

Page 1 of 94

1.2 Programming paradigms Mark schemes.

Page 2 of 94

Mark schemes

Q1.
(a) (i) Mark is for AO3 (programming)

Selection structure with correct condition(s) (9, 23) added in suitable
place and value of 4 assigned to two tiles in the dictionary;

R. if any other tile values changed
1

Python 2
def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

Python 3
def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

Visual Basic
Function CreateTileDictionary() As Dictionary(Of Char,

Integer)

 Dim TileDictionary As New Dictionary(Of Char, Integer)()

 For Count = 0 To 25

 If Array.IndexOf({0, 4, 8, 13, 14, 17, 18, 19}, Count)

> -1 Then

 TileDictionary.Add(Chr(65 + Count), 1)

 ElseIf Array.IndexOf({1, 2, 3, 6, 11, 12, 15, 20}, Count)

> -1 Then

 TileDictionary.Add(Chr(65 + Count), 2)

 ElseIf Array.IndexOf({5, 7, 10, 21, 22, 24},

 Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 3)

 ElseIf Array.IndexOf({9, 23}, Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 4)

 Else

Page 3 of 94

 TileDictionary.Add(Chr(65 + Count), 5)

 End If

 Next

 Return TileDictionary

End Function

C#
private static void CreateTileDictionary(ref Dictionary<char,

int> TileDictionary)

{

 int[] Value1 = { 0, 4, 8, 13, 14, 17, 18, 19 };

 int[] Value2 = { 1, 2, 3, 6, 11, 12, 15, 20 };

 int[] Value3 = { 5, 7, 10, 21, 22, 24 };

 int[] Value4 = { 9, 23 };

 for (int Count = 0; Count < 26; Count++)

 {

 if (Value1.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 1);

 }

 else if (Value2.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 2);

 }

 else if (Value3.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 3);

 }

 else if (Value4.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 4);

 }

 else

 {

 TileDictionary.Add((char)(65 + Count), 5);

 }

 }

}

Java
Map createTileDictionary()

{

 Map<Character,Integer> tileDictionary = new

HashMap<Character,Integer>();

 for (int count = 0; count < 26; count++)

 {

 switch (count) {

 case 0:

 case 4:

 case 8:

 case 13:

 case 14:

 case 17:

 case 18:

 case 19:

 tileDictionary.put((char)(65 + count), 1);

 break;

 case 1:

 case 2:

 case 3:

 case 6:

 case 11:

Page 4 of 94

 case 12:

 case 15:

 case 20:

 tileDictionary.put((char)(65 + count), 2);

 break;

 case 5:

 case 7:

 case 10:

 case 21:

 case 22:

 case 24:

 tileDictionary.put((char)(65 + count), 3);

 break;

 case 9:

 case 23:

 tileDictionary.put((char)(65 + count), 4);

 break;

 default:

 tileDictionary.put((char)(65 + count), 5);

 break;

 }

 }

 return tileDictionary;

}

Pascal / Delphi
function CreateTileDictionary() : TTileDictionary;

 var

 TileDictionary : TTileDictionary;

 Count : integer;

 begin

 TileDictionary := TTileDictionary.Create();

 for Count := 0 to 25 do

 begin

 case count of

 0, 4, 8, 13, 14, 17, 18, 19:

TileDictionary.Add(chr(65 + count), 1);

 1, 2, 3, 6, 11, 12, 15, 20: TileDictionary.Add(chr(65

+ count), 2);

 5, 7, 10, 21, 22, 24: TileDictionary.Add(chr(65 +

count), 3);

 9, 23: TileDictionary.Add(chr(65 + count), 4);

 else TileDictionary.Add(chr(65 + count), 5);

 end;

 end;

 CreateTileDictionary := TileDictionary;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (a)(i), including prompts on screen capture
matching those in code.
Code for part (a)(i) must be sensible.

Screen captures showing the requested test being performed and the
correct points values for J, X, Z and Q are shown; I. order of letters

TILE VALUES

Points for X: 4

Points for R: 1

Page 5 of 94

Points for Q: 5

Points for Z: 5

Points for M: 2

Points for K: 3

Points for A: 1

Points for Y: 3

Points for L: 2

Points for I: 1

Points for F: 3

Points for H: 3

Points for D: 2

Points for U: 2

Points for N: 1

Points for V: 3

Points for T: 1

Points for E: 1

Points for W: 3

Points for C: 2

Points for G: 2

Points for P: 2

Points for J: 4

Points for O: 1

Points for B: 2

Points for S: 1

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

1

(b) (i) All marks for AO3 (programming)

Iterative structure with one correct condition added in suitable place;

Iterative structure with second correct condition and logical connective;

Suitable prompt displayed inside iterative structure or in appropriate
place before iterative structure; A. any suitable prompt

StartHandSize assigned user-entered value inside iterative structure;

Max 3 if code contains errors
4

Python 2
…

 StartHandSize = int(raw_input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(raw_input("Enter start hand size: "))

…

Python 3
…

 StartHandSize = int(input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(input("Enter start hand size: "))

…

Visual Basic

Page 6 of 94

…

Do

 Console.Write("Enter start hand size: ")

 StartHandSize = Console.ReadLine()

Loop Until StartHandSize >= 1 And StartHandSize <= 20

…

C#
…

do

{

 Console.Write("Enter start hand size: ");

 StartHandSize = Convert.ToInt32(Console.ReadLine());

} while (StartHandSize < 1 || StartHandSize > 20);

…

Java
…

 do {

 Console.println(&"Enter start hand size: &");

 startHandSize = Integer.parseInt(Console.readLine());

 } while (startHandSize < 1 || startHandSize > 20);

…

Pascal / Delphi
…

StartHandSize := 0;

Choice := '';

while (StartHandSize < 1) or (StartHandSize > 20) do

 begin

 write('Enter start hand size: ');

 readln(StartHandSize);

 end;

…

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (b)(i), including prompts on screen capture
matching those in code.
Code for part (b)(i) must be sensible.

Screen capture(s) showing that after the values 0 and 21 are entered the
user is asked to enter the start hand size again and then the menu is
displayed;

++++++++++++++++++++++++++++++++++++++

+ Welcome to the WORDS WITH AQA game +

++++++++++++++++++++++++++++++++++++++

Enter start hand size: 0

Enter start hand size: 21

Enter start hand size: 5

=========

MAIN MENU

=========

1. Play game with random start hand

2. Play game with training start hand

Page 7 of 94

9. Quit

Enter your choice: 1

Player One it is your turn.

1

(c) (i) All marks for AO3 (programming)

1. Create variables to store the current start, mid and end points; A. no
variable for midpoint if midpoint is calculated each time it is needed in
the code

2. Setting correct initial values for start and end variables;
3. Iterative structure with one correct condition (either word is valid or

start is greater than end); R. if code is a linear search
4. Iterative structure with 2nd correct condition and correct logic;
5. Inside iterative structure, correctly calculate midpoint between start

and end;

A. mid-point being either the position before or the position after
the exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. Inside iterative structure there is a selection structure that
compares word at midpoint position in list with word being
searched for;

7. Values of start and end changed correctly under correct
circumstances;

8. True is returned if match with midpoint word found and True is not
returned under any other circumstances;

I. missing statement to display current word

Max 7 if code contains errors

Alternative answer using recursion

1. Create variable to store the current midpoint, start and end points
passed as parameters to subroutine; A. no variable for midpoint if
midpoint is calculated each time it is needed in the code A. midpoint as
parameter instead of as local variable

2. Initial subroutine call has values of 0 for startpoint parameter and
number of words in AllowedWords for endpoint parameter;

3. Selection structure which contains recursive call if word being
searched for is after word at midpoint;

4. Selection structure which contains recursive call if word being
searched for is before word at midpoint;

5. Correctly calculate midpoint between start and end;
A. midpoint being either the position before or the position after the
exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. There is a selection structure that compares word at midpoint
position in list with word being searched for and there is no
recursive call if they are equal with a value of True being returned;

7. In recursive calls the parameters for start and end points have

correct values;

Page 8 of 94

8. There is a selection structure that results in no recursive call and
False being returned if it is now known that the word being
searched for is not in the list;

Note for examiners: mark points 1, 2, 7 could be replaced by recursive
calls that appropriately half the number of items in the list of words
passed as a parameter – this would mean no need for start and end
points. In this case award one mark for each of the two recursive calls if
they contain the correctly reduced lists and one mark for the correct use
of the length function to find the number of items in the list. These marks

should not be awarded if the list is passed by reference resulting in the
original list of words being modified.

I. missing statement to display current word

Max 7 if code contains errors

Note for examiners: refer unusual solutions to team leader
8

Python 2
def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print AllowedWords[Mid]

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

Python 3
def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print(AllowedWords[Mid])

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

Visual Basic
Function CheckWordIsValid(ByVal Word As String, ByRef

AllowedWords As List(Of String)) As Boolean

 Dim ValidWord As Boolean = False

 Dim LStart As Integer = 0

 Dim LMid As Integer

 Dim LEnd As Integer = Len(AllowedWords) - 1

 While Not ValidWord And LStart <= LEnd

 LMid = (LStart + LEnd) \ 2

Page 9 of 94

 Console.WriteLine(AllowedWords(LMid))

 If AllowedWords(LMid) = Word Then

 ValidWord = True

 ElseIf Word > AllowedWords(LMid) Then

 LStart = LMid + 1

 Else

 LEnd = LMid - 1

 End If

 End While

 Return ValidWord

End Function

C#
private static bool CheckWordIsValid(string Word,

List<string> AllowedWords)

{

 bool ValidWord = false;

 int Start = 0;

 int End = AllowedWords.Count - 1;

 int Mid = 0;

 while (!ValidWord && Start <= End)

 {

 Mid = (Start + End) / 2;

 Console.WriteLine(AllowedWords[Mid]);

 if (AllowedWords[Mid] == Word)

 {

 ValidWord = true;

 }

 else if (string.Compare(Word, AllowedWords[Mid]) > 0)

 {

 Start = Mid + 1;

 }

 else

 {

 End = Mid -1;

 }

 }

 return ValidWord;

}

Java
boolean checkWordIsValid(String word, String[] allowedWords)

{

 boolean validWord = false;

 int start = 0;

 int end = allowedWords.length - 1;

 int mid = 0;

 while (!validWord && start <= end)

 {

 mid = (start + end) / 2;

 Console.println(allowedWords[mid]);

 if (allowedWords[mid].equals(word))

 {

 validWord = true;

 }

 else if (word.compareTo(allowedWords[mid]) > 0)

 {

 start = mid + 1;

 }

 else

 {

 end = mid -1;

 }

Page 10 of 94

 }

 return validWord;

}

Pascal / Delphi
function CheckWordIsValid(Word : string; AllowedWords : array

of string) : boolean;

 var

 ValidWord : boolean;

 Start, Mid, EndValue : integer;

 begin

 ValidWord := False;

 Start := 0;

 EndValue := length(AllowedWords) - 1;

 while (not(ValidWord)) and (Start <= EndValue) do

 begin

 Mid := (Start + EndValue) div 2;

 writeln(AllowedWords[Mid]);

 if AllowedWords[Mid] = Word then

 ValidWord := True

 else if Word > AllowedWords[Mid] then

 Start := Mid + 1

 else

 EndValue := Mid - 1;

 end;

 CheckWordIsValid := ValidWord;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (c)(i), including prompts on screen capture
matching those in code.
Code for part (c)(i) must be sensible.

R. if comparison words not shown in screen capture r

Screen capture(s) showing that the word “jars” was entered and the
words “MALEFICIAL”, “DONGLES”, “HAEMAGOGUE”,

“INTERMINGLE”, “LAGGER”, “JOULED”, “ISOCLINAL”, “JAUKING”,
“JACARANDA”, “JAMBEUX”, “JAPONICA”, “JAROVIZE”, “JASPER”,
“JARTA”, “JARRAH”, “JARRINGLY”, “JARS” are displayed in that order;

A. “MALEFICIAL”, “DONGOLA”, “HAEMAGOGUES”,
“INTERMINGLED”, “LAGGERS”, “JOULING”, “ISOCLINE”, “JAUNCE”,
“JACARE”, “JAMBING”, “JAPPING”, “JAROVIZING”, “JASPERISES”,
“JARVEY”, “JARRINGLY”, “JARTA”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

ALTERNATIVE ANSWERS (for different versions of text file)

Screen capture(s) showing that the word “jars” was entered and the
words “MALEATE”, “DONDER”, “HADST”, “INTERMENDIS”, “LAGAN”,
“JOTTERS”, “ISOCHROMATIC”, “JASPERS”, “JABBING”, “JALOUSIE”,

“JAPANISES”, “JARGOONS”, “JARRED”, “JASIES”, “JARUL”, “JARS”
are displayed in that order;

A. “MALEATE”, “DONDERED”, “HAE”, “INTERMEDIUM”, “LAGANS”,
“JOTTING”, “ISOCHROMOSONES”, “JASPERWARES”, “JABBLED”,
“JALOUSING”, “JAPANIZED”, “JARINA”, “JARRINGS”, “JASMINES”,

Page 11 of 94

“JARVEYS”, “JARTAS”, “JARSFUL”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

Screen capture(s) showing that the word “jars” was entered and the
words “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATION”,
“JOURNALS”, “JAMAICA”, “JEWELLERY”, “JEAN”, “JAR”, “JAY”,
“JASON”, “JARS” are displayed in that order;

A. “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATIONS”, “JOURNEY”,
“JAMIE”, “JEWISH”, “JEEP”, “JAVA”, “JAPAN”, “JARS” being displayed
if alternative answer for mark point 5 in part (c)(i) used

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>jars

MALEFICIAL

DONGLES

HAEMAGOGUE

INTERMINGLE

LAGGER

JOULED

ISOCLINAL

JAUKING

JACARANDA

JAMBEUX

JAPONICA

JAROVIZE

JASPER

JARTA

JARRAH

JARRINGLY

JARS

Valid word

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR

 replace the tiles you used and get three extra tiles (3) OR

 get no new tiles (4)?

>

1

(d) (i) All marks for AO3 (programming)

1. Creating new subroutine called CalculateFrequencies with

appropriate interface; R. if spelt incorrectly I. case
2. Iterative structure that repeats 26 times (once for each letter in the

alphabet);
3. Iterative structure that looks at each word in AllowedWords;

4. Iterative structure that looks at each letter in a word and suitable
nesting for iterative structures;

5. Selection structure, inside iterative structure, that compares two

letters;
A. use of built-in functions that result in same functionality as mark
points 4 and 5;;

Page 12 of 94

6. Inside iterative structure increases variable used to count
instances of a letter;

7. Displays a numeric count (even if incorrect) and the letter for each
letter in the alphabet; A. is done in sensible place in
DisplayTileValues

8. Syntactically correct call to new subroutine from
DisplayTileValues; A. any suitable place for subroutine call

Alternative answer
If answer looks at each letter in AllowedWords in turn and maintains a

count (eg in array/list) for the number of each letter found then mark
points 2 and 5 should be:
2. Creation of suitable data structure to store 26 counts.

