(e) During the simulation rabbits will die for a variety of reasons. One of these reasons
is old age and at the end of the KillByOtherFactors method there is a call to

CompressRabbitList.

Explain the need for the CompressRabbitList method.

Page 8 of 50

(2)

Part of the class definition for Rabbit has been represented in Figure 2.

Figure 2
Rabbit = Class(Animal)

 Private:

 ReproductionRate: Real

 Gender: Genders

 Public:

 Procedure Inspect()

 Function IsFemale()

 Function GetReproductionRate()
End Class

A new animal is to be introduced into the simulation. This animal is the HDRabbit, which

represents a rabbit with haemorrhagic disease. The class HDRabbit is to be a subclass of

the Rabbit class. When an HDRabbit is inspected it should display all the information

shown for a normal rabbit plus the additional information stored about an HDRabbit.

An HDRabbit has the following additional attributes:

• InfectionRate: stores a value that represents the probability of a rabbit that is

bred from an HDRabbit being infected

• Generation: stores a value that represents how many generations have had this

disease in this rabbit’s family.

An HDRabbit has additional methods including:

• IsInfertile(): returns True if the haemorrhagic disease has been in this rabbit’s

family for three generations.

(f) Write the class definition for HDRabbit, using similar notation to that used in Figure

2. You are not expected to make any changes to the Skeleton Program.

(4)

(Total 14 marks)

Q3.
(a) This question refers to the subroutine InputCoordinate in the Simulation class.

Page 9 of 50

The warren and fox inspection options in the Skeleton Program do not currently
check if the coordinates entered by the user are on the landscape. This behaviour
needs to be improved so that an error message is displayed if the user inputs
coordinates for a location that is not on the landscape.

If the user runs a simulation with default settings then the landscape size is 15, so
valid locations have an x coordinate between 0 and 14, inclusive.

What you need to do

Modify the InputCoordinate subroutine in the Simulation class so that, if a

coordinate outside the range defined by the landscape size is input, the error
message “Coordinate is outside of landscape, please try again.” is

displayed and the user is forced to re-input the coordinate.

To achieve full marks for this question, the InputCoordinate subroutine should

work correctly for any landscape size, not just the default size of 15.

Test

Test your changes work by running the Skeleton Program and selecting the
following options:

• “1. Run simulation with default settings”

• “3. Inspect fox”

Then input these three x coordinates for the location of the fox to inspect:
• −1

• 15

• 0

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the amended subroutine

InputCoordinate.

(4)

(ii) SCREEN CAPTURE(S) for the described test.

Ensure that in your SCREEN CAPTURE(S) it can be seen that the x
coordinates −1 and 15 are rejected and that the x coordinate 0 is accepted,

and that after the 0 is input the Skeleton Program advances to ask the user

to input the y coordinate.

(1)

(b) The simulation is to be made more realistic by increasing the probability that a rabbit
will die as a result of other causes, such as disease or injury, as the rabbit ages.

The default probability of death by another cause for a rabbit is 0.05.

• The probability of a male rabbit dying by another cause should increase
by a factor of 50% after every time period.

• The probability of a female rabbit dying by another cause should remain
constant until the rabbit reaches the age of 2. At the age of 2, and after
every time period beyond this, the probability of a female rabbit dying by
another cause should increase by 0.05.

Page 10 of 50

Table 1 below summarises the probability of death by other causes for a rabbit of
each gender, up to the age of 5. The probabilities will continue to increase beyond
this age.

Table 1

 Probability of death by other causes

Age Male (2dp) Female

0 0.05 0.05

1 0.08 0.05

2 0.11 0.1

3 0.17 0.15

4 0.25 0.2

5 0.38 0.25

What you need to do

Create a new subroutine, CalculateNewAge, in the Rabbit class, that overrides the

CalculateNewAge subroutine in the Animal class.

The new CalculateNewAge subroutine in the Rabbit class should recalculate the

probability of death for a rabbit as the rabbit ages. The subroutine should also call
the subroutine that it has overridden in the Animal class to ensure that the standard

ageing process for a rabbit continues to be carried out as well.

Test

Check that the changes you have made work by conducting the following test:

• Select option “1. Run simulation with default settings” from the main menu.

• Then select option “2. Advance to next time period hiding detail” twice, to
advance the simulation to time period 2.

• Then select option “4. Inspect warren” and enter the x coordinate 1 and the y

coordinate 1.

• When asked “View individual rabbits (y/n)?” enter y.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the new subroutine CalculateNewAge

from the Rabbit class.

(5)

(ii) SCREEN CAPTURE(S) for the described test.

Your SCREEN CAPTURE(S) must clearly show the probability of death by other
causes of both a male and a female rabbit of age 2. SCREEN CAPTURE(S) do not
need to show the options that you have selected or the probability of death by other
causes for rabbits of other ages.

(1)

Page 11 of 50

(c) The simulation is to be extended to represent the landscape that the animals live in.
Most of the landscape will be land, but two rivers will run through it. The locations of
the rivers are shaded in Figure 3.

Figure 3

Each of the individual locations, eg (12, 7), within the landscape will be assigned to
be an area of either land or river.

What you need to do

Task 1
Modify the Location class so that it can store a representation of the type of terrain

at the location. This representation should be as a character, with “L” representing
land and “R” representing river.

Task 2
Modify the constructor subroutine of the Location class so that when a location is

created, the constructor is passed the type of terrain that the location will be and this
is stored appropriately.

