

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

1.2 Exponentials & Logs

IB Maths - Revision Notes

AA HL

1.2.1 Introduction to Logarithms

Introduction to Logarithms

What are logarithms?

- A logarithm is the inverse of an exponent
 - If $a^x = b$ then $\log_a(b) = x$ where $a > 0, b > 0, a \neq 1$
 - This is in the formula booklet
 - The number *a* is called the **base** of the logarithm
 - Your GDC will be able to use this function to solve equations involving exponents
- Try to get used to 'reading' logarithm statements to yourself
 - $\log_{a}(b) = x$ would be read as "the power that you raise a to, to get b, is x"
 - So $\log_5 125 = 3$ would be read as "the power that you raise 5 to, to get 125, is 3"
- Two important cases are:
 - $\ln x = \log_{2}(x)$
 - Where e is the mathematical constant 2.718...
 - This is called the **natural logarithm** and will have its own button on your GDC

$$\log x = \log_{10}(x)$$

• Logarithms of **base 10** are used often and so abbreviated to **log** *x*

Why use logarithms?

• Logarithms allow us to solve equations where the exponent is the unknown value

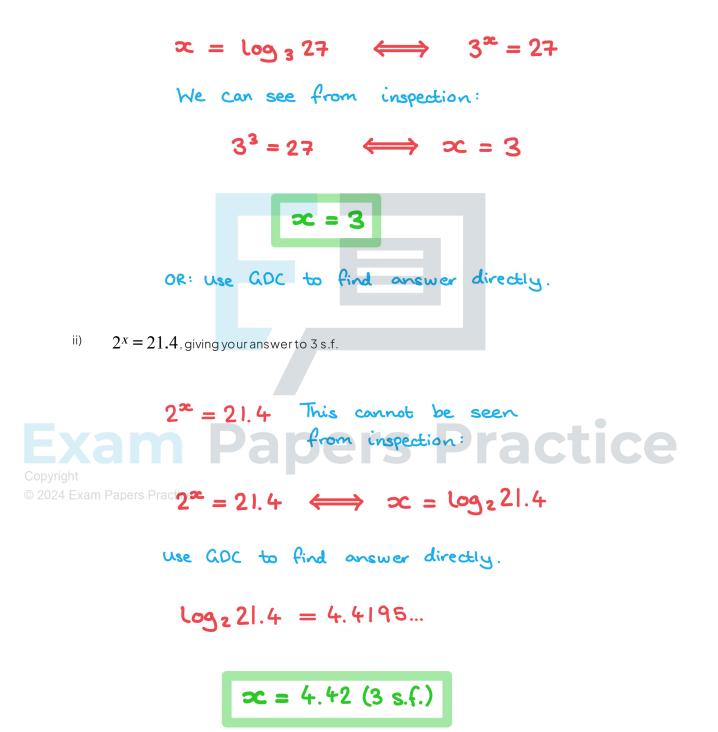
- We can solve some of these by inspection
- right For example, for the equation $2^x = 8$ we know that x must be 3
- © 2024 Era Logarithms allow use to solve more complicated problems
 - For example, the equation $2^x = 10$ does not have a clear answer
 - Instead, we can use our GDCs to find the value of $\log_2 10$

💽 Exam Tip

• Before going into the exam, make sure you are completely familiar with your GDC and know how to use its logarithm functions

Solve the following equations:

i)
$$x = \log_3 27$$
,



1.2.2 Laws of Logarithms

Laws of Logarithms

What are the laws of logarithms?