5. Appropriate method to select count that corresponds to current
letter.

Max 7 if code contains errors
8

Python 2
def CalculateFrequencies(AllowedWords):

 print "Letter frequencies in the allowed words are:"

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 b>LetterCount += 1

 sys.stdout.write(LetterToFind + " " + LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 sys.stdout.write("Points for " + Letter + ": " +

str(Points) + "\n")

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer
def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 sys.stdout.write(Letter + " " + str(Count))

Alternative answer
def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 sys.stdout.write(chr(a + 65) + " " + str(Counts[a]))

Page 13 of 94

Python 3
def CalculateFrequencies(AllowedWords):

 print("Letter frequencies in the allowed words are:")

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 LetterCount += 1

 print(LetterToFind, " ", LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 print("Points for " + Letter + ": " + str(Points))

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer
def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 print(Letter,Count)

Alternative answer
def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 print(chr(a + 65), Counts[a])

Visual Basic
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim LetterCount As Integer

 Dim LetterToFind As Char

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Code = 0 To 25

 LetterCount = 0

 LetterToFind = Chr(Code + 65)

 For Each Word In AllowedWords

 For Each Letter In Word

 If Letter = LetterToFind Then

 LetterCount += 1

 End If

 Next

 Next

 Console.WriteLine(LetterToFind & " " & LetterCount)

 Next

End Sub

Sub DisplayTileValues(ByVal TileDictionary As Dictionary(Of

Page 14 of 94

Char, Integer), ByRef AllowedWords As List(Of String))

 Console.WriteLine()

 Console.WriteLine("TILE VALUES")

 Console.WriteLine()

 For Each Tile As KeyValuePair(Of Char, Integer) In

 TileDictionary

 Console.WriteLine("Points for " & Tile.Key & ": " &

Tile.Value)

 Next

 Console.WriteLine()

 CalculateFrequencies(AllowedWords)

End Sub

Alternative answer
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim NumberOfTimes, Count As Integer

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Each Letter In "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 Count = 0

 For Each Word In AllowedWords

 NumberOfTimes = Word.Split(Letter).Length - 1

 Count += NumberOfTimes

 Next

 Console.WriteLine(Letter & " " & Count)

 Next

End Sub

Alternative answer
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim Counts(25) As Integer

 For Count = 0 To 25

 Counts(Count) = 0

 Next

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Each Word In AllowedWords

 For Each Letter In Word

 Counts(Asc(Letter) - 65) += 1

 Next

 Next

 For count = 0 To 25

 Console.WriteLine(Chr(count + 65) & " " & Counts(count))

 Next

End Sub

C#
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed words

are:");

 int LetterCount = 0;

 char LetterToFind;

 for (int Code = 0; Code < 26; Code++)

 {

 LetterCount = 0;

 LetterToFind = (char)(Code + 65);

 foreach (var Word in AllowedWords)

 {

 foreach (var Letter in Word)

Page 15 of 94

 {

 if (Letter == LetterToFind)

 {

 LetterCount++;

 }

 }

 }

 Console.WriteLine(LetterToFind + " " + LetterCount);

 }

}

private static void DisplayTileValues(Dictionary<char, int>

TileDictionary, List<string> AllowedWords)

{

 Console.WriteLine();

 Console.WriteLine("TILE VALUES");

 Console.WriteLine();

 char Letter;

 int Points;

 foreach (var Pair in TileDictionary)

 {

 Letter = Pair.Key;

 Points = Pair.Value;

 Console.WriteLine("Points for " + Letter + ": " + Points);

 }

 CalculateFrequencies(AllowedWords);

 Console.WriteLine();

}

Alternative answer
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed words

are:");

 int LetterCount = 0;

 string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 foreach (var Letter in Alphabet)

 {

 LetterCount = 0;

 foreach (var Words in AllowedWords)

 {

 LetterCount = LetterCount + (Words.Split(Letter).Length

- 1);

 }

 Console.WriteLine(Letter + " " + LetterCount);

 }

}

Alternative answer
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 List<int> Counts = new List<int>() ;

 for (int i = 0; i < 26; i++)

 {

 Counts.Add(0);

 }

 foreach (var Words in AllowedWords)

 {

 foreach (var Letter in Words)

 {

 Counts[(int)Letter - 65]++;

Page 16 of 94

 }

 }

 for (int a = 0; a < 26; a++)

 {

 char Alpha =Convert.ToChar(a + 65);

 Console.WriteLine(Alpha + " " + Counts[a]);

 }

}

Java
void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 char letterToFind;

 for (int count = 0; count < 26; count++)

 {

 letterCount = 0;

 letterToFind = (char)(65 + count);

 for(String word:allowedWords)

 {

 for(char letter : word.toCharArray())

 {

 if(letterToFind == letter)

 {

 letterCount++;

 }

 }

 }

 Console.println(letterToFind + ", Frequency: " +

letterCount);

 }

}

void displayTileValues(Map tileDictionary, String[]

allowedWords)

{

 Console.println();

 Console.println("TILE VALUES");

 Console.println();

 for (Object letter : tileDictionary.keySet())

 {

 int points = (int)tileDictionary.get(letter);

 Console.println("Points for " + letter + ": " + points);

 }

 calculateFrequencies(allowedWords);

 Console.println();

}

Alternative answer
void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 for(char letter: alphabet.toCharArray())

 {

 letterCount = 0;

 for(String word: allowedWords)

 {

 letterCount += word.split(letter + "").length - 1;

 }

 Console.println(letter + ", Frequency: " + letterCount);

 }

}

Page 17 of 94

Alternative answer
void calculateFrequencies(String[] allowedWords)

{

 int[] counts = new int[26];

 for(String word: allowedWords)

 {

 for(char letter: word.toCharArray())

 {

 int letterPostion = (int)letter - 65;

 counts[letterPostion]++;

 }

 }

 for (int count = 0; count < 26; count++)

 {

 char letter = (char)(65 + count);

 Console.println(letter + ", Frequency: " + counts[count]);

 }

}

Pascal / Delphi
procedure CalculateFrequencies(AllowedWords : array of

string);

 var

 Code, LetterCount : integer;

 LetterToFind, Letter : char;

 Word : string;

 begin

 writeln('Letter frequencies in the allowed words are:');

 for Code := 0 to 25 do

 begin

 LetterCount := 0;

 LetterToFind := chr(65 + Code);

 for Word in AllowedWords do

 begin

 for Letter in Word do

 begin

 if Letter = LetterToFind then

 LetterCount := LetterCount + 1;

 end;

 end;

 writeln(LetterToFind, ' ', LetterCount);

 end;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (d)(i), including prompts on screen capture
matching those in code.

Code for part (d)(i) must be sensible.

Screen capture(s) showing correct list of letter frequencies are
displayed;

I. Ignore order of letter frequency pairs
I. any additional output eg headings like “Letter” and “Count”
Letter frequencies in the allowed words are:

A 188704

B 44953

C 98231

D 81731

E 275582

Page 18 of 94

F 28931

G 67910

H 60702

I 220483

J 4010

K 22076

L 127865

M 70700

N 163637

O 161752

P 73286

Q 4104

R 170522

S 234673

T 159471

U 80636

V 22521

W 18393

X 6852

Y 39772

Z 11772

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

ALTERNATIVE ANSWERS (for different versions of text file)

Letter frequencies in the allowed words are:

A 188627

B 44923

C 98187

D 81686

E 275478

F 28899

G 67795

H 60627

I 220331

J 4007

K 22028

L 127814

M 70679

N 163547

O 161720

P 73267

Q 4104

R 170461

S 234473

T 159351

U 80579

V 22509

W 18377

X 6852

Y 39760

Z 11765

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

Page 19 of 94

Letter frequencies in the allowed words are:

A 5299

B 1105

C 2980

D 2482

E 7523

F 909

G 1692

H 1399

I 5391

J 178

K 569

L 3180

M 1871

N 4762

O 4177

P 1992

Q 122

R 4812

S 4999

T 4695

U 1898

V 835

W 607

X 246

Y 999

Z 128

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

1

(e) (i) All marks for AO3 (programming)

Modifying subroutine UpdateAfterAllowedWord:

1. Correct subroutine call to GetScoreForWordAndPrefix added in

UpdateAfterAllowedWord;

2. Result returned by GetScoreForWordAndPrefix added to
PlayerScore;

A. alternative names for subroutine GetScoreForWordAndPrefix if

match name of subroutine created

Creating new subroutine:
3. Subroutine GetScoreForWordAndPrefix created; R. if spelt

incorrectly I. case
4. All data needed (Word, TileDictionary, AllowedWords) is

passed into subroutine via interface;
5. Integer value always returned by subroutine;

Base case in subroutine:

6. Selection structure for differentiating base case and recursive case
with suitable condition (word length of 0 // 1 // 2); R. if base case

will result in recursion

Page 20 of 94

7. If base case word length is 0 then value of 0 is returned by
subroutine and there is no recursive call // if base case word length
is 1 then value of 0 is returned by subroutine and there is no
recursive call // if base case word length is 2 the subroutine returns
0 if the two-letter word is not a valid word and returns the score for
the two-letter word if it is a valid word;

Recursive case in subroutine:

8. Selection structure that contains code that adds value returned by
call to GetScoreForWord to score if word is valid; A. no call to

subroutine GetScoreForWord if correct code to calculate score

included in sensible place in GetScoreForWordAndPrefix

subroutine R. if no check for word being valid
9. Call to GetScoreForWordAndPrefix;

10. Result from recursive call added to score;
11. Recursion will eventually reach base case as recursive call has a

parameter that is word with last letter removed;

How to mark question if no attempt to use recursion:

Mark points 1-5 same as for recursive attempt. No marks awarded for
mark points 6-11, instead award marks as appropriate for mark points
12-14.
12. Adds the score for the original word to the score once // sets the

initial score to be the score for the original word; A. no call to
subroutine GetScoreForWord if correct code to calculate score

included in sensible place in GetScoreForWordAndPrefix

subroutine. Note for examiners: there is no need for the answer
to check if the original word is valid

13. Iterative structure that will repeat n − 1 times where n is the length

of the word; A. n − 2 A. n

14. Inside iterative structure adds score for current prefix word, if it is a
valid word, to score once; A. no call to GetScoreForWord if own

code to calculate score is correct

Max 10 if code contains errors

Max 8 if recursion not used in an appropriate way
11

Python 2
def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

Page 21 of 94

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) - 1],

TileDictionary, AllowedWords)

 return Score

Alternative answer

def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

Python 3
def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) - 1],

TileDictionary, AllowedWords)

 return Score

Alternative answer
def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

Visual Basic
Sub UpdateAfterAllowedWord(ByVal Word As String, ByRef

PlayerTiles As String, ByRef PlayerScore As Integer, ByRef

PlayerTilesPlayed As Integer, ByVal TileDictionary As

Dictionary(Of Char, Integer), ByRef AllowedWords As List(Of

String))

 PlayerTilesPlayed += Len(Word)

 For Each Letter In Word

 PlayerTiles = Replace(PlayerTiles, Letter, "", , 1)

 Next

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

End Sub

Page 22 of 94

Function GetScoreForWordAndPrefix(ByVal Word As String, ByVal

TileDictionary As Dictionary(Of Char, Integer), ByRef

AllowedWords As List(Of String)) As Integer

 Dim Score As Integer

 If Len(Word) <= 1 Then

 Return 0

 Else

 Score = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 Score += GetScoreForWordAndPrefix(Mid(Word, 1, Len(Word)

- 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

Alternative answer
Function GetScoreForWordAndPrefix(ByVal Word As String, ByVal

TileDictionary As Dictionary(Of Char, Integer), ByRef

AllowedWords As List(Of String)) As Integer

 Dim Score As Integer = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 If Len(Word) - 1 > 0 Then

 Score += GetScoreForWordAndPrefix(Mid(Word, 1, Len(Word)

- 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

C#
private static void UpdateAfterAllowedWord(string Word, ref

string PlayerTiles, ref int PlayerScore, ref int

PlayerTilesPlayed, Dictionary<char, int> TileDictionary,

List<string> AllowedWords)

{

 PlayerTilesPlayed = PlayerTilesPlayed + Word.Length;

 foreach (var Letter in Word)

 {

 PlayerTiles =

PlayerTiles.Remove(PlayerTiles.IndexOf(Letter), 1);

 }

 PlayerScore = PlayerScore + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

}

private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (Word.Length <= 1)

 {

 return 0;

 }

 else

 {

 Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

Page 23 of 94

 }

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 return Score;

 }

}

Alternative answer
private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

 }

 if (Word.Remove(Word.Length - 1).Length > 0)

 {

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 }

 return Score;

}

Java
int getScoreForWordAndPrefix(String word, Map tileDictionary,

String[] allowedWords)

{

 int score = 0;

 if(word.length() < 2)

 {

 return 0;

 }

 else

 {

 if(checkWordIsValid(word, allowedWords))

 {

 score = getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 return score + getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

 }

}

void updateAfterAllowedWord(String word, Tiles

playerTiles,

 Score playerScore, TileCount playerTilesPlayed, Map

tileDictionary,

 String[] allowedWords)

{

 playerTilesPlayed.numberOfTiles += word.length();

 for(char letter : word.toCharArray())

 {

 playerTiles.playerTiles =

playerTiles.playerTiles.replaceFirst(letter+"", "");

 }

 playerScore.score += getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

}

Page 24 of 94

Alternative answer
int getScoreForWordAndPrefix(String word, Map tileDictionary,

String[] allowedWords)

{

 int score = 0;

 if(checkWordIsValid(word, allowedWords))

 {

 score += getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 if(word.length()>1)

 {

 score += getScoreForWordAndPrefix(word, tileDictionary,

allowedWords);

 }

 return score;

}

Pascal / Delphi
function GetScoreForWordAndPrefix(Word : string;

TileDictionary : TileDictionary; AllowedWords : array of

string) : integer;

 var

 Score : integer;

 begin

 if length(word) <= 1 then

 Score := 0

 else

 begin

 Score := 0;

 if CheckWordIsValid(Word, AllowedWords) then

 Score := Score + GetScoreForWord(Word,

TileDictionary);

 Delete(Word,length(Word),1);

 Score := Score + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

 end;

 GetScoreForWordAndPrefix := Score;

 end;

procedure UpdateAfterAllowedWord(Word : string; var

PlayerTiles : string; var PlayerScore : integer; var

PlayerTilesPlayed : integer; TileDictionary : TileDictionary;

var AllowedWords : array of string);

 var

 Letter : Char;

 begin

 PlayerTilesPlayed := PlayerTilesPlayed + length(Word);

 for Letter in Word do

 Delete(PlayerTiles,pos(letter, PlayerTiles),1);

 PlayerScore := PlayerScore +

GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords);

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (e)(i), including prompts on screen capture
matching those in code.
Code for part (e)(i) must be sensible.

Screen capture(s) showing that the word abandon was entered and the

Page 25 of 94

new score of 78 is displayed;

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR replace the tiles you used

and get three extra tiles (3) OR

 get no new tiles (4)?

>4

Your word was: ABANDON

Your new score is: 78

You have played 7 tiles so far in this game.

Press Enter to continue

1

[37]

Q2.
(a) Marks are for AO2 (analyse)

Feature Is present in Figure 11? (Yes/No)

Inheritance No

Protected method No

Private attribute Yes

A. alternative indicators instead of Yes/No eg Y/N.

Mark as follows:
One mark per correct row

3

(b) Mark is for AO2 (analyse)

Rabbit // Fox;

R. if spelt incorrectly

R. if any additional code
I. case

1

(c) Marks are for AO1 (understanding)

A protected attribute can be accessed (within its class and) by derived class
instances / subclasses;

A private attribute can only be accessed within its class;
A. private attribute can only be accessed within its file (Java only)

2

(d) 1 mark for AO2 (analyse)

MAX 1 from:

RabbitCount (is a private attribute and) is not accessible outside of the

Warren class;

Page 26 of 94

GetRabbitCount (is a public method and) is accessible outside of the Warren

class;

1 mark for AO1 (understanding)

Means the way RabbitCount is represented can be modified without having to

change any other objects that interact with Warren NE. without having to

change other code // makes it easier to reuse / inherit from the Warren class

(as there is a well-defined interface) ;
A. this allows data/properties to be modified in a controlled way

2

(e) Marks are for AO2 (analyse)

When a rabbit dies it is replaced by null/none; A. when rabbits die they are not
removed from the list

CompressRabbitList makes sure that the space used for dead rabbits in the

list is made available for new rabbits // CompressRabbitList makes sure that

the fixed size array does not fill up with dead rabbits;

CompressRabbitList moves live rabbits to the start of the list

A. CompressRabbitList moves null objects / dead rabbits to the end of the

list // other sections of the code assume that the live rabbits are in continuous
locations in the array (so would not work correctly without a call to

CompressRabbitList);
Max 2

(f) Marks are for AO2 (apply)

HDRabbit = Class(Rabbit)

 Private:

 InfectionRate: Real

 Generation: Integer

 Public:

 Procedure Inspect() (Override)

 Function IsInfertile()

 Function GetGeneration()

 Function GetInfectionRate()

End Class

Information for examiner:
Accept answers that use different notations, so long as meaning is clear.

Mark as follows:

1 mark: 1. for correct header including name of class and parent class
1 mark: 2. for redefining the Inspect method A. Override not stated

1 mark: 3. for defining the two additional attributes, with appropriate data
types and identified as private R. if other attributes included

1 mark: 4. for defining methods needed to read the two additional attributes,
and an IsFertile method, all identified as being public R. if other methods

included

I. missing brackets
I. additional Get/Set methods
I. constructor method

Page 27 of 94

A. any suitable alternatives used instead of Function or Procedure keywords

A. any suitable alternatives for data types eg float or double instead of real
R. do not award mark for declaring new methods if any of the functions have
the same name as the variables

4

[14]

Q3.
(a) (i) Marks are for AO3 (programming)

1 mark: 1. tests for lower bound and displays error message if below
1 mark: 2. tests for upper bound and displays error message if above
1 mark: 3. Upper bound test uses LandscapeSize instead of data value

of 14/15 A. in use of incorrect condition
1 mark: 4. 1-3 happen repeatedly until valid input (for the upper and
lower bounds used in the code provided) and forces re-entry of data

each time

A. use of pre or post-conditioned loop

MAX 3 if error message is not Coordinate is outside of landscape,

please try again A. minor typos in error message I. case I. spacing I.

minor punctuation differences

MAX 2 if new code has been added to Simulation constructor instead

of InputCoordinate method
4

VB.NET
Do

 Console.Write(" Input " & CoordinateName & " coordinate: ")

 Coordinate = CInt(Console.ReadLine())

 If Coordinate < 0 Or Coordinate >= LandscapeSize Then

 Console.WriteLine("Coordinate is outside of landscape,

please try again.")