Task 3
Modify the CreateLandscapeAndAnimals subroutine in the Simulation class so

that when the landscape is created the appropriate type of terrain, as shown in
Figure 3, is stored in each location. The terrain should be represented as a
character, with “L” representing land and “R” representing river.

Task 4
Modify the DrawLandscape subroutine in the Simulation class so that the correct

type of terrain at each location is displayed when the landscape is drawn.

Figure 4 shows one example of how the landscape could be drawn, with a letter “L”
indicating that a location contains land, and a letter “R” indicating that a location
contains part of a river. However, you are free to indicate the type of terrain at a
location in any way that you choose, so long as this is clear to the user.

Page 12 of 50

Figure 4

Task 5
Modify the CreateNewWarren and CreateNewFox subroutines in the Simulation

class so that warrens and foxes cannot be created in locations that are part of a
river.

Test

Check that the changes you have made in Tasks 1 to 4 (not Task 5) work by
conducting the following test:

• Select option “1. Run simulation with default settings” from the main menu.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the whole of the Location class,

including the constructor subroutine.

(3)

(ii) Your PROGRAM SOURCE CODE for the amended
CreateLandscapeAndAnimals subroutine from the Simulation class.

(3)

(iii) Your PROGRAM SOURCE CODE for the amended DrawLandscape

subroutine from the Simulation class.

(2)

(iv) Your PROGRAM SOURCE CODE for the amended CreateNewWarren and

CreateNewFox subroutines from the Simulation class.

(3)

(v) SCREEN CAPTURE(S) for the described test, showing the correct type of
territory in each location on the landscape.

(1)

(d) The landscape affects the foxes’ ability to eat the rabbits. Foxes do not like to swim,
so will not cross the rivers on the landscape to eat. If a river lies between a fox and a
warren, the fox will not eat any rabbits in the warren, even if it is near enough for it to

do so.

As the rivers only run horizontally and vertically, and extend from one side of the
landscape to the other, a simple way to check if reaching a warren would require a

Page 13 of 50

fox to cross a river is to:

• Calculate the coordinates of all of the locations between the fox and the
warren in a horizontal line, level with the fox.

• Calculate the coordinates of all of the locations between the fox and the
warren in a vertical line, level with the fox.

• If any of the locations horizontally or vertically between the fox and the warren
contain a river, then the fox will not eat any of the rabbits in the warren as the
fox’s path to the warren crosses a river.

Figure 5 shows the locations that would need to be checked to see if fox F could eat

any rabbits in warren W. The locations that need to be checked are shown in black
and the rivers are shown in grey. As location (5, 7) contains part of a river, the fox
would not eat any rabbits in this warren.

Figure 5

If you have not been able to fully complete part (c), you will still be able to get most
of the marks for this question if you can correctly compute the coordinates of the
locations that would need to be checked to see if a river was present.

To get full marks for this question, your solution must work regardless of whether a
warren is above, below, to the left or to the right of a fox.

What you need to do

Task 1
Create a new subroutine CheckIfPathCrossesRiver, in the Simulation class, that

takes the coordinates of two locations in the landscape and checks if there is a river
between them.

Task 2
Modify the FoxesEatRabbitsInWarren subroutine in the Simulation class so that

Page 14 of 50

it calls the CheckIfPathCrossesRiver subroutine, and ensures that if there is a

river between a fox and a warren then the fox will not eat any rabbits from the
warren.

Test
Check that the changes you have made work by conducting the following test:

• Select option “1. Run simulation with default settings” from the main menu.

• Then select option “1. Advance to next time period showing detail”.

When the test is conducted, no rabbits in the warren at (1, 1) should be eaten as it is
bounded by rivers on all sides.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the new subroutine
CheckIfPathCrossesRiver from the Simulation class.

(9)

(ii) Your PROGRAM SOURCE CODE for the amended subroutine
FoxesEatRabbitsInWarren from the Simulation class.

(2)

(ii) SCREEN CAPTURE(S) for the described test.

Your SCREEN CAPTURE(S) only needs to show what happens in the warren
at location (1, 1) when the simulation advances to the next time period. It
should contain similar information to Figure 6 below, but the exact number of
rabbits killed, dying of old age and other details may differ owing to the
random nature of parts of the simulation.

Figure 6

(1)

(Total 35 marks)

Q4.
An object-oriented program is being written to store details of the hardware devices that
are connected to a computer network in a college. This will be used by the network
manager to perform an audit of the equipment that they manage.

Two different types of devices are connected to the network. They are printers and
computers. The computers are categorised as being laptops, desktops or servers.

A class Device has been created and two subclasses, Printer and Computer are to be
developed. The Computer class will have three subclasses: Laptop, Desktop and
Server.

Page 15 of 50

(a) Draw an inheritance diagram for the six classes.

(3)

The Device class has data fields MACAddress, DeviceName and Location.

The class definition for Device is:

Device = Class

 Public

 Procedure AddDevice

 Function GetMACAddress

 Function GetDeviceName

 Function GetLocation

 Private

 MACAddress: String

 DeviceName: String

 Location: String

 End

AddDevice is the constructor function for the Device class and is called whenever a new

Device object is created.

The Computer class has the following additional data fields:
• ProcessorName: Stores the name of the company that manufactured the processor

installed in the computer.

• RAMCapacity: Stores the capacity of the RAM installed in the computer, in
gigabytes, eg 16.