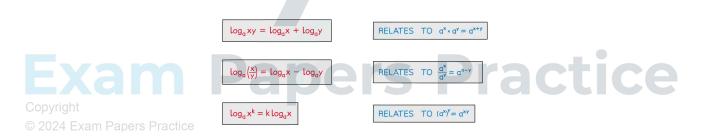
- Laws of logarithms allow you to simplify and manipulate expressions involving logarithms
 - The laws of logarithms are equivalent to the **laws of indices**
- The laws you need to know are, given a, x, y > 0:
 - $\log_a xy = \log_a x + \log_a y$
 - This relates to $a^x \times a^y = a^{x+y}$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

• This relates to $a^x \div a^y = a^{x-y}$

$$\log_a x^m = m \log_a x$$

- This relates to $(a^x)^y = a^{xy}$
- These laws are in the formula booklet so you do not need to remember them
 - You must make sure you know how to use them



Useful results from the laws of logarithms

- Given a > 0 , $a \neq 1$
 - $\log_{a} 1 = 0$
 - This is equivalent to $a^0 = 1$
- If we substitute b for a into the given identity in the formula booklet
 - $a^x = b \iff \log_a b = x$ where $a > 0, b > 0, a \neq 1$
 - $a^x = a \Leftrightarrow \log_a a = x$ gives $a^1 = a \Leftrightarrow \log_a a = 1$
 - This is an important and useful result

Substituting this into the third law gives the result

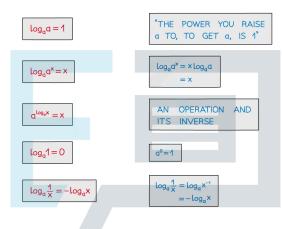
•
$$\log_a a^k = k$$

Taking the inverse of its operation gives the result

$$\bullet a^{\log_a x} = x$$

From the third law we can also conclude that

$$\log_a \frac{1}{x} = -\log_a x$$



- These useful results are not in the formula booklet but can be deduced from the laws that are
- Beware...

• $\log_a(x+y) \neq \log_a x + \log_a y$ • These results apply to $\ln x (\log_e x)$ too

Copyright Two particularly useful results are © 2024 Exam Papers Praction $\ln e^x = x$

- $e^{\ln x} = x$
- Laws of logarithms can be used to ...
 - simplify expressions
 - solve logarithmic equations
 - solve exponential equations

🖸 Exam Tip

- Remember to check whether your solutions are valid
 - log(x+k) is only defined if x > -k
 - You will lose marks if you forget to reject invalid solutions

Worked example

a) Write the expression $2\log 4 - \log 2$ in the form $\log k$, where $k \in \mathbb{Z}$.

Using the law
$$\log_{a} x^{m} = m\log_{a} x$$

 $2\log_{4} = \log_{4}^{2} = \log_{4}^{2} - \log_{2}^{2}$
 $= \log_{16} - \log_{2}^{2}$
Using the law $\log_{a} \frac{x}{y} = \log_{a} x - \log_{a} y$
 $\log_{16} - \log_{2}^{2} = \log_{\frac{16}{2}}^{\frac{16}{2}} = \log_{8}^{8}$
2log_{4} - log_{2}^{2} = \log_{\frac{1}{2}}^{\frac{1}{2}}
b) Hence, or otherwise, solve $2\log_{4}^{4} - \log_{2}^{2} = -\log_{\frac{1}{2}}^{\frac{1}{2}}$.
To solve $2\log_{4}^{4} - \log_{2}^{2} = \log_{\frac{1}{2}}^{\frac{1}{2}}$ Practice os
 $\log_{8}^{2} = -\log_{\frac{1}{2}}^{\frac{1}{2}}$
Use the index law $\frac{1}{x} = x^{-1}$
 $\log_{8}^{8} = -\log_{9}^{-1}$
 $\log_{8}^{8} = \log_{8}^{-1}$
 $\log_{8}^{8} = \log_{8}^{-1}$
 $8 = x$
 $x = 8$

Page 5 of 8 For more help visit our website www.exampaperspractice.co.uk

Change of Base

Why change the base of a logarithm?

- The laws of logarithms can only be used if the logs have the same **base**
 - If a problem involves logarithms with different bases, you can change the base of the logarithm and then apply the laws of logarithms
- Changing the base of a logarithm can be particularly useful if you need to evaluate a log problem without a calculator
 - Choose the base such that you would know how to solve the problem from the equivalent exponent

How do I change the base of a logarithm?