 End If

Loop While Coordinate < 0 Or Coordinate >= LandscapeSize

Alternative answer

Do

 Console.Write(" Input " & CoordinateName & " coordinate: ")

 Coordinate = CInt(Console.ReadLine())

 If Coordinate < 0 Or Coordinate >= LandscapeSize Then

 Console.WriteLine("Coordinate is outside of landscape,

please try again.")

 End If

Loop Until Coordinate >= 0 And Coordinate < LandscapeSize

PYTHON 2
def __InputCoordinate(self, CoordinateName):

 Coordinate = int(raw_input(" Input " + CoordinateName + "

coordinate:"))

 while Coordinate < 0 or Coordinate >= self.__LandscapeSize:

 Coordinate = int(raw_input("Coordinate is outside of

landscape, please try again."))

 return Coordinate

PYTHON 3

Page 28 of 94

def __InputCoordinate(self, CoordinateName):

 Coordinate = int(input(" Input " + CoordinateName + "

coordinate:"))

 while Coordinate < 0 or Coordinate >= self.__LandscapeSize:

 Coordinate = int(input("Coordinate is outside of

landscape, please try again."))

 return Coordinate

C#
do

{

 Console.Write(" Input " + Coordinatename + " coordinate: ");

 Coordinate = Convert.ToInt32(Console.ReadLine());

 if ((Coordinate < 0) || (Coordinate >= LandscapeSize))

 {

 Console.WriteLine("Coordinate is outside of landscape,

please try again.");

 }

} while ((Coordinate < 0) || (Coordinate >= LandscapeSize));

PASCAL
repeat

 write(' Input ' , CoordinateName, ' coordinate: ');

 readln(Coordinate);

 if (Coordinate < 0) or (Coordinate >= LandscapeSize) then

 writeln('Coordinate is outside of landscape, please try

again.');

until (Coordinate >= 0) and (Coordinate < LandscapeSize);

JAVA
private int InputCoordinate(char CoordinateName)

{

 int Coordinate;

 do

 {

 Coordinate = Console.readInteger(" Input " +

CoordinateName + " coordinate: ");

 if (Coordinate >= LandscapeSize || Coordinate < 0)

 {

 Console.println("Coordinate is outside of landscape,

please try again.");

 }

 }while (Coordinate >= LandscapeSize || Coordinate < 0);

 return Coordinate;

}

(ii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (a)(i), including error message. Code for part
(a)(i) must be sensible.

1 mark: Screen capture(s) showing the required sequence of inputs
(-1, 15, 0), the correct error message being displayed for -1 and 15,

and that 0 has been accepted as the program has displayed the prompt

for the y coordinate to be input.

Page 29 of 94

A. alternative error messages if match code for part (a)(i)
1

(b) (i) Marks are for AO3 (programming)

1 mark: New subroutine created, with correct name, that overrides the
subroutine in the Animal class

I. private, protected, public modifiers

1 mark: 2. CalculateNewAge subroutine in Animal class is always

called
1 mark: 3. Check made on gender of rabbit, and calculations done
differently for each gender
I. incorrect calculations

1 mark: 4. Probability of death by other causes calculated correctly for
male rabbits
1 mark: 5. Probability of death by other causes calculated correctly for
female rabbits

5

VB.NET
Public Overrides Sub CalculateNewAge()

 MyBase.CalculateNewAge()

 If Gender = Genders.Male Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.5

 Else

 If Age >= 2 Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.05

 End If

 End If

End Sub

A. If Age > 1 Then instead of If Age >= 2 Then

PYTHON 2
def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.5

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.05

PYTHON 3
def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.5

Page 30 of 94

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.05

C#
public override void CalculateNewAge()

{

 base.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.5;

 }

 else

 {

 if (Age >= 2)

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.5;

 }

 }

}

PASCAL
Procedure Rabbit.CalculateNewAge();

 begin

 inherited;

 if Gender = Male then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses * 1.5

 else

 if Age >= 2 then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses + 0.05;

 end;

JAVA
@Override

public void CalculateNewAge()

{

 super.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses *= 1.5;

 }

 else if(Age >= 2)

 {

 ProbabilityOfDeathOtherCauses += 0.05;

 }

}

(ii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (b)(i). Code for part (b)(i) must be sensible.

1 mark: Any screen capture(s) showing the correct probability of death
by other causes for a male rabbit (0.11 to 2dp) and a female rabbit (0.1);

Example:

Page 31 of 94

1

(c) (i) Marks are for AO3 (programming)

1 mark: Structure set-up to store the representation of terrain for a
location
1 mark: Type of terrain is passed to constructor as parameter

1 mark: Type of terrain stored into attribute by constructor A. default
value, that makes type of terrain for location clear, instead of value from
a parameter

3

VB.NET
Class Location

 Public Fox As Fox

 Public Warren As Warren

 Public Terrain As Char

 Public Sub New(ByVal TerrainType As Char)

 Fox = Nothing

 Warren = Nothing

 Terrain = TerrainType

 End Sub

End Class

PYTHON 2
class Location:

 def __init__(self, TerrainType):

 self.Fox = None

 self.Warren = None

 self.Terrain = TerrainType

PYTHON 3
class Location:

 def __init__(self, TerrainType):

 self.Fox = None

 self.Warren = None

 self.Terrain = TerrainType

C#
class Location

{

 public Fox Fox;

 public Warren Warren;

 public char Terrain;

 public Location(char Terraintype)

 {

 Fox = null;

 Warren = null;

 Terrain = Terraintype;

 }

}

PASCAL
type

 Location = class

 Fox : Fox;

 Warren : Warren;

Page 32 of 94

 Terrain : char;

 constructor New(TerrainType : char);

 end;

constructor Location.New(TerrainType : char);

 begin

 Fox := nil;

 Warren := nil;

 Terrain := TerrainType;

 end;

JAVA
class Location

{

 public Fox Fox;

 public Warren Warren;

 public char Terrain;

 public Location(char Terrain)

 {

 Fox = null;

 Warren = null;

 this.Terrain = Terrain;

 }

}

(ii) Marks are for AO3 (programming)

1 mark: 1. An indicator for type of terrain will be stored for every location

I. wrong type of terrain in a location
R. if indicators other than R or L used
I. case of indicators

1 mark: 2. Vertical river created in column 5
1 mark: 3. Horizontal river created in row 2
MAX 1 FOR 2 & 3 if only creates a river when foxes & warrens are in
default locations
MAX 2 if creates any rivers in incorrect locations

3

VB.NET
For x = 0 To LandscapeSize - 1

 For y = 0 To LandscapeSize - 1

 If x = 5 Or y = 2 Then

 Landscape(x, y) = New Location("R")

 Else

 Landscape(x, y) = New Location("L")

 End If

 Next

Next

PYTHON 2
def __CreateLandscapeAndAnimals(self, InitialWarrenCount,

InitialFoxCount, FixedInitialLocations):

 for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 5 or y == 2:

 self.__Landscape[x][y] = Location("R")

 else:

 self.__Landscape[x][y] = Location("L")

 if FixedInitialLocations:

...

Page 33 of 94

PYTHON 3
def __CreateLandscapeAndAnimals(self, InitialWarrenCount,

InitialFoxCount, FixedInitialLocations):

 for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 5 or y == 2:

 self.__Landscape[x][y] = Location("R")

 else:

 self.__Landscape[x][y] = Location("L")

 if FixedInitialLocations:

...

C#
for (int x = 0; x < LandscapeSize; x++)

{

 for (int y = 0; y < LandscapeSize; y++)

 {

 if ((x == 5) || (y == 2))

 {

 Landscape[x, y] = new Location('R');

 }

 else

 {

 Landscape[x, y] = new Location('L');

 }

 }

}

PASCAL
for x := 0 to LandscapeSize - 1 do

 for y := 0 to LandscapeSize - 1 do

 if (x = 5) or (y = 2) then

 Landscape[x][y] := Location.New('R')

 else

 Landscape[x][y] := Location.New('L');

JAVA
for(int x = 0 ; x < LandscapeSize; x++)

{

 for(int y = 0; y < LandscapeSize; y++)

 {

 if(x==5||y==2)

 {

 Landscape[x][y] = new Location('R');

 }

 else

 {

 Landscape[x][y] = new Location('L');

 }

 }

}

(iii) Marks are for AO3 (programming)

1 mark: R/L, or other indicator as long as it is clear what the type of
terrain is, displayed in each location (could be different letters, use of
different colours) A. type of terrain not displayed if location contains a
fox

1 mark: Row containing column indices matches new display of
landscape I. number of dashes not adjusted to match new width R. if
terrain indicators not displayed A. no adjustment made if indicators for

Page 34 of 94

terrain used mean no adjustment to width of display for terrain was
needed

2

VB.NET
Private Sub DrawLandscape()

 Console.WriteLine()

 Console.WriteLine("TIME PERIOD: " & TimePeriod)

 Console.WriteLine()

 Console.Write(" ")

 For x = 0 To LandscapeSize - 1

 Console.Write(" ")

 If x < 10 Then

 Console.Write(" ")

 End If

 Console.Write(x & " |")

 Next

 Console.WriteLine()

 For x = 0 To LandscapeSize * 5 + 3 'CHANGE MADE HERE

 Console.Write("-")

 Next

 Console.WriteLine()

 For y = 0 To LandscapeSize - 1

 If y < 10 Then

 Console.Write(" ")

 End If

 Console.Write(" " & y & "|")

 For x = 0 To LandscapeSize - 1

 If Not Me.Landscape(x, y).Warren Is Nothing Then

 If Me.Landscape(x, y).Warren.GetRabbitCount() < 10

Then

 Console.Write(" ")

 End If

 Console.Write(Landscape(x,

y).Warren.GetRabbitCount())

 Else

 Console.Write(" ")

 End If

 If Not Me.Landscape(x, y).Fox Is Nothing Then

 Console.Write("F")

 Else

 Console.Write(" ")

 End If

 Console.Write(Landscape(x, y).Terrain)

 Console.Write("|")

 Next

 Console.WriteLine()

 Next

End Sub

PYTHON 2
def __DrawLandscape(self):

 print

 print "TIME PERIOD:", str(self.__TimePeriod)

 print

 sys.stdout.write(" ")

 for x in range (0, self.__LandscapeSize):

 sys.stdout.write(" ")

 if x < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(x) + " |")

 print

 for x in range (0, self.__LandscapeSize * 5 + 3): #CHANGED

Page 35 of 94

4 TO 5

 sys.stdout.write("-")

 print

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(y) + "|")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if self.__Landscape[x][y].Warren.GetRabbitCount() <

10:

 sys.stdout.write(" ")

sys.stdout.write(self.__Landscape[x][y].Warren.GetRabbitCou

nt())

 else:

 sys.stdout.write(" ")

 if not self.__Landscape[x][y].Fox is None:

 sys.stdout.write("F")

 else:

 sys.stdout.write(" ")

 sys.stdout.write(self.__Landscape[x][y].Terrain)

 sys.stdout.write("|")

 print

PYTHON 3
def __DrawLandscape(self):

 print()

 print("TIME PERIOD:", self.__TimePeriod)

 print()

 print(" ", end = "")

 for x in range (0, self.__LandscapeSize):

 print(" ", end = "")

 if x < 10:

 print(" ", end = "")

 print(x, "|", end = "")

 print()

 for x in range (0, self.__LandscapeSize * 5 + 3): #CHANGE

 print("-", end = "")

 print()

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 print(" ", end = "")

 print("", y, "|", sep = "", end = "")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if self.__Landscape[x][y].Warren.GetRabbitCount() <

10:

 print(" ", end = "")

 print(self.__Landscape[x][y].Warren.GetRabbitCount(

), end = "")

 else:

 print(" ", end = "")

 if not self.__Landscape[x][y].Fox is None:

 print("F", end = "")

 else:

 print(" ", end = "")

 print(self.__Landscape[x][y].Terrain, end = "")

 print("|", end = "")

 print()

C#
private void DrawLandscape()

Page 36 of 94

{

 Console.WriteLine();

 Console.WriteLine("TIME PERIOD: "+TimePeriod);

 Console.WriteLine();

 Console.Write(" ");

 for (int x = 0; x < LandscapeSize; x++)

 {

 Console.Write(" ");

 if (x < 10) { Console.Write(" "); }

 Console.Write(x + " |");

 }

 Console.WriteLine();

 for (int x = 0; x <= LandscapeSize * 5 + 3; x++)

 {

 Console.Write("-");

 }

 Console.WriteLine();

 for (int y = 0; y < LandscapeSize; y++)

 {

 if (y < 10) { Console.Write(" "); }

 Console.Write(" " + y + "|");

 for (int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x, y].Warren != null)

 {

 if (Landscape[x, y].Warren.GetRabbitCount() < 10)

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x,

y].Warren.GetRabbitCount());

 }

 else { Console.Write(" "); }

 if (Landscape[x, y].Fox != null)

 {

 Console.Write("F");

 }

 else

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x, y].Terrain);

 Console.Write("|");

 }

 Console.WriteLine();

 }

}

PASCAL
procedure Simulation.DrawLandscape();

 var

 x : integer;

 y : integer;

 begin

 writeln;

 writeln('TIME PERIOD: ', TimePeriod);

 writeln;

 write(' ');

 for x := 0 to LandscapeSize - 1 do

 begin

 write(' ');

 if x < 10 then

 write(' ');

 write(x, ' |');

Page 37 of 94

 end;

 writeln;

 for x:=0 to LandscapeSize * 5 + 3 do //CHANGE MADE HERE

 write('-');

 writeln;

 for y := 0 to LandscapeSize - 1 do

 begin

 if y < 10 then

 write(' ');

 write(' ', y, '|');

 for x:= 0 to LandscapeSize - 1 do

 begin

 if not(self.Landscape[x][y].Warren = nil) then

 begin

 if

self.Landscape[x][y].Warren.GetRabbitCount() < 10 then

 write(' ');

 write(Landscape[x][y].Warren.GetRabbitCount

());

 end

 else

 write(' ');

 if not(self.Landscape[x][y].fox = nil) then

 write('F')

 else

 write(' ');

 write(Landscape[x][y].Terrain);

 write('|');

 end;

 writeln;

 end;

 end;

JAVA
private void DrawLandscape()

{

 Console.println();

 Console.println("TIME PERIOD: " + TimePeriod);

 Console.println();

 Console.print(" ");

 for(int x = 0; x < LandscapeSize; x++)

 {

 Console.print(" ");

 if (x < 10)

 {

 Console.print(" ");

 }

 Console.print(x + " |");

 }

 Console.println();

 for(int x = 0; x < LandscapeSize * 5 + 4; x++) //Change made

here

 {

 Console.print("-");

 }

 Console.println();

 for(int y = 0; y < LandscapeSize; y++)

 {

 if(y < 10)

 {

 Console.print(" ");

 }

 Console.print(" " + y + "|");

 for(int x = 0; x < LandscapeSize; x++)

Page 38 of 94

 {

 if (Landscape[x][y].Warren != null)

 {

 if (Landscape[x][y].Warren.GetRabbitCount() < 10)

 {

 Console.print(" ");

 }

Console.print(Landscape[x][y].Warren.GetRabbitCount());

 }

 else

 {

 Console.print(" ");

 }

 if (Landscape[x][y].Fox != null)

 {

 Console.print("F");

 }

 else

 {

 Console.print(" ");

 }

 Console.print(Landscape[x][y].Terrain);

 Console.print("|");

 }

 Console.println();

 }

}

(iv) Marks are for AO3 (programming)

1 mark: Warren/fox will not be placed in a river

1 mark: Warren will not be placed where there is a warren // fox will not
be placed where there is a fox
R. if no sensible attempt at preventing warren/fox from being placed in a
river

1 mark: Fully correct logic in second subroutine
3

VB.NET
Private Sub CreateNewWarren()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Warren Is Nothing Or

Landscape(x, y).Terrain = "R"

 If ShowDetail Then

 Console.WriteLine("New Warren at (" & x & "," & y & ")")

 End If

 Landscape(x, y).Warren = New Warren(Variability)

 WarrenCount += 1

End Sub

Private Sub CreateNewFox()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

Page 39 of 94

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Fox Is Nothing Or Landscape(x,

y).Terrain = "R"

 If ShowDetail Then

 Console.WriteLine(" New Fox at (" & x & "," & y & ")")

 End If

 Landscape(x, y).Fox = New Fox(Variability)

 FoxCount += 1

End Sub

PYTHON 2
def __CreateNewWarren(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Warren is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write("New Warren at (" + str(x) + "," + str(y)

+ ")")

 self.__Landscape[x][y].Warren = Warren(self.__Variability)

 self.__WarrenCount += 1

def __CreateNewFox(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write(" New Fox at (" + str(x) + "," + str(y)

+ ")")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

PYTHON 3
def __CreateNewWarren(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Warren is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 print("New Warren at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Warren = Warren(self.__Variability)

 self.__WarrenCount += 1

def __CreateNewFox(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 print(" New Fox at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