• HDDCapacity: Stores the capacity of the Hard Disk Drive installed in the computer,
in gigabytes, eg 512.

(b) Write the class definition for Computer.

Page 16 of 50

(4)

(c) The Laptop class has the additional data field BluetoothInstalled. This field will
indicate whether or not the laptop is fitted with a Bluetooth module.

Write the class definition for Laptop.

(2)

(Total 9 marks)

Q5.
A computer games programmer is writing a game. One aspect of the game involves a
character who can carry various items, such as a bag of seeds, and an axe, around with
her. The list of items that the character is currently carrying will be stored as a linked list of
items of the String data type. The list is stored in no particular order.

The game is being developed using object-oriented programming. The LinkedList class
will be used to store that list of items.

The class definition for the LinkedList class is:

LinkedList

 = Class

Public

 Procedure CreateList

 Procedure DestroyList

 Procedure AddItem(NewItem: String)

 Procedure DeleteItem(DelItem: String)

 Function ContainsItem(SearchItem: String): Boolean

 Function IsEmpty: Boolean

Private

 Start: Pointer

 Current: Pointer

 Previous: Pointer

End

Page 17 of 50

(a) Creating a class such as the LinkedList class, that can be used by other parts of a
much bigger program, is a form of abstraction.

Explain why the LinkedList class is a form of abstraction.

(1)

(b) Explain why the functions and procedures, such as AddItem have been declared to

be Public whilst the data items such as Start have been declared as Private.

(2)

(c) Write a pseudo-code algorithm for the DeleteItem operation.

You may assume that:

• Start is a pointer to the memory location of the first item in the linked list

• The variable DelItem, which will be passed to the DeleteItem operation as a

parameter, is a String that contains the name of the item to delete, exactly as

the name appears in the linked list
• The linked list is not empty, and does contain the item to be deleted

• For each item stored in the list, two fields are stored, which are called
DataValue and Next. The DataValue is the name of the item that is stored

and Next is a pointer to the memory location of the next item in the list. To

access the values stored in these fields at a particular memory location, such
as Current, the instructions Current. DataValue and Current. Next would

be used
• An operation called Release is provided by the operating system that will

make a specified memory location that is no longer required available for
re-use

• You should make use of the data items Current and Previous, both of which

are pointers, when searching the list to locate the item that is to be deleted.

Page 18 of 50

(8)

(Total 11 marks)

Q6.
The class diagram below is an attempt to represent the relationships between some of the
classes in the MONSTER! Game.

(a) Explain what errors have been made in the class diagram.

Page 19 of 50

(2)

(b) Give an example of instantiation from the Skeleton Program.

(1)

(c) State the name of an identifier for an array variable.

(1)

(d) State the name of an identifier for a subclass.

(1)

(e) State the name of an identifier for a variable that is used to store a whole number.

(1)

(f) State the name of an identifier for a class that uses composition.

(1)

(g) Look at the GetNewRandomPosition subroutine in the Game class in the Skeleton

Program.

Explain why the generation of a random position needs to be inside a repetition
structure.

(1)

(h) Look at the Game class in the Skeleton Program.

Why has a named constant been used instead of the numeric value 5?

Page 20 of 50

(2)

(i) Describe the changes that would need to be made to the Game class to add a third

trap to the cavern. The third trap should have exactly the same functionality as the
other two traps. You do not need to describe the changes that would need to be

made to the SetUpGame subroutine.

(2)

(Total 12 marks)

Q7.

(a) This question refers to the subroutines CheckValidMove and Play in the Game

class.

The Skeleton Program currently does not make all the checks needed to ensure
that the move entered by a player is an allowed move. It should not be possible to
make a move that takes a player outside the 7 × 5 cavern grid.

The Skeleton Program needs to be adapted so that it prevents a player from
moving west if they are at the western end of the cavern.

The subroutine CheckValidMove needs to be adapted so that it returns a value of

FALSE if a player attempts to move west when they are at the western end of the
cavern.

The subroutine Play needs to be adapted so that it displays an error message to the

user if an illegal move is entered. The message should state "That is not a valid

move, please try again".

Evidence that you need to provide

(i) Your amended PROGRAM SOURCE CODE for the subroutine
CheckValidMove.

(3)

(ii) Your amended PROGRAM SOURCE CODE for the subroutine Play.

(2)

(iii) SCREEN CAPTURE(S) for a test run showing a player trying to move west
when they are at the western end of the cave.

(1)

(b) This question will extend the functionality of the game.

The game is to be altered so that there is a new type of enemy: a sleepy enemy. A

Page 21 of 50

sleepy enemy is exactly the same as a normal enemy, except that after making four
moves it falls asleep again.

Task 1
Create a new class called SleepyEnemy that inherits from the Enemy class.

Task 2
Create a new integer attribute in the SleepyEnemy class called MovesTillSleep.

Task 3
Create a new public subroutine in the SleepyEnemy class called

ChangeSleepStatus. This subroutine should override the ChangeSleepStatus

subroutine from the Enemy class. The value of MovesTillSleep should be set to 4

in this subroutine.

Task 4
Create a new public subroutine in the SleepyEnemy class called MakeMove. This

subroutine should override the MakeMove subroutine from the Enemy class. When

called this subroutine should reduce the value of MovesTillSleep by 1 and then

send the monster to sleep if MovesTillSleep has become equal to 0.

Task 5
Modify the Game class so that the Monster object is of type SleepyEnemy (instead of

Enemy) .