• The formula for changing the base of a logarithm is

$$\log_a x = \frac{\log_b x}{\log_b a}$$

- This is in the formula booklet
- The value you choose for *b* does not matter, however if you do not have a calculator, you can choose *b* such that the problem will be possible to solve

💽 Exam Tip

- Changing the base is a key skill which can help you with many different types of questions, make sure you are confident with it
 - It is a particularly useful skill for examinations where a GDC is not permitted

🖉 Worked example

By choosing a suitable value for b, use the change of base law to find the value of $\log_8 32$ without using a calculator. $0 2024 \text{ Exam Papers Practice} \quad \text{change} \quad \text{of base law: } \log_8 x = \frac{\log_9 x}{\log_9 a}$ $\log_8 32^{-2^5 = 32}$ $\log_8 32^{-2^5 = 32}$ $2^3 = 8$ Choose b = 2 to allow for a solution by inspection. $\log_8 32 = \frac{\log_2 32}{\log_2 8} = \frac{5}{3}$ $\log_8 32 = |\frac{2}{3}|$

1.2.3 Solving Exponential Equations

Solving Exponential Equations

What are exponential equations?

- An exponential equation is an equation where the unknown is a power
 - In simple cases the solution can be spotted without the use of a calculator
 - For example,

$$5^{2x} = 125$$
$$2x = 3$$
$$x = \frac{3}{2}$$

- In more complicated cases the laws of logarithms should be used to solve exponential equations
- The change of base law can be used to solve some exponential equations without a calculator
 - Forexample,

$$27^{x} = 9$$
$$x = \log_{27}9$$
$$= \frac{\log_{3}9}{\log_{3}27}$$

Exam Papers Practice

How do we use logarithms to solve exponential equations?

© 2024 Exam Papers Practic

- An exponential equation can be solved by taking logarithms of both sides
- The laws of indices may be needed to rewrite the equation first
- The laws of logarithms can then be used to solve the equation
 - In (log_e) is often used
 - The answer is often written in terms of In
- A question my ask you to give your answer in a particular form
- Follow these steps to solve exponential equations
 - STEP 1: Take logarithms of both sides
 - STEP 2: Use the laws of logarithms to remove the powers

- STEP 3: Rearrange to isolate *x*
- STEP 4: Use logarithms to solve for *x*

What about hidden quadratics?

- Look for hidden squared terms that could be changed to form a quadratic
 - In particular look out for terms such as
 - $4^x = (2^2)^x = 2^{2x} = (2^x)^2$
 - $e^{2x} = (e^2)^x = (e^x)^2$

💽 Exam Tip

- Always check which form the question asks you to give your answer in, this can help you
 decide how to solve it
- If the question requires an exact value you may need to leave your answer as a logarithm

Worked example

Solve the equation $4^x - 3(2^{x+1}) + 9 = 0$. Give your answer correct to three significant figures.

Spot the hidden quadratic:
$$4^{\infty} = (2^{\infty})^{\infty} = (2^{\infty})^{2}$$

By the taws of indices $2^{\infty+1} = 2^{\infty} \times 2^{1}$
 $(2^{\infty})^{2} - 3(2^{\infty+1}) + 9 = 0$
 $(2^{\infty})^{2} - 3 \times 2 \times 2^{\infty} + 9 = 0$
 $(2^{\infty})^{2} - 6 \times 2^{\infty} + 9 = 0$
 $(2^{\infty})^{2} - 6 \times 2^{\infty} + 9 = 0$
 $(2^{\infty})^{2} - 6 \times 2^{\infty} + 9 = 0$
 $(1 - 3)(1 - 3) = 0$
 $1 = 3 \therefore 2^{\infty} = 3$
Solve the exponential equation $2^{\infty} = 3$
Step 1: Take logarithms of both sides : $\ln(2^{\infty}) = \ln(3)$
Step 2: Use the law $\log_{10} \infty^{m} = m\log_{10} \infty$ $\sin 12 = \ln 3$
Step 3: Rearrange to isolate ∞ $\infty = \frac{\ln 3}{\ln 2}$
Step 4: Solve
 $\infty = 1.58$ (3s.f.)