C#

Page 40 of 94

private void CreateNewWarren()

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Warren != null) || (Landscape[x,

y].Terrain == 'R'));

 if (ShowDetail)

 {

 Console.WriteLine("New Warren at (" + x + "," + y + ")");

 }

 Landscape[x, y].Warren = new Warren(Variability);

 WarrenCount++;

}

private void CreateNewFox()

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Fox != null) || (Landscape[x,

y].Terrain == 'R'));

 if (ShowDetail) { Console.WriteLine(" New Fox at (" + x + ","

+ y + ")"); }

 Landscape[x, y].Fox = new Fox(Variability);

 FoxCount++;

}

PASCAL
procedure Simulation.CreateNewWarren();

 var

 x : integer;

 y : integer;

 begin

 repeat

 x := random(LandscapeSize);

 y := random(LandscapeSize);

 until (Landscape[x][y].Warren = Nil) and

(not(Landscape[x][y].Terrain = 'R'));

 if ShowDetail then

 writeln('New Warren at (', x, ',', y, ')');

 Landscape[x][y].Warren := Warren.New(Variability);

 inc(WarrenCount);

 end;

procedure Simulation.CreateNewFox();

 var

 x : integer;

 y : integer;

 begin

 randomize();

 repeat

 x := Random(LandscapeSize);

 y := Random(LandscapeSize);

 until (Landscape[x][y].fox = Nil) and

(not(Landscape[x][y].Terrain = 'R'));

 if ShowDetail then

 writeln(' New Fox at (',x, ',',y, ')');

 Landscape[x][y].Fox := Fox.New(Variability);

Page 41 of 94

 inc(FoxCount);

 end;

JAVA
private void CreateNewWarren()

{

 int x;

 int y;

 do

 {

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 } while (Landscape[x][y].Warren != null ||

Landscape[x][y].Terrain == 'R');

 if (ShowDetail)

 {

 Console.println("New Warren at (" + x + "," + y + ")");

 }

 Landscape[x][y].Warren = new Warren(Variability);

 WarrenCount += 1;

}

private void CreateNewFox()

{

 int x;

 int y;

 do

 {

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 }while (Landscape[x][y].Fox != null ||

Landscape[x][y].Terrain == 'R';

 if (ShowDetail)

 {

 Console.println(" New Fox at (" + x + "," + y + ")");

 }

 Landscape[x][y].Fox = new Fox(Variability);

 FoxCount += 1;

}

(v) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (c)(i) to (c)(iv). Code for these parts must be
sensible

1 mark: Screen capture(s) indicating which locations are land and which
are rivers
A. incorrect location of rivers if these match those set in parts (c)(ii)

1

(d) (i) Marks are for AO3 (programming)

Page 42 of 94

Structure of subroutine:
1. 1 mark: Subroutine created with correct name

CheckIfPathCrossesRiver I. private/public/protected modifiers

2. 1 mark: Subroutine has four parameters of appropriate data type,
which are the coordinates of the two locations to check the path
between I. self parameter in Python answers I. additional

parameters
3. 1 mark: Subroutine returns a Boolean value

Horizontal or vertical:
4. 1 mark: Repetition structure created that has start and end points

that correspond to one coordinate of the locations that need to be
checked on the column/row A. if start and end points include the
columns/rows that contain the fox and warren, even though this is
not necessary

5. 1 mark: Repetition structure will work regardless of whether or not
the fox is to the left/right of or above/below the warren (depending
on which direction is being checked) A. use of separate repetition
structures to achieve this

6. 1 mark: Within repetition structure a check is made of the type of
terrain at the appropriate coordinate

7. 1 mark: If a section of river is detected, subroutine will return true
R. if subroutine would return true when the path does not cross a
river

Other of vertical or horizontal:
8. 1 mark: Correct cells are checked regardless of whether or not the

fox is to the left/right of or above/below the warren A. if start and/or
end points include the columns/rows that contain the fox and
warren

9. 1 mark: If a river is detected, subroutine will return true; R. if
subroutine would return true when the path does not cross a river

MAX 7 if 2 and 5 are used instead of checking terrain type
MAX 5 if code does not use each of the relevant coordinates between
fox and warren

9

VB.NET
Private Function CheckIfPathCrossesRiver(ByVal FoxX As

Integer,

ByVal FoxY As Integer, ByVal WarrenX As Integer, ByVal WarrenY

As Integer) As Boolean

 Dim xChange As Integer

 Dim yChange As Integer

 Dim x As Integer

 Dim y As Integer

 If FoxX - WarrenX > 0 Then

 xChange = 1

 Else

 xChange = -1

 End If

 If WarrenX <> FoxX Then

 x = WarrenX + xChange

 While x <> FoxX

 If Landscape(x, FoxY).Terrain = "R" Then

 Return True

 End If

 x += xChange

Page 43 of 94

 End While

 End If

 If FoxY - WarrenY > 0 Then

 yChange = 1

 Else

 yChange = -1

 End If

 If WarrenY <> FoxY Then

 y = WarrenY + yChange

 While y <> FoxY

 If Landscape(FoxX, y).Terrain = "R" Then

 Return True

 End If

 y += yChange

 End While

 End If

 Return False

End Function

PYTHON 2
def CheckIfPathCrossesRiver(self, FoxX, FoxY, WarrenX,

WarrenY):

 if FoxX - WarrenX > 0:

 xChange = 1

 else:

 xChange = -1

 if WarrenX != FoxX:

 x = WarrenX + xChange

 while x != FoxX:

 if self.__Landscape[x][FoxY].Terrain == "R":

 return True

 x += xChange

 if FoxY - WarrenY > 0:

 yChange = 1

 else:

 yChange = -1

 if WarrenY != FoxY:

 y = WarrenY + yChange

 while y != FoxY:

 if self.__Landscape[FoxX][y].Terrain == "R":

 return True

 y += yChange

 return False

PYTHON 3
def CheckIfPathCrossesRiver(self, FoxX, FoxY, WarrenX,

WarrenY):

 if FoxX - WarrenX > 0:

 xChange = 1

 else:

 xChange = -1

 if WarrenX != FoxX:

 x = WarrenX + xChange

 while x != FoxX:

 if self.__Landscape[x][FoxY].Terrain == "R":

 return True

 x += xChange

 if FoxY - WarrenY > 0:

 yChange = 1

 else:

 yChange = -1

 if WarrenY != FoxY:

 y = WarrenY + yChange

Page 44 of 94

 while y != FoxY:

 if self.__Landscape[FoxX][y].Terrain == "R":

 return True

 y += yChange

 return False

C#
private bool CheckIfPathCrossesRiver(int FoxX, int FoxY, int

WarrenX, int WarrenY)

{

 int xChange, yChange, x, y;

 if (FoxX - WarrenX > 0)

 {

 xChange = 1;

 }

 else

 {

 xChange = -1;

 }

 if (WarrenX != FoxX)

 {

 x = WarrenX + xChange;

 while(x != FoxX)

 {

 if (Landscape[x, FoxY].Terrain == 'R')

 {

 return true;

 }

 x += xChange;

 }

 }

 if (FoxY - WarrenY > 0)

 {

 yChange = 1;

 }

 else

 {

 yChange = -1;

 }

 if (WarrenY != FoxY)

 {

 y = WarrenY + yChange;

 while(y != FoxY)

 {

 if (Landscape[FoxX, y].Terrain == 'R')

 {

 return true;

 }

 y += yChange;

 }

 }

 return false;

}

PASCAL
function Simulation.CheckIfPathCrossesRiver(FoxX : integer;

Foxy : integer; WarrenX : integer; WarrenY : integer) : boolean;

 var

 xChange : integer;

 yChange : integer;

 x : integer;

 y : integer;

 Answer : boolean;

Page 45 of 94

 begin

 Answer := False;

 if (FoxX - WarrenX) > 0 then

 xChange := 1

 else

 xChange := -1;

 if WarrenX <> FoxX then

 begin

 x := warrenX + xChange;

 if x <> FoxX then

 repeat

 if Landscape[x][FoxY].Terrain = 'R' then

 Answer := True;

 x := x + xChange;

 until x = FoxX;

 end;

 if (FoxY - WarrenY) > 0 then

 yChange := 1

 else

 yChange := -1;

 if WarrenY <> FoxY then

 begin

 y := WarrenY + yChange;

 if y <> FoxY then

 repeat

 if Landscape[FoxX][y].Terrain = 'R' then

 Answer := True;

 y := y + yChange;

 until y = FoxY;

 end;

 CheckIfPathCrossesRiver := Answer;

 end;

JAVA
private boolean CheckIfPathCrossesRiver(int FoxX, int FoxY,

int WarrenX, int WarrenY)

{

 int xChange, yChange;

 if (FoxX-WarrenX > 0)

 {

 xChange = 1;

 }

 else

 {

 xChange = -1;

 }

 if (WarrenX != FoxX)

 {

 for (int x = WarrenX + xChange; x != FoxX; x = x + xChange)

 {

 if (Landscape[x][FoxY].Terrain == 'R')

 {

 return true;

 }

 }

 }

 if (FoxY - WarrenY > 0)

 {

 yChange = 1;

 }

 else

 {

 yChange = -1;

 }

Page 46 of 94

 if (WarrenY != FoxY)

 {

 for (int y = WarrenY + yChange; y != FoxY; y = y + yChange)

 {

 if (Landscape[FoxX][y].Terrain == 'R')

 {

 return true;

 }

 }

 }

 return false;

}

(ii) Marks are for AO3 (programming)
1 mark: CheckIfPathCrossesRiver subroutine is called within the two

repetition structures, with the coordinates of the warren and fox as
parameters
1 mark: If the subroutine returns true, the fox will not eat any rabbits in
the warren, otherwise it will eat rabbits if the warren is near enough

2

VB.NET
Private Sub FoxesEatRabbitsInWarren(ByVal WarrenX As Integer,

ByVal WarrenY As Integer)

 Dim FoodConsumed As Integer

 Dim PercentToEat As Integer

 Dim Dist As Double

 Dim RabbitsToEat As Integer

 Dim RabbitCountAtStartOfPeriod As Integer =

Landscape(WarrenX, WarrenY).Warren.GetRabbitCount()

 For FoxX = 0 To LandscapeSize - 1

 For FoxY = 0 To LandscapeSize - 1

 If Not Landscape(FoxX, FoxY).Fox Is Nothing Then

 If Not CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY) Then

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 If Dist <= 3.5 Then

 PercentToEat = 20

 ElseIf Dist <= 7 Then

 PercentToEat = 10

 Else

 PercentToEat = 0

 End If

 RabbitsToEat = CInt(Math.Round(CDbl(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed = Landscape(WarrenX,

WarrenY).Warren.EatRabbits(RabbitsToEat)

 Landscape(FoxX, FoxY).Fox.GiveFood(FoodConsumed)

 If ShowDetail Then

 Console.WriteLine(" " & FoodConsumed & " rabbits

eaten by fox at (" & FoxX & "," & FoxY & ").")

 End If

 End If

 End If

 Next

 Next

End Sub

PYTHON 2
def __FoxesEatRabbitsInWarren(self, WarrenX, WarrenY):

 RabbitCountAtStartOfPeriod =

self.__Landscape[WarrenX][WarrenY].Warren.GetRabbitCount()

Page 47 of 94

 for FoxX in range(0, self.__LandscapeSize):

 for FoxY in range (0, self.__LandscapeSize):

 if not self.__Landscape[FoxX][FoxY].Fox is None:

 if not self.CheckIfPathCrossesRiver(FoxX, FoxY,

WarrenX, WarrenY): #INDENTATION CHANGED AFTER THIS LINE

 Dist = self.__DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 if Dist <= 3.5:

 PercentToEat = 20

 elif Dist <= 7:

 PercentToEat = 10

 else:

 PercentToEat = 0

 RabbitsToEat = int(round(float(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed =

self.__Landscape[WarrenX][WarrenY].Warren.EatRabbits(Rabbit

sToEat)

 self.__Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsume

d)

 if self.__ShowDetail:

 sys.stdout.write(" " + str(FoodConsumed) + " rabbits

eaten by fox at (" + str(FoxX) + "," + str(FoxY) + ")." + "\n")

PYTHON 3
def __FoxesEatRabbitsInWarren(self, WarrenX, WarrenY):

 RabbitCountAtStartOfPeriod =

self.__Landscape[WarrenX][WarrenY].Warren.GetRabbitCount()

 for FoxX in range(0, self.__LandscapeSize):

 for FoxY in range (0, self.__LandscapeSize):

 if not self.__Landscape[FoxX][FoxY].Fox is None:

 if not self.CheckIfPathCrossesRiver(FoxX, FoxY,

WarrenX, WarrenY): #INDENTATION CHANGED AFTER THIS LINE

 Dist = self.__DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 if Dist <= 3.5:

 PercentToEat = 20

 elif Dist <= 7:

 PercentToEat = 10

 else:

 PercentToEat = 0

 RabbitsToEat = int(round(float(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed =

self.__Landscape[WarrenX][WarrenY].Warren.EatRabbits(Rabbit

sToEat)

self.__Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed)

 if self.__ShowDetail:

 print(" ", FoodConsumed, " rabbits eaten by fox

at (", FoxX, ",", FoxY, ").", sep = "")

C#
private void FoxesEatRabbitsInWarren(int WarrenX, int

WarrenY)

{

 int FoodConsumed;

 int PercentToEat;

 double Dist;

 int RabbitsToEat;

 int RabbitCountAtStartOfPeriod = Landscape[WarrenX,

WarrenY].Warren.GetRabbitCount();

 for (int FoxX = 0; FoxX < LandscapeSize; FoxX++)

Page 48 of 94

 {

 for (int FoxY = 0; FoxY < LandscapeSize; FoxY++)

 {

 if (Landscape[FoxX, FoxY].Fox != null)

 {

 if (!CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY))

 {

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if (Dist <= 3.5)

 {

 PercentToEat = 20;

 }

 else if (Dist <= 7)

 {

 PercentToEat = 10;

 }

 else

 {

 PercentToEat = 0;

 }

 RabbitsToEat =

(int)Math.Round((double)(PercentToEat *

RabbitCountAtStartOfPeriod / 100.0));

 FoodConsumed = Landscape[WarrenX,

WarrenY].Warren.EatRabbits(RabbitsToEat);

 Landscape[FoxX, FoxY].Fox.GiveFood(FoodConsumed);

 if (ShowDetail)

 {

 Console.WriteLine(" " + FoodConsumed + " rabbits

eaten by fox at (" + FoxX + "," + FoxY + ").");

 }

 }

 }

 }

 }

}

PASCAL
procedure Simulation.FoxesEatRabbitsInWarren(WarrenX :

integer; WarrenY : integer);

 var

 FoodConsumed : integer;

 PercentToEat : integer;

 Dist : double;

 RabbitsToEat : integer;

 RabbitCountAtStartOfPeriod : integer;

 FoxX : integer;

 FoxY : integer;

 begin

 RabbitCountAtStartOfPeriod :=

Landscape[WarrenX][WarrenY].Warren.GetRabbitCount();

 for FoxX := 0 to LandscapeSize - 1 do

 for FoxY := 0 to LandscapeSize - 1 do

 if not(Landscape[FoxX][FoxY].fox = nil) then

 if not(CheckIfPathCrossesRiver(FoxX, Foxy,

WarrenX, WarrenY)) then

 begin

 Dist := DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if Dist <= 3.5 then

 PercentToEat := 20

 else if Dist <= 7 then

Page 49 of 94

 PercentToEat := 10

 else

 PercentToEat := 0;

 RabbitsToEat := round(PercentToEat *

RabbitCountAtStartOfPeriod / 100);

 FoodConsumed :=

Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat)

;

 Landscape[FoxX][FoxY].fox.GiveFood(FoodConsum

ed);

 if ShowDetail then

 writeln(' ', FoodConsumed, ' rabbits eaten by

fox at (', FoxX, ',', FoxY, ')');

 end;

 end;

JAVA
private void FoxesEatRabbitsInWarren(int WarrenX, int

WarrenY)

{

 int FoodConsumed;

 int PercentToEat;

 double Dist;

 int RabbitsToEat;

 int RabbitCountAtStartOfPeriod =

Landscape[WarrenX][WarrenY].Warren.GetRabbitCount();

 for(int FoxX = 0; FoxX < LandscapeSize; FoxX++)

 {

 for(int FoxY = 0; FoxY < LandscapeSize; FoxY++)

 {

 if (Landscape[FoxX][FoxY].Fox != null)

 {

 if (!CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY))

 {

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if (Dist <= 3.5)

 {

 PercentToEat = 20;

 }

 else if (Dist <= 7)

 {

 PercentToEat = 10;

 }

 else

 {

 PercentToEat = 0;

 }

 RabbitsToEat =

(int)(Math.round((double)(PercentToEat *

RabbitCountAtStartOfPeriod / 100)));

 FoodConsumed =

Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat)

;

Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed);

 if (ShowDetail)

 {

 Console.println(" " + FoodConsumed + " rabbits

eaten by fox at (" + FoxX + "," + FoxY + ").");

 }

 }

Page 50 of 94

 }

 }

 }

}

(iii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (d)(i) to (d)(ii). Code for these parts must be
sensible

1 mark: Screen capture(s) show that no rabbits are eaten in the warren
at (1, 1)

Note: Exact rabbit numbers killed/born do not need to match
screenshot, but the start and end periods should be 0 and 1.