Task 6
Check that the changes you have made work by conducting the following test:

• play the training game
• move east
• move east
• move south.

Evidence that you need to provide

(i) Your PROGRAM SOURCE CODE for the new SleepyEnemy class.

(8)

(ii) SCREEN CAPTURE(S) showing the requested test.

(2)

(c) This question refers to the Game and Character classes and will extend the

functionality of the game.

The game should be altered so that once per game the player can shoot an arrow
instead of making a move in the cavern. The arrow travels in a straight line, in a
direction of the player's choice, from the cell the player is in to the edge of the
cavern. If the arrow hits the monster then the player wins the game and a message
saying that they have shot the monster should be displayed.

For this question you are only required to extend the program so that it checks if the
monster is hit by the arrow when the user chooses to shoot an arrow northwards.
However, the user should be able to select any of the four possible directions.

In the diagram below, the two shaded cells show the cells which, if the monster is in
one of them, would result in the player winning the game, as long as the player is in
the cell five to the east and three to the south and chooses to shoot an arrow

Page 22 of 50

northwards.

 *

Task 1
Modify the DisplayMoveOptions subroutine in the Game class so that the option to

enter A to shoot an arrow is added to the menu.

Task 2
Create a new Boolean attribute called HasArrow in the Character class.

The value of HasArrow should be set to True when a new object of class Character

is instantiated.

Task 3
Create a new public subroutine called GetHasArrow in the Character class that

returns the value of the HasArrow attribute to the calling routine.

Task 4
Modify the CheckValidMove subroutine in the Game class so that:

• it is a valid move if A is selected and the player does have an arrow
• it is not a valid move if A is selected and the player does not have an arrow.

Task 5
Create a new public subroutine called GetArrowDirection in the Character class.

This subroutine should return a character to the calling routine.

The user should be asked in which direction they would like to shoot an arrow (N, S,
E or W) and the value entered by the user should be returned to the calling routine.

If an invalid direction is entered then the user should be repeatedly asked to enter a
new direction, until a valid direction is entered.

The value of HasArrow should then be changed to FALSE.

Task 6
Modify the Play subroutine in the Game class so that if the move chosen by the user

is not M it then checks if the move chosen is A.

If the move chosen was A, then there should be a call to the player's
GetArrowDirection subroutine. If the user chooses a direction of N then the

program should check to see if the monster is in one of the squares directly north of
the player's current position. If it is then a message saying "You have shot the

monster and it cannot stop you finding the flask" should be displayed. The

value of FlaskFound should then be set to TRUE.

Page 23 of 50

After the arrow has been shot, if the monster is stil l alive and awake, it is now the
monster's turn to move, the player should remain in the same cell as they were in
before the arrow was shot.

There is no need to write any code that checks if the monster has been shot when
the player chooses to shoot either to the east, to the west or to the south.

Task 7: test 1
Test that the changes you have made work by conducting the following test:

• play the training game
• shoot an arrow

• choose a direction of N for the arrow.

Task 8: test 2
Test that the changes you have made work by conducting the following test:

• play the training game
• move east
• shoot an arrow
• choose a direction of N for the arrow
• shoot an arrow.

Evidence that you need to provide

(i) Your amended PROGRAM SOURCE CODE for the subroutine
DisplayMoveOptions.

(1)

(ii) Your amended PROGRAM SOURCE CODE for the subroutine
CheckValidMove.

(2)

(iii) Your amended PROGRAM SOURCE CODE for the class Character.

(8)

(iv) Your amended PROGRAM SOURCE CODE for the subroutine Play.

(6)

(v) SCREEN CAPTURE(S) showing the results of Test 1.

(1)

(vi) SCREEN CAPTURE(S) showing the results of Test 2.

(1)

(Total 35 marks)

Q8.
Figure 1 shows the structure of an example machine code instruction, taken from the
instruction set of a particular processor.

Figure 1

Page 24 of 50

(a) How many different basic machine operations could be supported by the instruction
set of the processor used in the example in Figure 1?

(1)

Figure 2 shows an assembly language program together with the contents of a section of
the main memory of the computer that the program will be executed on.

The assembly language instruction set that has been used to write the program is listed in
Table 1.The lines of the assembly language program have been numbered to help you
answer question parts (b) to (d)

Figure 2

Line Command

Memory
Address

(in decimal)

Main Memory
Contents

(in decimal)
1

LDR R2, #100

2
LDR R3, 101

3
ADD R2, R2, R3

100 23

4
LSL R3, R2, #1

101 10

5
HALT

102 62

103 18

(b) What value will be stored in register R2 immediately after the command in line 1 has

been executed?

(1)

(c) What value will be stored in register R2 immediately after the program has executed

the commands from line 1 through to line 3?

(1)

(d) What value will be stored in register R3 after the complete program has finished

executing?

Page 25 of 50

Table 1

LDR Rd, <memory ref>
Load the value stored in the memory location specified by
<memory ref> into register d.

STR Rd, <memory ref>
Store the value that is in register d into the memory location

specified by <memory ref>.

ADD Rd, Rn, <operand2>
Add the value specified in <operand2> to the value in register n

and store the result in register d.

SUB Rd, Rn, <operand2>
Subtract the value specified by <operand2> from the value in

register n and store the result in register d.

MOV Rd, <operand2>
Copy the value specified by <operand2> into register d.