1

[35]

Q4.
(a)

1 mark for Device at top of diagram with Printer and Computer directly

underneath it and linked to it and no other labels linked to it;
1 mark for Computer with Laptop, Desktop and Server directly underneath it
and linked to it, and no other labels linked to it (except Device above);
1 mark for correctly styled diagram, i.e. lines drawn as arrows and boxes (any
shape) around labels; – This mark is only available if candidate has
already achieved at least one mark for correct contents of the diagram.

A. Arrows drawn as:

A. Filled/empty arrowheads

A. Diagram rotated by 90 degrees
3

Page 51 of 94

(b)

Accept answers that use different notations, so long as meaning is clear.

1 mark for correct header including name of class and parent class;
1 mark for redefining the AddDevice (constructor)procedure;
1 mark* for defining all 3 extra functions needed to read variable values, all
identified as being public (keyword public is optional if functions are declared
before variables);
1 mark# for defining all 3 extra variables, with appropriate data types and
identified as being private;
A. Any sensible numeric types for RAMCapacity and HDDCapacity, do not
have to be whole numbers
A. Answers that indicate separately that each variable is private or each

method is public
R. Do not award mark for declaring new functions if any of the functions have
the same name as the variables
I. Parameters to methods, minor changes to names that do not affect clarity

*. Do not award this mark if any extra functions/procedures have been
declared, except for functions that would set values eg SetProcessorName or
an incorrectly named procedure to add eg AddComputer
– Do not award this mark if any extra variables have been declared

4

(c)

1 mark for correct header including name of class and parent class;

MAX 1 of the following two marks:
1 mark for redefining the AddDevice procedure;
1 mark* for:
• defining the GetBluetoothInstalled function needed to read this value,

identified as being public (keyword public is optional if function is
declared before variable)

• defining the BluetoothInstalled variable with an appropriate data type as
being private.

A. Boolean or whole number types for BluetoothInstalled but reject string,
character or real number types
A. Different sensible name for GetBluetoothInstalled function eg

CheckBluetoothInstalled, IsBluetoothInstalled

Page 52 of 94

A. Answers that indicate separately that each variable is private or each
method is public
I. Parameters to methods, minor changes to names that do not affect clarity
I. Addition of any extra functions or variables

* Do not award this mark if any extra functions / procedures / variables
declared, except for a SetBluetoothInstalled procedure.

2

[9]

Q5.
(a) It hides the detail of how the list will be stored/implemented

from the programmer // a programmer working on the rest of
the program does not need to know how the LinkedList

class works // a programmer working on the rest of the
program needs only concern themselves with the interface to
the LinkedList class;

A. "user" for "programmer" as BOD mark
1

(b) The procedures/functions are public as programmer (writing
the rest of the program) will need access to the operations
defined in the procedures and functions from outside of the
class / elsewhere in the program (so they must be public); A.
just one of procedures or functions A. Procedures/functions
will be accessible
The data items are private to prevent them being changed
directly from outside of the class // to avoid the integrity of

the data structure being damaged / changed accidentally
(from outside the class); A. "elsewhere in program" for
"outside of the class"
So that the implementation of LinkedList can be changed

and programs written using only the public functions and
procedures will still work;
MAX 2

2

(c) OVERALL GUIDANCE:

Solutions should be marked on this basis:

• Up to 5 marks for correctly locating the position to
delete the item from.

• Up to 3 marks for deleting the item and updating
pointers as required.

The addition of any unnecessary steps that do not stop the
algorithm working should not result in a reduction in marks.

Responses should be accepted in pseudo-code or structured
English but not in prose.

If you are unsure about the correctness of a solution
please refer it to a team leader.

SPECIFIC MARKING POINTS:

Page 53 of 94

Correctly locating deletion point (5 marks):

1. Initialising Current to Start before any loop;

2. Use of loop to attempt to move through list (regardless
of correct terminating condition);

3. Advancing Current within loop;

4. Correctly maintaining the Previous pointer within loop;

5. Sensible condition to identify position to delete from
(suitable terminating condition for loop);

Correctly deleting item (3 marks):

6. Update Next pointer of node before node to delete to

point to node after it;
7. Test if item to delete was first item in list, and if so

update Start pointer instead of Next pointer of node

before the one to delete;

8. Release the memory used by the item being deleted
back to the operating system;

Mark point 2 should be awarded if, within the loop, Current

is being changed (even if not correctly changed).

Mark point 4 can be awarded if Previous is set to Current

before Current is changed, even if Current is not being

correctly updated.

Mark point 5 can be awarded if there is a sensible condition,
even if Current is not correctly updated.

Mark point 6 can be awarded even if the value of Previous

was not correctly maintained in the loop.

Mark points 6 and 7 can only be awarded if Current has not

already been released (or attempted to be released).

Mark point 8 should only be awarded if this is done after and
a loop to search for the item to delete, regardless of whether

or not the correct item would be found or if it is done inside
the loop but also within an if statement that correctly
identifies the item to delete.

A. Deletion takes place inside of loop if the correct item to
delete had been identified with an if statement and the loop
will be exited at some point after deletion.
A.. Use of any type of condition controlled loop, as long as
logic is correct.
A. Use of alternative variable names and instructions, so
long as the meaning is clear.
A. Use of clear indentation to indicate start/end of iteration
and selection structures.
A. Responses written in structured English, so long as

variable names are used and the descriptions of what will be
done are specific.
A. Use of Boolean variable to control loop as long as it is set
under the correct conditions and has been initialised.
R. Responses written in prose.

Page 54 of 94

R. Do not award mark points if incorrect variable names
have been used, but allow minor misspellings of variable
names.

EXAMPLE SOLUTIONS:

The examples below are complete solutions that would
achieve full marks. Refer recursive solutions to Team
Leaders.

Example 1
If Start.DataValue = DelItem Then

 Start ← Start.Next
 Release(Start)

Else

 Current ← Start
 Repeat

 Previous ← Current

 Current ← Current.Next
 Until Current.DataValue = DelItem

 Previous.Next ← Current.Next
 Release(Current)

EndIf

Example 2

Current ← Start
While Current.DataValue DelItem

 Previous ← Current

 Current ← Current.Next
EndWhile

If Current = Start Then

 Start ← Current.Next
Else

 Previous.Next ← Current.Next
EndIf

Release(Current)

Example 3
If Start.DataValue = DelItem Then

 Start ← Start.Next
 Release(Start)

Else

 Deleted ← False

 Current ← Start
 While Deleted = False

 If Current.DataValue = DelItem Then

 Previous.Next ← Current.Next
 Release(Current)

 Deleted ← True
 Else

 Previous ← Current

 Current ← Current.Next

Page 55 of 94

 EndIf

 EndWhile

EndIf

8

[11]

Q6.
(a) All marks AO2 (analyse)

1 mark: The arrow should be pointing towards the base class;
1 mark: There is no class called Monster / / it should say Enemy, not
Monster;

2

(b) Mark is for AO2 (apply)

VB.Net
Dim MyGame As New Game(False) / /

Dim MyGame As New Game(True) / /

Private Player As New Character / /

Private Cavern As New Grid(NSDistance, WEDistance) / /

Private Monster As New Enemy / /

Private Flask As New Item / /

Private Trap1 As New Trap / /

Private Trap2 As New Trap;

R If any additional code
R If spelt incorrectly
I Case

1

(c) Mark is for AO2 (apply)

VB.Net
CavernState;

R If any additional code
R If spelt incorrectly
I Case

1

(d) Mark is for AO2 (apply)
Trap / / Character / / Enemy;

A SleepyEnemy

R If any additional code
R If spelt incorrectly
I Case

1

(e) Mark is for AO2 (apply)
Choice / / NoOfCellsEast / / NoOfCellsSouth / / Count / / NSDistance

/ / WEDistance / / Count1 / / Count2;

R If any additional code
R If spelt incorrectly
I Case

1

(f) Mark is for AO2 (apply)

Page 56 of 94

Game;

R If any additional code
R If spelt incorrectly
I Case

1

(g) Mark is for AO2 (analyse)

So that a position of (0,0) is rejected / / so that the item can't be in the player's
starting position;

1

(h) Marks are for AO1 (understanding)

Makes the program code easier to understand;
Makes it easier to update the program;
Makes it easier to change the size of the cavern (in the game);
Max 2 points from the list above

2

(i) Marks are for AO2 (analyse)
1 mark: Create a new object (Trap3) of class Trap;

1 mark: Change the (3rd) If statement in the PlayGame subroutine by adding

conditions to check if the player is in the same cell as Trap3 and that Trap3

has not been triggered already;
2

[12]

Q7.
(a) (i) Marks are for AO3 (programming)

1 mark: Selection structure with one correct condition;
1 mark: Both conditions correct and correct logical operator(s);
1 mark: Subroutine returns the correct True / False value under all

conditions;

A New conditions added to existing selection structure

VB.Net
Public Function CheckValidMove(ByVal Direction As Char) As

Boolean

 Dim ValidMove As Boolean

 ValidMove = True

 If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "M") Then

 ValidMove = False

 End If

 If Direction = "W" And

Player.GetPosition.NoOfCellsEast = 0 Then

 ValidMove = False

 End If

 Return ValidMove

End Function

3

(ii) Marks are for AO3 (programming)

1 mark: Selection structure with correct condition added in correct place

Page 57 of 94

in the code;
1 mark: Correct error message displayed which will be displayed when
move is invalid, and only when the move is invalid;

I Case of output message
A Minor typos in output message
I Spacing in output message

VB.Net
 ...

 ValidMove = CheckValidMove(MoveDirection)

 If Not ValidMove Then

 Console.WriteLine("That is not a valid move, please try

again")

 End If

Loop Until ValidMove

...

2

(iii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (a)(i) and (a)(ii), including
prompts on screen capture matching those in code. Code for (a)(i) and
(a)(ii) must be sensible.

Screen capture(s) showing the error message being displayed after the
player tried to move to the west from a cell at the western end of the
cavern;

A Alternative output messages if match code for (a)(ii)
1

(b) (i) Marks are for AO3 (programming)

1 mark: SleepyEnemy class created;

1 mark: Inheritance from Enemy class;

1 mark: MovesTillSleep property declared;

1 mark: Subroutine MakeMove that overrides the one in the base class;

1 mark: MovesTillSleep decremented in the MakeMove subroutine;

1 mark: Selection structure in MakeMove that calls ChangeSleepStatus

if the value of MovesTillSleep is 0; A Changing Awake property instead

of call to ChangeSleepStatus

1 mark: Subroutine ChangeSleepStatus that overrides the one in the

base class;
1 mark: Value of MovesTillSleep set to 4 in the ChangeSleepStatus

subroutine;

I Case of identifiers
A Minor typos in identifiers

VB.Net
Class SleepyEnemy

 Inherits Enemy

 Private MovesTillSleep As Integer

 Public Overrides Sub MakeMove(ByVal PlayerPosition As

CellReference)

 MyBase.MakeMove(PlayerPosition)

Page 58 of 94

 MovesTillSleep = MovesTillSleep - 1

 If MovesTillSleep = 0 Then

 ChangeSleepStatus()

 End If

 End Sub

 Public Overrides Sub ChangeSleepStatus()

 MyBase.ChangeSleepStatus()

 MovesTillSleep = 4

 End Sub

End Class

8

(ii) Marks are for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (b)(i), including prompts on
screen capture matching those in code. Code for (b)(i) must be sensible.

1 mark: Screen capture(s) showing the player moving east and then
east again at the start of the training game. The monster then wakes up
and moves two cells nearer to the player. The player then moves south;

1 mark: The monster moves two cells nearer to the player and then
disappears from the cavern display;

2

(c) (i) Mark is for AO3 (programming)

Appropriate option added to menu;

VB.Net
Public Sub DisplayMoveOptions()

 Console.WriteLine()

 Console.WriteLine("Enter N to move NORTH")

 Console.WriteLine("Enter S to move SOUTH")

 Console.WriteLine("Enter E to move EAST")

 Console.WriteLine("Enter W to move WEST")

 Console.WriteLine("Enter A to shoot an arrow")

 Console.WriteLine("Enter M to return to the Main Menu")

 Console.WriteLine()

End Sub

1

(ii) Marks are for AO3 (programming)

1 mark: Direction of A is allowed;
1 mark: Direction of A allowed only if player has got an arrow;

Maximum 1 mark: If any other invalid moves would be allowed or any
valid moves not allowed

VB.Net
Public Function CheckValidMove(ByVal Direction As Char) As

Boolean

 Dim ValidMove As Boolean

 ValidMove = True

 If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "M" Or Direction = "A") Then

 ValidMove = False

 End If

Page 59 of 94

 If Direction = "A" And Not Player.GetHasArrow Then

 ValidMove = False

 End If

 Return ValidMove

End Function

2

(iii) Marks are for AO3 (programming)

1 mark: Property HasArrow created;

1 mark: HasArrow set to True when an object is instantiated;

1 mark: Subroutine GetHasArrow created;

1 mark: GetHasArrow returns the value of HasArrow;

1 mark: Subroutine GetArrowDirection created;

1 mark: GetArrowDirection has an appropriate output message and

then gets a value entered by the user;
1 mark: In GetArrowDirection, value keeps being obtained from user

until it is one of N, S, W or E;
1 mark: HasArrow is set to False in GetArrowDirection;

I Additional output messages
I Case of identifiers

A Minor typos in identifiers

VB.Net
Class Character

 Inherits Item

 Private HasArrow As Boolean

 Public Sub MakeMove(ByVal Direction As Char)

 Select Case Direction

 Case "N"

 NoOfCellsSouth = NoOfCellsSouth - 1

 Case "S"

 NoOfCellsSouth = NoOfCellsSouth + 1

 Case "W"

 NoOfCellsEast = NoOfCellsEast - 1

 Case "E"

 NoOfCellsEast = NoOfCellsEast + 1

 End Select

 End Sub

 Public Sub New()

 HasArrow = True

 End Sub

 Public Function GetHasArrow() As Boolean

 Return HasArrow

 End Function

 Public Function GetArrowDirection() As Char

 Dim Direction As Char

 Do

 Console.Write("What direction (E, W, S, N) would you like

to shoot in?")

 Direction = Console.ReadLine

 Loop Until Direction = "E" Or Direction = "W" Or Direction

= "S" Or Direction = "N"

 HasArrow = False

 Return Direction

 End Function

End Class

Page 60 of 94

8

(iv) Marks are for AO3 (programming)

1 mark: Check for A having been entered – added in a sensible place in

the code;
1 mark: If A was entered there is a call to GetArrowDirection;

1 mark: Selection structure that checks if the arrow direction is N;

1 mark: Detects if the monster is in any of the cells directly north of the
player's current position;
1 mark: If the monster has been hit by an arrow then the correct output
message is displayed and the value of FlaskFound is set to True;

1 mark: The code for moving the player and updating the cavern display
is inside an else structure (or equivalent) so that this code is not

executed if the player chooses to shoot an arrow;

I Case of output message
A Minor typos in output message
I Spacing in output message

VB.Net
If MoveDirection "M" Then

 If MoveDirection = "A" Then

 MoveDirection = Player.GetArrowDirection

 Select MoveDirection

 Case "N"

 If Monster.GetPosition.NoOfCellsSouth

 Console.WriteLine("You have shot the monster and it

cannot stop you finding the flask")

 FlaskFound = True

 End If

 End Select

 Else

 Cavern.PlaceItem(Player.GetPosition, " ")

 Player.MakeMove(MoveDirection)

 Cavern.PlaceItem(Player.GetPosition, "*")

 Cavern.Display(Monster.GetAwake)

 FlaskFound = Player.CheckIfSameCell(Flask.GetPosition)

 End If

 If FlaskFound Then

 ...

6

(v) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (c)(i), (c)(ii), (c)(iii) and (c)(iv),
including prompts on screen capture matching those in code. Code for
(c)(i), (c)(ii), (c)(iii) and (c)(iv) must be sensible.

Screen capture(s) showing the user shooting an arrow northwards at the
start of the training game and the message about the monster being
shot is displayed;

A Alternative output messages if match code for (c)(iv)
1

(vi) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****

Page 61 of 94

Info for examiner: Must match code from (c)(i), (c)(ii), (c)(iii) and (c)(iv),
including prompts on screen capture matching those in code. Code for
(c)(i), (c)(ii), (c)(iii) and (c)(iv) must be sensible.