CMP Rn, <operand2>
Compare the value stored in register n with the value specified by

<operand2>.

B <label>
Always branch to the instruction at position <label> in the

program.

B<condition> <label>
Conditionally branch to the instruction at position <label> in the

program if the last comparison met the criteria specified by the
<condition>. Possible values for <condition> and their

meaning are:

 • EQ: Equal to.
 • NE: Not equal to.

 • GT: Greater than.
 • LT: Less than.

AND Rd, Rn, <operand2>
Perform a bitwise logical AND operation between the value in
register n and the value specified by <operand2> and store the

result in register d.

ORR Rd, Rn, <operand2>
Perform a bitwise logical OR operation between the value in

register n and the value specified by <operand2> and store the

result in register d.

EOR Rd, Rn, <operand2>
Perform a bitwise logical exclusive or (XOR) operation between
the value in register n and the value specified by <operand2>

and store the result in register d.

MVN Rd, <operand2>
Perform a bitwise logical NOT operation on the value specified by
<operand2> and store the result in register d.

LSL Rd, Rn, <operand2>
Logically shift left the value stored in register n by the number of

bits specified by <operand2> and store the result in register d.

LSR Rd, Rn, <operand2>
Logically shift right the value stored in register n by the number of

bits specified by <operand2> and store the result in register d.

HALT
Stops the execution of the program.

Page 26 of 50

Interpretation of <operand2>

<operand2> can be interpreted in two different ways, depending upon whether the first

symbol is a # or an R:

• # - use the decimal value specified after the #, eg #25 means use the decimal value

25.
• Rm - use the value stored in register m, eg R6 means use the value stored in register

6.

The available general purpose registers that the programmer can use are numbered 0 to
12.

Programs written in a high-level language can be compiled or interpreted.

Companies that develop computer programs to sell usually compile the final version of a
program before distributing it to customers.

(e) Explain why the final version of a computer program is usually translated using a
compiler.

(2)

(f) The JavaScript programming language can be used to write programs that are
executed in a web browser on any Internet user’s computer.

Explain why programs written in the JavaScript language, to be executed in a web
browser, are interpreted rather than compiled.

(2)

(Total 8 marks)

Q9.
A computer program is being developed that will simulate the organisation of wagons
(trucks) in a railway shunting yard. The simulation will be based on a model developed by
the shunting yard manager and a systems analyst.

(a) In the context of simulation, explain what a model is.

Page 27 of 50

(1)

The diagram below shows the layout of the railway yard. The wagons enter the yard and
are pushed into an appropriate siding, depending upon their final destination. Each siding
can hold many wagons. Wagons can only enter and leave a siding using the Yard
Entrance / Exit at the west.

Wagons will be represented as objects in an object-oriented programming language.

Each of the sidings will be represented as a stack data structure.

(b) Explain why a stack data structure is appropriate for representing a siding.

(2)

(c) The computer program developer intends to implement a stack by using a fixed
length array of 30 wagon objects, named StackArray, with indices running from 1 to

30. An integer variable TopOfStackPointer, that will store the array index of the

item at the top of the stack, will also be used. The first object stored in the array will
be stored at index 1, the second at index 2 and so on. TopOfStackPointer will be

initialised to 0.

Write a pseudo-code algorithm for the Pop operation to remove a value from the

stack and store it in a wagon object variable named CurrentWagon.

Your algorithm should cope appropriately with any potential errors that might occur.

Page 28 of 50

(4)

(d) Wagons come in two different categories: open wagons (without a roof) and closed
wagons (with a roof). Closed wagons can be either refrigerated or non-refrigerated.

In an object-oriented programming language, five classes are to be created, named
Wagon, OpenWagon, ClosedWagon, RefrigeratedWagon and

NonRefrigeratedWagon.

Draw an inheritance diagram for the five classes.

(3)

(e) The Wagon class has data fields OwnerName, Weight and NumberOfWheels.

The class definition for Wagon is:

 Wagon = Class

 Public

 Procedure CreateWagon

 Function GetOwnerName

 Function GetWeight

 Function GetNumberOfWheels

 Private

 OwnerName: String

 Weight: Real

 NumberOfWheels: Integer

 End

The ClosedWagon class has the following additional data fields:

• Height: The height of the wagon in metres, which could be a non-integer
number

• NumberOfDoors: The number of doors that can be used to access the wagon
• SuitableForFoodstuffs: A true or false value that indicates if it is safe to carry

food in the wagon or not.

Write the class definition for ClosedWagon.

You should include the necessary data fields and any additional procedures or
functions that the class would require in your definition.

Page 29 of 50

(4)

(Total 14 marks)

Q10.
An event-driven, object-oriented programming language lets the programmer create a
Graphical User Interface (GUI) from components such as forms and buttons. The
components of the GUI are implemented using a class hierarchy and inheritance.

(a) Explain what is meant by inheritance.

(1)

(b) One GUI component is a Selector. Selectors come in two different types:
ComboBox and ListBox.

Selector
Type

Description

ComboBox A combo box lets the user make an input either by typing into

the box or by picking a single item from a list.

ListBox A list box lets the user select options from a list. The user
cannot type into a list box. There are two different types of list
box:

• SingleSelectionListBox: The user can only select one
 item from a list. Whenever an item is selected, the
 previously selected item is deselected.

• MultipleSelectionListBox: The user can select one or
 more items from a list. Whenever an item is selected, it is
 added to the list of selected items.

Page 30 of 50

Draw an inheritance diagram for the classes: Selector, ComboBox, ListBox,
SingleSelectionListBox and MultipleSelectionListBox.

(3)

(c) The Selector class has data fields Items and NumberOfItemsInList:

• Items: an array that stores the list of strings that will appear in the selector.
• NumberOfItemsInList: a number that indicates how many items there are in

the selector.

It also has a procedure that the programmer can call to add an item to the list of
strings (AddItemToList) and a procedure that is called by the operating system
whenever the user selects an item from the list (SelectItemFromList).

The Selector class does not include a procedure to display the items in the list as
the way items are displayed is different for each type of selector.

The class definition for Selector is:

 Selector = Class

 Public

 Procedure AddItemToList

 Procedure SelectItemFromList

 Private

 Items: Array of String

 NumberOfItemsInList: Integer

 End

A class is to be created for the ComboBox type of selector.

The ComboBox class needs the following additional data fields:

• TextTyped: Stores the characters that have been typed by the user if they
have made their input by typing rather than picking an option from the list.

• SelectedItemNumber: Stores the position in the list of the item that has been
selected by the user, if one has been selected.

• AllowNonListInputs: A True or False value that indicates whether the user
should be allowed to type in text that is not one of the items in the list.

The class will need to implement the operation of selecting an item from the list
differently from the way the Selector class implements this operation, but the
operation of adding an item to the list will be implemented in the same way by both
of these classes.

The class must provide subroutines to:

• display the combo box

• respond to the operating system’s notification of a key press
• return the text that has been typed in

Page 31 of 50

• return the selected item number
• set the value of AllowNonListInputs flag to True or False, to indicate whether

or not the user is allowed to type text that is not in the list.

Write the class definition for the ComboBox class.

(5)

(Total 9 marks)

Q11.
An object-oriented program is being written to store details of the hardware devices that
are connected to a computer network in a college. This will be used by the network
manager to perform an audit of the equipment that the college owns.

Two different types of devices are connected to the network. They are printers and
computers. The computers are categorised as being laptops, desktops or servers.

A class Device has been created and two subclasses, Printer and Computer are to be
developed. The Computer class will have three subclasses: Laptop, Desktop and

Server.

(a) Draw an inheritance diagram for the six classes.

Page 32 of 50

(3)

(b) The Device class has data fields MACAddress, DeviceName and Location.

The class definition for Device is:

Device = Class

 Public

 Procedure AddDevice

 Function GetMACAddress

 Function GetDeviceName

 Function GetLocation

 Private

 MACAddress: String

 DeviceName: String

 Location: String

 End

The Computer class has the following additional data fields:

• ProcessorName: Stores the name of the company that manufactured the
processor.

• RAMCapacity: Stores the capacity of the RAM installed in the computer, in
gigabytes.

• HDDCapacity: Stores the capacity of the Hard Disk Drive installed in the

computer, in gigabytes.

Write the class definition for Computer.

Page 33 of 50

(4)

(c) The Laptop class has the additional data field BluetoothInstalled. This field will
indicate whether or not the laptop is fitted with a Bluetooth module.

Write the class definition for Laptop.

(2)

(d) Explain what Bluetooth is and give an example of a task for which a laptop user
might use Bluetooth.

What Bluetooth is:__

(2)

Example use: ___

(1)

(Total 12 marks)

Q12.
State three features of well-written program code that help to make it understandable
without the need to include lots of comments.

Page 34 of 50

(Total 3 marks)

Q13.
An object-oriented program is being written to store details of and play digital media files

that are stored on a computer. A class MediaFile has been created and two subclasses,
VideoFile and MusicFile are to be developed.

The classes VideoFile and MusicFile are related to MediaFile by single inheritance.

(a) Explain what is meant by inheritance.

(1)

(b) Draw an inheritance diagram for the three classes.

(2)

(c) One important feature of an object-oriented programming language is the facility to
override methods (functions and procedures).

Explain what is meant by overriding when writing programs that involve inheritance.

Page 35 of 50

(2)

(d) The MediaFile class has data fields Title and Duration.

The class definition for MediaFile is:
 MediaFile = Class

 Public

 Procedure PlayFile

 Function GetTitle

 Function GetDuration

 Private

 Title : String

 Duration : Real

 End

Note that the class does not have procedures to set the values of the variables as
these are read automatically from data stored within the actual media file.

The MusicFile class has the following additional data fields:

• Artist: Stores the name of the band or singer that recorded the music.

• SampleRate: Stores the rate at which the music has been sampled.

• BitDepth: Stores the number of bits in which each sampled value is
represented.

Write the class definition for MusicFile.

(4)

(Total 9 marks)

Q14.
A library system uses three classes, BookCopy, Borrower and Loan. A BookCopy object
represents a book, a Borrower object represents someone who borrows books and a
Loan object represents the loan of a single BookCopy to a Borrower.

Page 36 of 50

(a) Draw a class diagram to represent the relationships between these classes.

(3)

(b) The Borrower class has data fields Name and Address. The class definition for
Borrower is

Borrower = Class

 Public

 Procedure AddNewBorrower

 Procedure AmendBorrowerDetails

 Procedure GetBorrowerDetails

 Private

 Name : String

 Address : String

 End

The BookCopy class has data fields Title, Author, OnLoan and ISBN. The class
definition for BookCopy is
BookCopy = Class

 Public

 Procedure AddNewBookCopy

 Procedure ChangeLoanStatus

 Procedure GetBookDetails

 Private

 Title : String

 Author : String

 OnLoan : Boolean

 ISBN : String

 End

The Loan class needs operations (methods) to create a loan, delete a loan and get
loan details. The data fields are the person, the book loaned, the date of the loan

and the date of return.