Screen capture(s) showing an arrow being shot, no message about the
monster being hit is displayed and then the invalid move message is
displayed when the player tries to shoot an arrow for a second time;

1

[35]

Q8.
(a) Mark is for AO1 (understanding)

64 / 26;
1

(b) Mark is for AO2 (apply)
100;

1

(c) Mark is for AO2 (apply)
110;
A The response given to question part (b) with 10 added on.

1

(d) Mark is for AO2 (apply)
220;
A The response given to question part (c) multiplied by 2.

1

(e) All marks AO1 (understanding)
So that source code cannot be accessed by users;
So that it is more convenient for users to run it / / users do not need to have an
interpreter;
So that the program will execute more quickly;
Max 2

2

(f) All marks AO1 (understanding)
1 mark: Can't know what type of processor will be in user’s computer / /

Internet users have range of computers / devices with different processors; A
References to just different types of computer / device rather than specifically
processors
1 mark: A compiled program will only execute on a processor of specific type /
family / with same instruction set / / A program run using an interpreter can
execute on a computer with any type of processor;
R No compiler exists

2

[8]

Q9.
(a) An abstraction / leaving out non-essential details // A representation of reality;

1

(b) 1 mark for how stack works:
Stack / It is a Last-in-First-Out / LIFO / First-in-Last-Out / FILO (data structure);

Page 62 of 94

1 mark for correspondence with siding (MAX 1):
The last wagon to enter will be the first to leave;
Wagons enter and leave from same end of siding;
Wagons cannot leave siding before wagons that have entered after them;
Note: Responses must refer to both entering and leaving to gain this mark
NE References to “start”, “end”, “front”, “back” of siding, without further
clarification, as not clear which end of siding these terms refer to
NE A siding is LIFO − the student must refer to wagon in their answers, for
example the last wagon to enter will be the first to leave.

2

(c) If TopOfStackPointer = 0
Then

Stack Empty Error

Else

CurrentWagon StackArray [TopOfStackPointer]

Decrement TopOfStackPointer

EndIf

1 mark for appropriate If structure including condition (does not need both

Then and Else) − Do not award this mark if value is popped off stack outside

of If.

1 mark for reporting error in correct place
1 mark* for decrementing TopOfStackPointer

1 mark* for transferring value from correct position in array into CurrentWagon

variable

* = if the CurrentWagon assignment is performed after the decrement

instruction OR the If structure then award MAX 1 of these two marks

UNLESS the item is removed from position TopOfStackPointer+1 so the

code would work.
I unnecessary initialisation of any variables
A Stack Is Empty for TopOfStackPointer = 0

A Logic of If structure reversed i.e. If stack is not empty /

TopOfStackPointer>0 / 0 / !=0 and Then, Else swapped

A Any type of brackets or reasonable notation for the array index
A Award the mark for dealing with the error situation even if the condition in
the IF statement is not correct, as long as the purpose of the condition is

clearly correct
A Dealing with error in another sensible way eg by setting CurrentWagon to
Null

A Additional lines of code that do not affect behaviour but MAX 3 if these lines
of code would stop the algorithm working correctly

DPT If candidate has used a different name for any variable then do not award
first mark but award subsequent marks as if correct name used.

4

(d)

Page 63 of 94

1 mark for Wagon at top of diagram with OpenWagon and ClosedWagon
directly underneath it and linked to it and no other labels linked to it;
1 mark for ClosedWagon with RefrigeratedWagon and
NonRefrigeratedWagon directly underneath it and linked to it, and no other
labels linked to it (except Wagon above);
1 mark for correctly styled diagram, i.e. lines drawn as arrows and boxes (any
shape) around labels; - This mark is only available if candidate has already

achieved at least one mark for correct contents of the diagram.

A Arrows drawn as:

A Filled / empty arrowheads
A Diagram rotated by 90 degrees

3

(e) ClosedWagon = Class / Subclass / Extends Wagon 1
(Public)

Procedure CreateWagon (Override) 1

Function GetHeight

Function GetNumberOfDoors 1

Function GetSuitableForFoodStuffs

Private / Protected

Height : Real

NumberOfDoors : Integer 1

SuitableForFoodstuffs : Boolean

End

Accept answers that use different notations, so long as meaning is clear.

1 mark for correct header including name of class and parent class;
1 mark for redefining the CreateWagon procedure;

1 mark* for defining all 3 extra functions needed to read variable values, all
identified as being public (keyword public is optional if functions are declared

before variables);
1 mark# for defining all 3 extra variables, with appropriate data types and
identified as being private;

A Any sensible numeric types for Height and NumberOfDoors. Height must

accept non-integer values and NumberOfDoors integer values only.

A Answers that indicate separately that each variable is private or each
method is public
R. Do not award mark for declaring new functions if any of the functions have

the same name as the variables

Page 64 of 94

I Parameters to methods, minor changes to names that do not affect clarity
* - Do not award this mark if any extra functions / procedures have been
declared, EXCEPT for functions that would set values individually e.g.
SetHeight or an incorrectly named procedure to add e.g.

CreateClosedWagon which are acceptable for this mark

- Do not award this mark if any extra variables have been declared
4

[14]

Q10.
(a) A class / subclass has / shares / can access properties and methods of the (parent)

class it is derived from;
Building a hierarchy of classes with each child class inheriting access to its
parent class' methods and properties;
Relationship between two object (types) in which one object (type) is a kind of

the other;
MAX 1

A Just one of properties and methods, do not need both.
A Use of the word "inherits" in the response only if the relationship between
parent and subclass is stated explicitly otherwise it is NE
A The following as alternatives to properties: fields, attributes, characteristics,
data.
A The following as alternatives to methods: procedures, functions, code.
A The following as alternatives to parent: base, super.
A The following as alternative to child: descendent, subclass, derived.

1

(b)

1 mark for Selector at top of diagram with ComboBox and ListBox directly
underneath it and linked to it and no other labels linked to it;
1 mark for ListBox with SingleSelectionListBox and MultipleSelectionListBox
directly underneath it and linked to it, and no other labels linked to it (except
Selector above);
MAX 1 of the above 2 marks if any additional links drawn in

1 mark for correctly styled diagram, i.e. lines drawn as arrows and boxes (any
shape) around labels; - This mark is only available if candidate has already
achieved at least 1 mark for correct contents of the diagram.

A arrows drawn as:

A any type of arrowheads.
A diagram rotated through 90 / 180 / 270 degrees.
A arrows draw wrong way round (but cannot get mark for correctly styled

Page 65 of 94

diagram).
A class diagrams.

3

(c) ComboBox = Class (Selector)
 Public

 Procedure SelectItemFromList

 Procedure Display

 Procedure KeyPressed

 Function GetTextTyped

 Function GetSelectedItemNumber

 Procedure SetAllowNonListInputs

 Private

 TextTyped: String

 SelectedItemNumber: Integer

 AllowNonListInputs: Boolean

End

Accept answers that use different notations, so long as meaning is clear.
Accept any sensible names for subroutines, except
SelectItemFromList which must have this name as it overrides a procedure in
the parent class.

1 mark for correct header including name of class (ComboBox) and parent
class (Selector);
1 mark for overriding the SelectItemFromList procedure (it is not necessary to

state that overriding is occurring but must be public);
2 marks for defining all 5 other extra functions / procedures needed, all
identified as being public (keyword public is optional if they are declared
before variables);; OR 1 mark if at least 2 of them defined;
1 mark for defining all 3 extra variables, with appropriate data types and
identified as being private;

A Array of characters as alternative to string for TextTyped
A Any sensible numeric types for SelectedItemNumber (must be whole
numbers)
A Answers that indicate separately that each variable is private or each
method is public
A Two procedures instead of one for setting the value of AllowNonListInputs

by result, eg, Procedure AllowTextInputs and Procedure OnlyAllowSelection
A Procedure instead of Function and vice-versa
I parameters to methods, minor changes to names that do not affect clarity
R do not award marks for functions / procedures with the same name as
variables
DPT if any additional functions / procedures / variables declared do not award
the first of the three marks for correctly defining new functions and variables,
but award subsequent marks. However, do not penalise answers that include
any of the following procedures / functions: GetAllowNonListInputs,
SetTextTyped, SetSelectedItemNumber

5

[9]

Q11.
(a)

Page 66 of 94

1 mark for Device at top of diagram with Printer and Computer directly

underneath it and linked to it and no other labels linked to it;
1 mark for Computer with Laptop, Desktop and Server directly underneath it
and linked to it, and no other labels linked to it (except Device above);
1 mark for correctly styled diagram, i.e. lines drawn as arrows and boxes (any
shape) around labels; – This mark is only available if candidate has

already achieved at least one mark for correct contents of the diagram.

A arrows drawn as:

A filled / empty arrowheads
A diagram rotated by 90 degrees

3

(b) Computer = Class/Subclass/Extends(Device) 1
 (Public)

 Procedure AddDevice (Override)

 Function GetProcessorName

 Function GetRAMCapacity

 Function GetHDDCapacity

 Private / Protected

 ProcessorName : String

 RAMCapacity : Integer

 HDDCapacity : Integer

 End

1

1

1

A answers that use different notations, so long as meaning is
clear.

1 mark for correct header including name of class and parent
class;
1 mark for redefining the AddDevice procedure;

1 mark* for defining all 3 extra functions needed to read variable

values, all identified as being public (keyword public is optional if

Page 67 of 94

functions are declared before variables);
1 mark# for defining all 3 extra variables, with appropriate data
types and identified as being private;

A any sensible numeric types for RAMCapacity and HDDCapacity,
do not have to be whole numbers
A answers that indicate separately that each variable is private or
each method is public
R do not award mark for declaring new functions if any of the

functions have the same name as the variables
I parameters to methods, minor changes to names that do not
affect clarity

* – Do not award this mark if any extra functions / procedures have been
declared, except for functions that would set values e.g. SetProcessorName or
an incorrectly named procedure to add e.g. AddComputer
– Do not award this mark if any extra variables have been declared

4

(c)

Laptop = Class/Subclass (Computer)

 (Public)

 Procedure AddDevice (Override)

 Function GetBluetoothInstalled

 Private / Protected

 BluetoothInstalled : Boolean

 End

1

1

1

1 mark for correct header incl
1 mark* for redefining the AddDevice procedure;
1 mark* for:

• defining the GetBluetoothInstalled function needed to read this value,
identified as being public (keyword public is optional if function is
declared before variable)

• defining the BluetoothInstalled variable with an appropriate data type as
being private.

A Boolean or whole number types for BluetoothInstalled but reject string,

character or real number types
A Different sensible name for GetBluetoothInstalled function e.g.
CheckBluetoothInstalled, IsBluetoothInstalled
A answers that indicate separately that each variable is private or each
method is public
I parameters to methods, minor changes to names that do not affect clarity
I addition of any extra functions or variables

* Do not award this mark if any extra functions / procedures / variables
declared, except for a SetBluetoothInstalled procedure.

2

(d) What (2 marks):

Wireless/RF (protocol/standard/technology);
For exchanging data over short distances // for creating
Personal Area Network;
NE “uses waves” for “wireless”

Page 68 of 94

Example (1 mark):

Any sensible example, related to the use of Bluetooth with the laptop e.g.
synchronising contacts between phone/ laptop, sending photographs from
phone to laptop, Bluetooth mouse, Bluetooth headset / headphones (used with
laptop) etc;
NE connecting to wireless network
NE mouse

If the example makes clear that the technology is wireless, but this is not
explicitly stated in the “What” part of the response then the “Wireless” mark

should be awarded in the “What” part.
3

[12]

Q12.
Meaningful/appropriate/suitable identifiers //
A example;
Indentation // effective use of white space;
Subroutines / Procedures and functions/methods/modules; with interfaces // using

parameters to pass values;
Subroutines / Procedures and functions/methods/modules should execute a single
task;
Appropriate use of structured statements // use of (selection and
repetition)/repetition;
Avoid use of goto statements;
Consistent use of case/style for identifier names;
Use of named constants;
Use of user-defined data types;
Use of libraries;
House-style naming conventions // following conventions;
A by explained example
A Use of local variables

R Commenting
R "easier to understand"

Max 3

[3]

Q13.
(a) A class/subclass has/shares/inherits properties and methods with the (parent)

class (it is derived from);
A another class
Building a hierarchy of classes with each child class inheriting access to its
parent class's methods and properties;

Relationship between two object types/objects in which one object (type) is a
kind of the other;
A Just one of properties and methods, do not need both.
A The following as alternatives to properties: fields, attributes, characteristics,
data with data as BOD
A The following as alternatives to methods: procedures, functions, code.
A The following as alternatives to parent: base, super.
A The following as alternative to child: descendent, subclass, derived.

Max 1

(b)

Page 69 of 94

1 mark for class names in boxes, with MediaFile drawn above the other two;

1 mark for correct arrows;

A arrows drawn as:

A filled/empty arrowheads
A rotated through 90 degrees

2

(c) Method can be defined with same name;
A method can be redefined, an inherited method (but not just inheritance) as
implying same name
But have different implementation/code // perform different function;
The redefined method will be used instead of the parent’s method;
A This is an example of polymorphism
A Procedure, function, subroutine for method.

2

(d) MusicFile = Class/Subclass (MediaFile) 1
 Public

 Procedure PlayFile (Override) Function

GetArtist

 Function GetSampleRate

 Function GetBitDepth

 Private

 Artist : String

 SampleRate : Real 1

 BitDepth : Integer

 End

1

1

1

1 mark for correct header including name of class and parent class;
1 mark for redefining the PlayFile procedure;
1 mark for defining all 3 extra functions needed to read variable values;

1 mark for defining all 3 extra properties, with appropriate data types in private
section;

A any numeric types for SampleRate and BitDepth
A answers that indicate separately that each variable is private
DPT if any extra functions/procedures/variables included but do not penalise
answers that have extra procedures to set variable values.
DPT if any of the functions/procedures are private
I parameters to methods, minor changes to names that do not affect
clarity, case

OR

(Public) class/subclass MusicFile extends/inherits

 MediaFile {

 public void PlayFile (Override)

 public string GetArtist()

1

1

Page 70 of 94

 public float GetSampleRate()

 public int GetBitDepth()

 private string Artist

 private float SampleRate

 private int BitDepth

}

1

1

1 mark for correct header including name of class and parent class;
1 mark for redefining the PlayFile procedure;
1 mark for defining all 3 extra functions needed to read variable values;
1 mark for defining all 3 extra properties, with appropriate data types as
private;

A any numeric types for SampleRate and BitDepth
DPT if any extra functions/procedures/variables included but do not penalise
answers that have extra procedures to set variable values.