Write the class definition for the Loan class.

Page 37 of 50

(4)

(c) The library has decided to introduce short-loan books in addition to standard-loan

books. How would you modify the BookCopy class to allow for this change?

(2)

(Total 9 marks)

Q15.
(a) Writing program code requires the programmer to use identifiers for variables and

procedures.

(i) State two other uses for identifiers.

1. __

2. __

(2)

(ii) Most programming languages impose restrictions or rules about what is and is
not allowed for identifier names. State one such rule.

__

(1)

(b) Program code is often written with the use of procedures. Describe one reason why
a programmer would decide to use procedures.

(1)

(c) A programmer-written function SearchThisArray is defined as follows.

SearchThisArray(ThisArray : Array[1..10] Of String;

ThisString : String) : Integer ;

The function searches the array ThisArray for the value ThisString.

If an exact match is found, the function returns the index position

in ThisArray.

Page 38 of 50

If not found, the function returns -1.

If the function’s arguments, ThisArray and ThisString are illegally

formed, the

function returns -2

The function is used in a program with the statements shown below and uses the
data shown in the Customer array in the figure below.

Index
(Subscript) Customer

[1] Weeks

[2] Adamson

[3] Patel

[4] Berkovic

[5] Ince

[6] Neale

[7] Williamson

[8] Collins

[9] Davis

[10] Beckham

What is the value returned to variable Result in each case?

(i) Result := SearchThisArray(Customer, ’Beckham’)

Value of Result __

(1)

(ii) Result := SearchThisArray(Customer, ’Williams’)

Value of Result __

(1)

(Total 6 marks)

Q16.
(a) In object-oriented programming, what is meant by aggregation?

(1)

(b) An object-oriented program is required to handle details of items of furniture that are
for sale. The furniture sold includes dining suites. A dining suite consists of a table
and a number of chairs.

Page 39 of 50

Some fields required for the suites are
TableType
ChairType
NumberOfChairs

A method required for the suites is
DisplayDetails

Some fields required for the tables are
TableType
Size

Colour

Some fields required for the chairs are
ChairType
Colour

(i) Draw a class diagram of these classes, Suite, Table and Chair.

(2)

(ii) Write class definitions for Chair, Table and Suite.

__

__

__

(8)

(Total 11 marks)

Q17.

(a) Well constructed programs use a structured approach for the design and coding
stages.

One practical way in which the programmer will use a structured approach to
programming is the use of subroutines (procedures/functions). Give three other
ways.

1. ___

Page 40 of 50

2. ___

3. ___

(3)

(b) A program is to be written which calculates the hourly pay rate for an employee.
The calculation is based on the number of complete years the employee has worked
for the firm (e.g. 3 years). All employees get a basic £7.88 per hour. For each year
worked, up to a maximum of 5 years only, an additional £0.65 is added to the basic
hourly rate.

The algorithm for this program is as follows:

1. Enter the surname
2. Enter the number of years of service
3. Calculate the employee’s pay rate
4. Output the surname and pay rate

(i) Complete the table showing three variable identifiers and their data types you
would use for this problem.

Variable Identifier Data Type

(3)

(ii) The detail for step 3 in the algorithm is broken down into more detail as
follows:

3.1 If the number of years of service value is over 5, then change the value
stored to 5

3.2 Calculate the employee’s pay rate

Write pseudo-code for these two steps using the appropriate identifiers from

the table.

3.1 ___

__

3.2 ___

__

(3)

(Total 9 marks)

Q18.
Many programs executed within a Graphical User Interface (GUI) environment are
object-oriented and event-driven.

Page 41 of 50

(a) Give an example of an event in this context.

(1)

(b) Describe how event-driven programs differ from non event-driven programs.

(2)

(c) List two features of an object.

1. ___

2. ___

(2)

(d) Name an object that might be part of a GUI.

(1)

(Total 6 marks)

Q19.
For an object-oriented program to store and retrieve details of a company’s vehicles, a
Vehicle class is needed. two subclasses have been identified: Car and Van, which have
inheritance relationships with class Vehicle.

(a) Draw an inheritance diagram for these classes.

(2)

(b) The Vehicle class has data fields RegistrationNumber, Make, Colour. The class
definition for Vehicle is

Page 42 of 50

Vehicle = Class

 Public

 Procedure SetVehicleDetails

 Function GetRegistrationNumber

 Function GetMake

 Function GetColour

 Private

 RegistrationNumber : String

 Make : String

 Colour : String

 End

While preserving the private status of the Colour field, what modification would you
make to this class definition in order to allow the colour of the vehicle to be
changed?

(2)

(c) The Van class has additional private data fields:

• Capacity that represents the weight that can be carried in kilograms;
• TailLift that represents whether the van has a tail lift or not.

Write the class definition for Van.

(6)

(Total 10 marks)

Q20.

(a) In object-oriented programming, what is meant by inheritance?

(1)

(b) An object-oriented program is required to handle details of a lending library’s books
and CDs.

Page 43 of 50

Some fields required for the books are:
Title,
Author,
ISBN,
OnLoan,
DateAcquired.