DPT if any of the functions/procedures are private
I parameters to methods, minor changes to names that do not affect clarity,
case
A mixes of two methods if meaning is clear

4

[9]

Q14.
(a)

1 mark for correct boxes
1 mark for correct lines
1 mark for correct line endings

3

(b) Loan = class
 Public

 Procedure CreateLoan

 Procedure DeleteLoan

 Procedure GetLoanDetails;

 Private

 Person: Borrower

 BookLoaned: BookCopy;

 DateOfLoan: Time/Date A string

 ReturnDate: Time/Date; A string
End;

1 mark for Loan = Class + Public + Private + End

1 mark for CreateLoan + DeleteLoan + GetLoanDetails

1 mark for Person + BookLoaned

1 mark for DateOfLoan + ReturnDate

A any reasonable names for operations and data items.
4

(c) Add a new data item ShortLoan; of type Boolean;

A loanlength; integer;
A loantype; string;

Modify the code for the operations;

Page 71 of 94

Max 2

[9]

Q15.
(a) (i) (User defined) functions // program // object // class // data type //

constant // record// label //control/component/ by example e.g. textbox ;
Max 2

(ii) Maximum number of characters ;
No <Space> or other punctuation characters ;
No use of reserved words ;
Must not start with a digit character ;
Case sensitive / permitted case only ;
Cannot define the same identifier name more than once ;
R any reference to filenames

Max 1

(b) Their use matches closely the (modular/structured) design ;
Code can be used ‘repeatedly’ within the same program ;
Code may originate from a program library/module ;
To make program debugging/testing/maintenance easier ;

Max 1

(c) (i) 10 ;
1

(ii) -1 ;
1

[6]

Q16.
(a) An object that contains other objects;

A a class containing other classes;
1

(b) (i)

1 mark for class entries
1 mark for connections

A circles or diamonds, filled or not

Page 72 of 94

2

(ii)

A any sensible syntax
R implied inheritance

Max 8

[11]

Q17.
(a) Any three from

Procedures which have an interface / using parameters to pass values ;
Use of modules / use of libraries ;
Avoid global variables / use of local variables;
Meaningful identifier/variable/constant/ procedure / function / program /
parameter names;
Consistent use of case for identifiers ;
Use of selection / loops / iteration ;
Avoid the use of GoTo structures ;
Effective use of white space / indentation;

R spacing/ space out the
Code
Use of named constants ;
Use of user-defined data types ;
Use of pseudo-code / top down approach / Jackson methodology / process
Decomposition ;
R the use of comments/documentation
R declaration of variables

3

(b) (i)

Surname String / Text ; A. String[n]

NoOfYearsService Integer /Byte / Int / Short;

PayRate Single / Real / Float / Currency;

Page 73 of 94

BasicRate Single/Real/Float / Currency;

AdditionalRate Single / Real / Float / Currency;

Sensible name + correct data type for single mark

BUT Penalise once occurrence of names containing space/other illegal
character(s) which would have scored

Max 3

(ii) 3.1 If NoOfYearsService > 5 ;
1

 A >= in the statement R =>
 A mathematical notation
 NoOfYearsService := 5 ;

1

 A = or := or ←

3.2 PayRate := 7.88 + NoOfYearsService * 0.65
1

 A £ symbol
 R use of undefined/unassigned variable(s) in the calculation

A in words ‘greater than’, ‘equals’
3

[9]

Q18.
(a) Mouse click// mouse movement// keyboard operation// any interrupt;

1

(b) Event-driven programs service an event and wait for another; non
event-driven programs run to completion/ are sequential;

2

(c) Contains its own data/fields/variables/properties;
Contains its own
Operations/methods/functions/procedures/behaviours/code;
Responds to messages;
A Based on a Class definition

Max 2

(d) Frame/form/window/button/check box/radio button/menu/text box;
A any sensible widget
R Plurals

1

[6]

Q19.
(a)

Page 74 of 94

1 mark for all three classes in appropriate single enclosures

1 mark for correct independent arrows in correct directions
2

(b) (Insert) a SetColour Procedure;
A Function into the Public section;
R make Colour Public

2

(c) Van = Class/ subclass (Vehicle)ie. Clearly identify Van as a (sub) class of
vehicle
1 mark

(Public)

Procedure SetVehicleDetails (Override) condone if not included
1 mark

Function GetCapacity
1 mark

Function GetTailLift
1 mark

(penalise extra functions/procedures once)
Private

Capacity : Integer/real/fixed/float
1 mark

TailLift: Boolean
1 mark

penalise once if not private and once if extra variables listed)

End

A Procedure SetCapacity and Procedure SetTailLift/
AProcedure AddNewVan instead of Procedure SetVehicleDetails

OR

Public class/subclass Van extends/inherits Vehicle
1 mark

{

public void SetVehicleDetails

Page 75 of 94

1 mark

public int GetCapacity
1 mark

public boolean/int GetTailLift
1 mark

private int Capacity
1 mark

private boolean/int TailLift
1 mark

A public void SetCapacity and public void SetTailLift//public void AddNewVan
instead of public void SetVehicleDetails
R any diagrams
I any parameters to methods

6

[10]

Q20.
(a) A class has properties/fields/attributes/characteristics and

methods/procedures/functions of the parent class it is derived from // a
subclass/derived class inherits all the
properties/fields/attributes/characteristics and methods/procedures/functions
from a super-class/base-class/parent class;

1

(b) StockItem (=) Class // Class (=) StockItem;

1 mark for keywords Class and StockItem

(A Object instead of Class)

Book = Class (StockItem) // Class Book extends/derives from StockItem
// Book Subclass: StockItem;

A without keyword Class

Page 76 of 94

If candidate declared ‘getters’ and ‘setters’ for the base class fields then don’t
have to have DisplayDetails as a base class method

No marks for a diagrammatic answer.

I method parameters

Java version:
Public Class StockItem

{
Private String title;
Private boolean onLoan;
Private String dateAquired;
Public void displayDetails ();
Public void setLoan ();

}
Public Class Book extends StockItem
{
Private string author;
Private string isbn;
Public void displayDetails ();

}
Public Class CD extends StockItem
{
Private string artist;
Private integer playingTime;
Public void displayDetails();
}

Max 7

[8]

Page 77 of 94

Q21.
(a) Produces re-useable code because of inheritance/encapsulation;

Produces re-useable objects;
Data is protected // only accessible in well-defined ways (because of
encapsulation);
More efficient to write programs which use pre-defined / inherited objects /
classes;
Storage structure of data and method code of a class may be altered without
affecting programs that make use of the class;
Code produced contains fewer errors / more reliable;
Solutions are easier to understand (when expressed in terms of objects);
Easier to enforce design consistency; easier to debug;
Less maintenance effort required by developer since objects can be re-used;
New functions can be added to objects easily (because of inheritance);

R Easier to program
I references to GUIs

2

(b) 1 mark for correct base class and derived classes incl. containers;
1 mark for 2 correctly directed arrows;

R E-R diagrams
I methods listed in containers

2

(c) Member = Class
(Public)
(procedure) AddNewMember(s); }
(procedure) AmendMember(s) } ; no mark if methods are private

(Procedure) ShowMember(s); }
A proc instead of procedure
R function instead of procedure

Private (1 mark for all data fields marked as private)

MembershipNo : Integer }A string/text as data type R number
FirstName: string/text };
Surname: String/text }
A ID
A FName

A SName
A Tel

TelephoneNumber: string/text :
R number/integer as data type
End (Class)

Public may come after Private. Each line may be preceded by Public or
Private & in no particular order

R diagrammatic answer
I case
I white space

4

[8]

Q22.
(a)

Page 78 of 94

1 mark if correct hierarchy (including rectangles or round/oval shapes) in an
inheritance diagram;

A no shapes this year only
1 mark for arrow in correct direction

2

(b) THourlyPaidEmployee = Class (Employee)
(Public)
 procedure CalculatePay (override)

 procedure GetNumberOfHoursWorkedInMonth
Private
 hourlyrate/hourlypay/HourlyPayRate: Currency
 NumberOfHoursWorkedInMonth : Integar/Real/Float
End

OR

public class/subclas THourlyPaidEmployee extends/inherits TEmployee;{(1)
public void calculatePay;(1)
public void getNumberOfHoursWorkedInMonth;(1)
private; float hourlyPayRate;
private int numberOfHoursWorkedInMonth;(1)}

1 mark for private, 1 mark for var name

Accept “Object” instead of “Class”
Accept Public implied
Lose one mark if properties from parent class included
R any diagrams

6

[8]

Q23.
TForm1 = Class(TForm)(1)

Button1:Tbutton;(1)

Button2:Tbutton; (1)

End

NB 1 mark for BOTH buttons

Page 79 of 94

//

Class Tform1 extends Tform
{Tbutton Button1;
Tbutton Button 2;
}

Must look like code.
1 mark for connecting TForm1 to Tform A inherits, :
1 mark for defining both buttons as type Tbutton A As
1 mark for {} or End

[3]

Q24.
(a) Produces re-usable code because of inheritance / encapsulation;

Data is only accessible in well defined ways (because encapsulated);
More efficient to write programs which uses pre-defined / inherited objects /
classes;
Storage structure of data and the code in an object may be altered without
affecting programs that make use of the object;
Code produced contains fewer errors / more reliable;
Solutions are easier to understand when expressed in terms of objects;

Easier to enforce design consistency – Windows GUI functionality;
Cheaper production costs / Less maintenance effort required by developer
since reliable ‘objects’ can be re-used / bought in;
New functions can be added to objects easily (because encapsulated);

Any 2 advantages × 1 each – must state an advantage, not make a statement.

R Object is independent.
2

(b)

1 mark for correct base class and derived classes ;
1 for 2 correctly directed arrows. ;

2

(c) Member = Class
 (Procedure) AddNewMembers; }
 (Procedure) AmendMembers; } ;
 (Procedure)ShowMembers; }
 Private ;
 MembershipNo : Integer
 Name : String;
 Address : String; ;;
 End;

Page 80 of 94

Exact syntax not required, but must be in style of . 3 procedures (1)
Private (1)
All 3 field (property) names (1)
3 reasonable data types (1)

4

[8]

Q25.
(a) (i) A class

A grouping of data structures and behaviours / methods / procedures /
functions; A set of objects / object type which share a common data
structure and common behaviour / methods / procedures / functions;

Need both structure and behaviour

A variables, attributes

1

(ii) Inheritance

Relationship among classes wherein one class shares the data structure
and behaviour/methods / procedures / functions / actions of another
class

OR when a class has the same characteristics as its parent class
A attributes / features / properties

1

(b)

1 mark for correct base class
1 mark for two correct derived classes

1 mark for 2 correctly directed arrows
3

(c) Advantages
Produces re-usable components (you do not have to know how they are
written);
A code
Data is protected – only accessible in well defined ways;
Easier to write programs which use pre-defined objects / classes;
Storage structures of data of an object may be altered without affecting
programs that make use of the object;

Code of an object may be altered without affecting programs that make use of
the object;
Solutions that use objects tend to contain fewer errors / more reliable;
Solutions are easier to understand when expressed in terms of objects;
Easier to enforce design consistency;
Cheaper production costs when software can be re=used;
Less maintenance effort required by developer since reliable ‘objects’ can be

Page 81 of 94

bought in;
New functions / features can be added to objects / classes easily (inheritance);

1 mark for each of 3 points
3

[8]

Q26.

(a) Diagram

2

(b) 1 for position, 1 for correct arrows.

Circles not necessary
OK if completely upside down.
e.g. number of legs, colour, web type;

Property Method
Spin web/eat;

R instance of property, e.g. 8 legs

Does NOT have to be biologically correct but sensible!
2

[4]

Q27.
(a)

2

(b) (i) A class is a set of objects that share a common structure and a
common behaviour;
A class is a set/collection of objects with same
attributes/properties/characteristics/fields & methods (accept procedures

Page 82 of 94

or functions for methods)
/behaviours/operations/code;

NOT set of objects with same data
1

(ii) Inheritance is a relationship/link among classes wherein one class
shares the structure and behaviour of another class;
It is where one class is derived from another class.

It is where one class uses attributes/properties/etc/ from another class;
It is where one class uses methods/procedures/etc from another class;
It is where one class inherits from a parent class(hierarchy must be clear

1

(c)

1 mark for clock in root position. 1 mark for both Analogue and Digital clocks in
leaf positions.
1 mark for correct arrow-headed lines.
Must be correctly vertically aligned for these two marks

3

[7]

Q28.
(a) (i) A class is a set of objects which share a common structure and a

common behaviour / Object type that defines a data structure /fields
/properties and the methods /procedures /functions that act on these
fields

1

(ii) Inheritance is a relationship among classes wherein one class shares
the structure/data structure /fields /properties and
behaviour/methods/procedures/functions/actions of another class
Or

Inheritance is when a class has the same characteristics as its parent
class

1

(b)

Page 83 of 94

3

[5]

Page 84 of 94

Examiner reports

Q1.
(a) This was the first of the questions that required modifying the Skeleton Program. It

was a simple question that over 80% of students were able to answer correctly.
When mistakes were made this was normally because tiles other than just J and X
were also changed to be worth 4 points.

(b) Like question (a), this question was normally well-answered with almost all student
getting some marks and about 75% obtaining full marks. Where students didn’t get
full marks this was normally due to the conditions on the loop being incorrect which
prevented the values of 1 and / or 20 from being valid.

(c) For this question students had to replace the linear search algorithm used to check if
a word is in the list of allowed words with a binary search algorithm. An example of
how a binary search algorithm works was included on the question paper but if a
similar question is asked in the future that may not be done. A mixture of iterative
and recursive solutions were seen. The most common error made by students who

didn’t get full marks but made a good attempt at answering the question was to miss
out the condition that terminates the loop if it is now known that the word is not in
the list.

(d) Students found question (d) easier than questions (c) and (e). Better answers made
good use of iteration and arrays / lists, less efficient answers which used 26
variables to store the different letter counts could also get full marks. Some students
added code in their new subroutine to read the contents of the text file rather than
pass the list as a parameter to the subroutine; this was not necessary but was not
penalised.

(e) Question (e) asked students to create a recursive subroutine. If students answered
the question without using recursion they could still get 9 out of the 12 marks
available.

It was disappointing that many students did not include any evidence of their attempt
to answer the question. Good exam technique would be to include some program
code that answers some part or parts of the question. For instance, in question (e)
students could get marks for creating a subroutine with the specified name and
calling that subroutine – even if the subroutine didn’t do anything. There are many
examples of subroutines and subroutine calls in the Skeleton Program that students
could have used to help them obtain some marks on this question.

A number of very well-written subroutines were seen that made appropriate use of
recursion and string handling. Some good recursive answers did not get full marks
because they did not include a check that the word / prefix passed as a parameter
was valid before the tile points included in the word were used to modify the score,
this meant that all prefixes would be included in the score and not just the valid

prefixes. Another frequent mistake came when students wrote their own code to
calculate the score for a prefix rather than use the existing subroutine included in the
Skeleton Program that calculated the score for a word – if done correctly full marks
could be obtained by doing this but a number of students made mistakes when
writing their own score-calculating code.

Q2.
Almost all students obtained some marks on question 8 though very few got full marks. In

Page 85 of 94

question 8.1 the most common error was to state that there was a protected method
present in Figure 11. Most students got the mark for 8.2 with Warren being the most

frequently seen incorrect answer.

For question 8.3 the concept of a private attribute was better understood than a protected
attribute. Many students though that a protected attribute was an attribute that could not
be changed. Students who did well on the exam paper overall normally had no issues
answering 8.4 but students with less understanding of the code in the Skeleton Program

often gave answers that explained why knowing the number of rabbits in a warren was
useful instead of answering the question set.

Question 8.5 was not well answered with many students writing about the functionality of
the program as a whole rather than the CompressRabbitList method. Answers often

described rabbits being killed by other factors even though this was not done by this
method.

Most students were able to get some marks for writing the class definition in question 8.6.
The most common errors were to have HDRabbit inheriting from Animal instead of

Rabbit, including the gender attribute in the HDRabbit definition and not overriding the

Inspect method.

Q3.
(a) This was, for most students, the easiest of the programming questions on the paper

with about half obtaining full marks. Less confident programmers often had the
wrong logic in their conditions (either getting AND/OR mixed-up or </>). Some

students did not write code to get the validation condition to continually repeat until a
valid value was entered. A significant minority of students did not add the validation
routine to the InputCoordinate routine and instead tried to add it the constructor

for the Simulation class.

Some students used recursion instead of iteration and full marks could be obtained
from using this method if it was done correctly however many of these students did
not return the value from the recursive call to the calling routine in a way that it could
then be used by the rest of the program.

(b) The majority of students were able to get at least half the marks on this question
and were clearly familiar with how to create a method that overrides a method in a
base class in the programming language they were using. A significant minority of
students did not attempt this question and had clearly not prepared for answering

questions using OOP within the Skeleton Program.

A number of students did not identify the correct variable to use and wrote code that
tried to change the default probability instead of the protected attribute inherited
from the Animal class storing the probability for that animal.

Some students did not call the overridden method in the base class even though the
question specified this should be done. The equivalent functionality could be
obtained by copying the code in the CalculateNewAge method in the Animal class

into the new CalculateNewAge method in the Rabbit class but this is poor

programming practice as the original code would now be in two places in the
program rather than reusing the existing code.

(c) One fifth of students did not provide any evidence of their attempt to answer this
question. All students should be encouraged to include any program code they have
written as it may be worth some marks even if it doesn’t work correctly.

Page 86 of 94

The most common mistake in reasonable attempts at the tasks in this question was
to have the incorrect logic (for example, getting muddled between AND/OR) when

writing the code to prevent a warren/fox being placed in a river.

(d) Many students came up with creative answers to this question that showed a
high-level of programming and problem-solving skill. However, a large number of
students did not include any evidence of their attempt at writing the program code.
Some students showed good exam technique by including a very limited answer

which they knew was nowhere near correct but would allow them to get some marks
(most frequently for creating a new subroutine with the name specified in the
question).

The most challenging part of the question was to make sure that the solution worked
irrespective of the relative position of the fox and the warren with a number of
solutions working if the fox was to the left of and above the warren but not if it was to
the right of and below the warren.

Q5.
This question was about abstraction, object-oriented programming and linked lists.

For part (a) candidates had to explain how the LinkedList class was a form of abstraction.
Many gave a definition of abstraction but failed to apply this to the LinkedList class and so
did not achieve a mark. Good responses made clear that the LinkedList class was an

example of abstraction because it allowed a programmer to manipulate items in a linked
list without having to be concerned about how the linked list was implemented.

For part (b) candidates had to explain why the functions and procedures in the class were
public whilst the data items were not. Many candidates were able to obtain a mark for the
former, but few did so for the latter. Good responses made clear that the functions and
procedures were public as they would need to be called from outside of the class to
implement the game, and the data items were private so that their values could only be
modified in a controlled way from outside of the class, by calling the procedures of the
class. It was not sufficient to state that the data items were private because they were only
used by the class or because they should not be changed.