Some fields required for the CDs are:
Title,
Artist,

PlayingTime,
OnLoan,
DateAcquired.
Some methods required are:
SetLoan,
DisplayDetails

This could be implemented by declaring two separate classes Book and CD. This
would result in a lot of repetitive code. Making use of inheritance, write class
definitions for one superclass StockItem and two subclasses Book and CD.

(7)

(Total 8 marks)

Q21.
(a) State two advantages of the object-oriented approach to program design over the

structured approach to program design.

1. ___

Page 44 of 50

2. ___

(2)

(b) A golf club keeps details of its members. Each member has a unique membership
number, first name, surname and telephone number recorded. Three classes have
been identified:

Member
MidWeekMember

FullMember

The classes MidWeekMember and FullMember are related, by single inheritance, to

the class Member.

Draw an inheritance diagram for the given classes.

(2)

(c) Programs that use objects of the class Member need to add a new member’s

details, amend a member’s details, and show a member’s details. No other form of
access is to be allowed. Write a class definition for this class.
Member = Class

End

(4)

(Total 8 marks)

Page 45 of 50

Q22.
For an object-oriented program to store and calculate payroll details for an organisation,

an Employee class is needed. A subclass has been identified: HourlyPaidEmployee,
which has an inheritance relationship with class Employee.

(a) Draw an inheritance diagram for these classes.

(2)

(b) The Employee class has data fields Name, National Insurance Number, Annual
Pay, Gross Pay To Date.

The class definition for Employee is
TEmployee = Class

 Public

 Procedure AddNewEmployee

 Procedure AmendEmployeeDetails

 Procedure PrintPaySlip

 Procedure CalculatePay

 Private

 Name : String

 NationalInsuranceNumber : String

 Annual Pay : Currency

 GrossPayToDate : Currency

End

Monthly pay for an employee object of TEmployee class definition is calculated
differently from the monthly pay for an employee object of THourlyPaidEmployee
class definition.

In the case of an employee object of class definition

• THourlyPaidEmployee: monthly pay is calculated by multiplying number of

hours worked in month by hourly pay rate.
• TEmployee: monthly pay is calculated by dividing the annual pay by 12.

An hourly paid employee object needs one additional operation, which collects the
number of hours worked in a month.

Write the class definition THourlyPaidEmployee:

Page 46 of 50

(6)

(Total 8 marks)

Q23.
One of the concepts of Object Oriented Programming is containment.

Class TForm1 inherits from class TForm.

A form, Form1, of class Tform1, contains 2 buttons, Button1 and Button2, of class
TButton.

Write the class definition for TForm1.

(Total 3 marks)

Q24.

(a) State two advantages of the object-oriented approach to program design over the
structured approach to program design.

1. ___

2. ___

(2)

(b) A sailing club has both junior and senior members. Each member has a unique
membership number, a name and an address recorded. Three classes have been
identified:

Member

JuniorMember
SeniorMember

The classes JuniorMember and SeniorMember are related, by single inheritance, to
the class Member.

Draw an inheritance diagram for the given classes.

Page 47 of 50

(2)

(c) Programs that use objects of the class Member need to add a new member’s
details, amend a member’s details, and show a member’s details. No other form of
access is to be allowed. Write a class definition for this class.

Member = Class

End;

(4)

(Total 8 marks)

Q25.
A supermarket has a section labelled ‘Bottled Water’. Bottled water comes as ‘still bottled
water’ or ‘carbonated bottled water’.

In an object-oriented program, ‘bottled water’, ‘still bottled water’ and ‘carbonated bottled
water’ are three defined classes. The classes ‘still bottled water’ and ‘carbonated bottled
water’ are related, by single inheritance, to ‘bottled water’.

(a) What is meant here by

(i) class? __

__

(ii) inheritance? __

__

(2)

(b) Draw an inheritance diagram for the given classes.

Page 48 of 50

(3)

(c) Give three advantages of the object-oriented approach to programming over a
structured approach.

1. ___

2. ___

3. ___

(3)

(Total 8 marks)

Q26.
(a) In an object-oriented, computerised encyclopaedia, there is a class called

Creatures. Two sub-classes of Creatures are Spiders and Beetles. Draw an

inheritance diagram for this.

(2)

(b) For the sub-class Spiders suggest:

(i) one property;

__

(ii) one method.

__

(2)

(Total 4 marks)

Q27.
Data may be recorded as analogue or digital signals.

(a) Explain or show by diagram the difference between analogue and digital signals.

Page 49 of 50

(2)

A computer system programmed in an object-oriented language is capable of displaying
time in both analogue and digital form.

Three classes have been identified.

Clock
Digital Clock
Analogue Clock

The classes Digital Clock and Analogue Clock are related by single inheritance to the
class Clock.

(b) In object-oriented programming what is meant by:

(i) class;

__

__

(1)

(ii) inheritance?

__

__

(1)

(c) Draw an inheritance diagram for the given classes.

Page 50 of 50

(3)

(Total 7 marks)

Q28.
A vehicle manufacturer of both cars and lorries has a computer system programmed in an
object-oriented language. Three classes have been identified:

Vehicle
Car
Lorry

The classes Car and Lorry are related by single inheritance to the class Vehicle.

(a) In object-oriented programming what is meant by:

(i) a class;

__

__

(1)

(ii) inheritance?

__

__

(1)

(b) Draw an inheritance diagram for the given classes.

(3)

(Total 5 marks)