Candidates had to write an algorithm for deleting an item from a linked list for part (c). A
question was asked in a previous year about inserting an item into a linked list and the

standard of responses to this question was notably better than was the case in the
previous year. The majority of candidates had at least a good attempt at writing the part of
the algorithm that would find the correct item to delete and many were then able to
change the pointers to delete the item. Common mistakes and omissions were to fail to
keep track of the pointer to the previous item when searching, to release the item to delete
back to the heap before changing the pointer around it or to increase the current pointer
by the fixed value of 1 on each iteration of a search loop. Few candidates scored all eight
marks. If a candidate achieved seven but not eight marks this was usually because the
algorithm did not take account of the fact that the item to delete might be the first item in
the list, in which case the start pointer would need to be changed.

Q9.
For question part (a) students had to explain what a model was. Good responses

explained that, in the context of simulation, a model was an abstracted representation of
reality. Common mistakes were to explain what a physical model was and to confuse a
model with a prototype.

For part (b) students had to explain why a queue was an appropriate data structure to

Page 87 of 94

represent a siding. Most students correctly explained that a stack was a first in last out
structure, which was worth one mark. Fewer went on to successfully explain how this
corresponded to the organisation of a siding. Students occasionally lost marks by using
terms such as “in front of” in relation to the wagons, when it was not clear which end of a
siding this related to.

For part (c) students had to write an algorithm for popping an item off a stack. A good
range of responses was seen, with approximately half of students achieving at least two
marks and a quarter achieving all four marks. The error that had to be dealt with was a
potentially empty stack. Appropriate methods of dealing with this included displaying an

error message or returning a rogue value. Some students made the mistake of using the
pop operation within the algorithm that was supposed to define it.

This question part (d), drawing an inheritance diagram, was very well answered, with
almost all students getting two marks and over half achieving all three. The most common
mistake was to represent the relationships between the classes correctly but to fail to style
the diagram appropriately.

For part (e) students had to define a class. This was well answered, with over half of
students achieving at least three of the four marks. It is clear that students’ understanding
of this topic has improved significantly over the last few years. The two most frequently
made errors were to fail to express the relationship between the ClosedWagon and
Wagon classes and to forget to override the CreateWagon procedure.

Q10.

(a) This part asked students to explain what inheritance was. Just under two thirds of
students were able to do this. Those students who failed to achieve the mark usually
did not make clear that the relationship was between a parent class and a sub class
or, if they did this correctly, failed to explain the nature of the relationship, ie that the
sub class could share some of the methods or properties of the parent.

(b) Students had to draw an inheritance diagram in this part. Almost 90% of candidates
achieved at least two of the three available marks, but only half of the candidates
achieved full marks. The failure to achieve the third mark was usually because a
candidate failed to style the diagram correctly, either not drawing arrowheads,
drawing them at the wrong end of the lines, or not enclosing the names of the
classes in some type of box.

(c) A very good range of responses was made to this part. The most common mistakes

that students made were to fail to identify that the new class was a sub class of the
Selector class, to fail to redefine the SelectItemFromList procedure so that it was
overridden, to add in extra unnecessary functions and procedures, and to redefine
the data items from the parent class.

Q11.
Part (a): Students were required to draw an inheritance diagram. Most students scored
two of the available three marks which were for identifying correctly the class hierarchy.
The third mark was for drawing a correctly styled diagram and many students failed to do
this. Students who did achieve the third mark correctly enclosed the class names and also
drew arrows that pointed upwards to a class’ parent class.

Part (b): In this question part students had to write a class definition for the Computer

class. Most students had a reasonable understanding of how to do this, with almost all
achieving some marks, but less than a fifth scored full marks. To achieve all four marks
students needed: to make clear that the class inherited from the Device class, to redefine

Page 88 of 94

the AddDevice procedure, to declare private variables to store the additional properties,
and to declare public functions to provide access to the values in these variables. The
most commonly made mistakes were to fail to make the inheritance clear and to forget to
redefine the AddDevice procedure. Some students lost marks by unnecessarily
redeclaring the functions or variable from the parent class or by giving the functions the
same names as the variables.

Part (c): The purpose of this question was to test if students understood that the Laptop
class inherited from the Computer class, rather than the Device class. The vast majority of
students who dealt with inheritance in this question part correctly identified this.

Part (d): Most students were able to identify that Bluetooth is a wireless protocol. Many,
but not all of these, then went on to explain that it was designed for use over short
distances. Many good examples, such as transferring photos from a mobile phone to a
laptop or using a Bluetooth mouse were given. Some students lost marks by giving an
example that was not in context.

Q12.
This was a straight-forward question. Most candidates got good marks on it although a
surprising number of candidates gave incorrect answers.

Q13.
Part (a): Most candidates were able to explain what inheritance meant. Marks were
sometimes lost because candidates wrote about a child class sharing ‘things’ with its

parent, rather than methods or properties.

Part (b): The inheritance diagram was poorly drawn, surprisingly. Many candidates failed
to put boxes around the class names or to put arrowheads on the lines and consequently
lost marks.
Candidates need to remember to do both of these things.

Part (c): Answers to this question part were quite mixed. Overriding is when a method
from a parent class is redefined with the same name by a child class to perform a different
function.

Part (d): Most candidates got some marks for this question part but full mark responses
were seen very infrequently. Common mistakes were to incorrectly redeclare the fields
and methods from the parent class and to forget to override the PlayFile function.

Q14.

The class diagram was a challenge to most candidates. Most candidates assumed that it
was an inheritance relationship. As a result they often lost marks later in the question as
well. Class definitions were given in this question and this should have allowed candidates
to score very highly in part (b). This was not the case as many candidates did not read the
question carefully enough. Very few candidates realised that Person and BookLoaned
needed to be of types Borrower and BookCopy respectively. While many candidates
realised that the solution to part (c) was to add an additional variable, many candidates
seemed to think that an extra procedure was required.

Q15.
(a) (i) Well answered with the most popular answers being constants and functions.

(ii) Many candidates then misunderstood what was wanted here and proceeded

Page 89 of 94

to give answers which generally described how programs were constructed
with loops, selection statements, etc.

Due to the range of differences with different languages, a wide range of answers
were considered acceptable; the most popular being ‘it must not contain any
<Space> characters’ and ‘the use of reserved words is not permitted’. Some
candidates confused what is allowed in a programming language with what is
permitted by the operating system, proceeding to explain what was not allowed for
filenames. Worse, was the suggested answer that ’names must be more than 6
characters long’ which suggested that the rules about the choice of passwords were

being described.

(b) No great detail was expected for the mark and most candidates were able to give
an answer which mapped to those on the mark scheme. Use of language was an
issue for some candidates who described ‘chunks of program code’! There were
also answers which clearly were answering ‘last year’s question’ suggesting
procedures may or may not return values, contrasting with functions which always
return a value.

(c) This was similar to questions which have previously been set and was well
answered.

Q16.
Very few candidates scored well on this question. Aggregation was a mystery to most

candidates. Many answers described inheritance and then went on to give class
definitions using inheritance. Hardly any candidates were able to draw a class diagram
using the correct symbols. It was disappointing to see the number of answers that
suggested that the candidates had not had experience of object oriented programming.
The concepts of private and public were often misused and incorrect data types were
often suggested.

Q17.
(a) Despite an extensive (and perhaps ’generous’) mark scheme list it was rare for

candidates to score more than 1 mark, and this was usually for a “selection/iteration”
answer.

(b) (i) Candidates often failed to score three easy marks. The inclusion of <Space>
or other illegal characters used in the identifier names was penalised once

only. The other common error was the suggestion of incorrect data types, the
most common being ‘Number’ and ‘Decimal’. However, this was answered
significantly better than on previous papers.

(ii) Despite a question of this type not having been set previously, it was clear
from answers seen that candidates knew what was required. The most
common error was simply not to make the connection between part (b)(i) and
(b)(ii); for example, by introducing new identifiers to answer (ii) which gained
no credit.

Q18.
It is hard to understand why so many candidates were unable to gain good marks for this
question since all will be very familiar with GUIs. Many candidates used poor language
and were unable to express themselves but there is a greater worry that candidates do

not seem to understand how the underlying object-oriented system operates. It was
common misconception that an event is something the user does. There were also many

Page 90 of 94

candidates who did not seem to understand the event handling mechanism. Once again
many marks were lost due to poor explanations in part (b). Part (c) showed that many
candidates do not understand object-oriented programming and it appeared that they had
not been exposed to this technique.

Q19.
The inheritance diagram for part (a) returned two very easy marks for a large majority of
candidates. The question then got harder but, as a whole, discriminated very well, indeed.
In part (b) the examiners expected that the candidates would state that a public procedure

should be inserted to set the colour. Where a candidate wrote of a function instead of a
procedure the answer was condoned.

It was hoped that candidates would apply the concept of inheritance in part (c) and
introduce functions GetCapacity and GetTailLift with an override of the procedure
SetVehicleDetails. The candidates were also expected to choose suitable data types for
the two new data fields. Since only six marks were available for the class definition as a
whole it was marked quite leniently with regard to the use of Get and Set in the function
names. In future examinations, however, similar questions may well be assessed more
strictly. Even with the generous mark scheme only a few candidates obtained all six marks
in part (c).

Q20.
(a) Not many candidates could explain that inheritance is when a class gains the

methods and properties of another class, while having some of its own methods
and/or properties. Many candidates mixed up the terms object and class
indiscriminately.

(b) Many candidates seemed to lack the knowledge and skill to structure a class
definition, even though this topic has been examined many times before.

An example of an answer worthy of full marks is:
Type StockItem = Class

 Public

 Procedure DisplayDetails : virtual;

 Procedure SetLoan;

 Private

 Title: String;

 OnLoan: Boolean;

 DateAcquired: Date;

 End;

Type Book = Class (StockItem)

 Public

 Procedure DisplayDetails: override;

 Private

 Author: String;

 ISBN: String;

 End;

Type CD = Class (StockItem)

 Public

 Procedure DisplayDetails: override;

 Private

 Artist: String;

 PlayingTime: Integer;

 End;

Syntax of other languages such as Java was just as acceptable.

Page 91 of 94

Q21.
In part (a) few candidates could give advantages of the object-oriented approach to

programming. Many candidates are under the false impression that object-oriented
programming means using environments such as Delphi or Visual Basic where beginners
can get a working program with a nice user interface without much programming of their
own. Few candidates also noticed that OOP should be compared to the structured
approach. So re-useable code is not sufficient, since that is possible in the structured
approach also. OOP produces re-useable objects, however, is a response worthy of a
mark. Other acceptable advantages were: data is accessible in well-defined ways
because of encapsulation; it is time-saving to write programs which use pre-defined
objects; solutions are easier to understand when expressed in terms of objects.

For part (b), the drawing of inheritance diagrams have been required for several years
now and candidates are expected to draw these in standard format:

It is important to convey the hierarchy (the super class above the sub-class) and draw the
arrow from the sub-class to the super class. Classes should be shown in circles,
rectangles or oval shapes.

Part (c) expected the class definition of Member, not of any subclasses. The required
methods and fields were clearly stated in the question. Candidates needed to ensure that
methods were public and fields private and the right data type. Some candidates still
seem to be under the false impression that a telephone number can be stored in an

integer data type. Candidates should also be aware that the choice of identifiers is
important since this is the programmer’s interface when using an object, so meaningless
abbreviations such as Tno instead of TelephoneNumber were not acceptable. A correct
answer is:

Member = Class

Public

 Procedure AddNewMemberDetails

 Procedure AmendMemberDetails

 Procedure ShowMemberDetails

Private MembershipNumber: Integer

 FirstName : String

 Surname: String

 TelephoneNumber: String

End

Credit was also given to answers that followed Java-style syntax.
Diagrams were not accepted.

Q22.
(a) The drawing of inheritance diagrams has been required for several years now and

candidates are expected to draw these in standard format:

Page 92 of 94

It is important to convey the hierarchy (the super class above the sub-class) and
draw the arrow from the sub-class to the super class. Classes should be shown in
circles or oval shapes.

(b) This question showed the class definition of TEmployee. The sub-class
ThourlyEmployee inherits all the fields and methods of TEmployee. The stem of the
question stated that pay is calculated differently for an employee object of
TEmployee than for THourlyPaidEmployee. This should have alerted candidates
that this method needs to be redefined. The question also states that an additional
operation to collect the number of hours worked in a month was required. From this,
candidates should be able to see that extra fields are also required to store the

number of hours worked a month and the hourly pay rate. Taking account of
inheritance, the definition of the subclass should therefore be:
THourlyPaidEmployee =Class (TEmployee)

Public

 procedure CalculatePay override

 procedure GetNumberOfHoursWorkedInMonth

Private

 HourlyPayRate: Currency

 NumberOfHoursWorkedInMonth :Integer

End

Repeated declaration of fields from the parent class was not appropriate.
Candidates also need to be aware that a sensible choice of identifiers is important
as these are the interface for programmers using classes defined by others. For
example the procedure identifier CalculateHoursWorked instead of
GetHoursWorked did not gain credit.

Credit was also given to answers that followed a Java-style syntax.
Diagrams were not accepted.

Q23.
Some candidates simply re-wrote the question. Others gave quite commendable

inheritance diagrams, which, as they were not asked for, gained no marks. Examiners
were lenient in their assessment here, giving marks for genuine attempts at coding.

Q24.
Again, vague answers lost marks in this question on object oriented programming,
although it was felt that candidates were more familiar with this topic than previously. To
say that two advantages of an object oriented approach were ‘can add new code more

Page 93 of 94

efficiently’ and ‘easier to program’ is not creditworthy.

The terms ‘inheritance’ and ‘encapsulation’ were liberally scattered over the page, but
rarely in a context that gave two advantages of the object oriented approach. The term
‘modules’ was often used in place of ‘objects’ or ‘classes’, which made an otherwise
intelligent answer incorrect. A good candidate wrote ‘Data and instructions are
encapsulated into the object, therefore objects can be reused’, and, ‘Attributes and
activities can be inherited by subclasses meaning less new code is required.’

Most candidates drew a correct inheritance diagram for the classes described in part (b),
but few gained marks for writing the class definition in part (c), although considerable

latitude was given in assessing their efforts.

Q25.
This focused on object oriented programming. A class is defined as a grouping of data
structures and behaviours (methods, procedures or functions). Both data structures and
behaviours are needed. Inheritance is a relationship between classes where one class
shares the data structures and behaviours with its parent class. The sharing is of all data
structures and behaviours, not some and not similar ones. A definition in terms of itself is
not sufficient. Thus a definition of inheritance which refers to one class inheriting
characteristics from its parent class was not credited.

The inheritance diagram was mostly accurate, although the arrows were frequently
omitted, but the benefits of an object oriented program over a structured approach, in part

(c), rarely gained full marks. Many candidates stated vague facts about object oriented
programming, some of which also applied to a structured approach, but failed to explain
how these facts were an advantage.

Q26.
Too many candidates simply did not know what an inheritance diagram looked like. Those
who gained full marks for this part of Question 1 placed the classes in the correct relative
position and joined them by arrows pointing to the base class, Creature. The property of a
class is comparable to a field, so ‘number of legs’ was acceptable, but ‘8 legs’ was not.
For the method, acceptable answers were commands such as ‘eat’ or ‘spin web’.

Q27.
(a) Several candidates confused a digital signal with digital data and gave inappropriate

answers. Digital data are discrete values. Examples are text and integers, e.g.

sequences of binary 0s and 1s or denary numbers such as 1, 2, 3, 4, et cetera... In a
communications system, data are propagated from one point to another by means
of electric signals. An analogue signal is a continuously varying electromagnetic
wave. A digital signal is a sequence of voltage pulses that may be transmitted over a

wire medium; for example, a constant positive voltage level may represent binary 1
and a constant negative voltage may represent binary 0 as illustrated below.

Some candidates drew diagrams that depicted a digital signal with more than two
discrete levels. This is fine. However, a few candidates drew diagrams of a digital

Page 94 of 94

signal that essentially depicted an analogue signal modulated by a very small digital
component. It was not sufficiently clear that the diagram represented a digital signal
and hence no credit was given. Candidates are advised, for clarity’s sake, to stick to
a two state representation when drawing diagrams.

Some candidates drew a diagram of two computers linked by a telecommunications
link with a modem at the interface of each with the link. This gained no credit.

(b) Many candidates were unable to define the terms class and inheritance precisely
and so failed to gain credit. Many candidates defined a class as an object where in
fact it is an object type describing a set of objects that share a common structure

and common behaviour. Answers from several candidates focussed on data being
stored and gave a definition that described a record not an object type, e.g. “ a set of
objects with the same data”. The idea of encapsulation - combining a record with the
functions and procedures that manipulate it - was not well expressed.

(c) The inheritance diagram was drawn vertically by most candidates but with many
failing to show the correct direction for the arrows. The correct direction is illustrated
below.

Q28.
Object-oriented programming concepts were not well understood by a significant number
of candidates. Few candidates could define class or inheritance correctly. In part (b) an

informed guess gave many candidates two out of three marks. The third mark was lost
because candidates failed to use the accepted notation for indicating the relationship
between a derived class and its parent class. This notation is as follows:

