

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

1.2 Exponentials & Logs

IB Maths - Revision Notes

AI HL

1.2.1 Exponents

Laws of Indices

What are the laws of indices?

- Laws of indices (or index laws) allow you to simplify and manipulate expressions involving exponents
 - An exponent is a power that a number (called the base) is raised to
 - Laws of indices can be used when the numbers are written with the same base
- The index laws you need to know are:

$$(xy)^m = x^m y^m$$
$$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$$

$$\begin{array}{c} \langle y \rangle & y \\ x^m \times x^n = x^{m+n} \end{array}$$

- $X^m \div X^n = X^{m-n}$
- $(X^m)^n = X^{mn}$
- $x^1 = x$
- $x^0 = 1$

$$\frac{1}{x^m} = x^{-m}$$

$$X^n = \sqrt[n]{X}$$

 $x^{n} = \sqrt[n]{x^{m}}$

These laws are not in the formula booklet so you must remember them

How are laws of indices used?

- You will need to be able to carry out multiple calculations with the laws of indices
 - Take your time and apply each law individually
 - Work with numbers first and then with algebra
- Index laws only work with terms that have the same base, make sure you change the base of the term before using any of the index laws
 - Changing the base means rewriting the number as an exponent with the base you need
 - For example, $9^4 = (3^2)^4 = 3^2 \times 4 = 3^8$
 - Using the above can them help with problems like $9^4 \div 3^7 = 3^8 \div 3^7 = 3^1 = 3^1$

😧 Exam Tip

- Index laws are rarely a question on their own in the exam but are often needed to help you solve other problems, especially when working with logarithms or polynomials
- Look out for times when the laws of indices can be applied to help you solve a problem algebraically

Worked example

Simplify the following equations:

i)
$$\frac{(3x^2)(2x^3y^2)}{(6x^2y)}$$
.

ii)
$$(4x^2y^{-4})^3(2x^3y^{-1})^{-2}$$
.

1.2.2 Logarithms

Introduction to Logarithms

What are logarithms?

- A logarithm is the inverse of an exponent
 - If $a^x = b$ then $\log_a(b) = x$ where $a > 0, b > 0, a \neq 1$
 - This is in the formula booklet
 - The number *a* is called the **base** of the logarithm
 - Your GDC will be able to use this function to solve equations involving exponents
- Try to get used to 'reading' logarithm statements to yourself
 - $\log_{a}(b) = x$ would be read as "the power that you raise a to, to get b, is x"
 - So $\log_5 125 = 3$ would be read as "the power that you raise 5 to, to get 125, is 3"
- Two important cases are:
 - $\ln x = \log_{2}(x)$
 - Where e is the mathematical constant 2.718...
 - This is called the **natural logarithm** and will have its own button on your GDC

$$\log x = \log_{10}(x)$$

• Logarithms of **base 10** are used often and so abbreviated to **log** *x*

Why use logarithms?

Logarithms allow us to solve equations where the exponent is the unknown value

- We can solve some of these by inspection
- ight For example, for the equation $2^x = 8$ we know that x must be 3
- © 2024 Era Logarithms allow use to solve more complicated problems
 - For example, the equation $2^x = 10$ does not have a clear answer
 - Instead, we can use our GDCs to find the value of $\log_2 10$

💽 Exam Tip

• Before going into the exam, make sure you are completely familiar with your GDC and know how to use its logarithm functions

Solve the following equations:

i)
$$x = \log_3 27$$
,

Laws of Logarithms

What are the laws of logarithms?

- Laws of logarithms allow you to simplify and manipulate expressions involving logarithms The laws of logarithms are equivalent to the laws of indices
- The laws you need to know are, given a, x, y > 0:
 - $\log_a xy = \log_a x + \log_a y$
 - This relates to $a^x \times a^y = a^{x+y}$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

- This relates to $a^x \div a^y = a^{x-y}$
- $\log_a x^m = m \log_a x$
 - This relates to $(a^x)^y = a^{xy}$
- These laws are in the formula booklet so you do not need to remember them
 - You must make sure you know how to use them

^{Cop}Useful results from the laws of logarithms

 $a > 0 \quad a \neq 1$ Giv

Given
$$a > 0, a$$

$$\log_a 1 = 0$$

- This is equivalent to $a^0 = 1$
- If we substitute b for a into the given identity in the formula booklet

•
$$a^x = b \Leftrightarrow \log_a b = x$$
 where $a > 0, b > 0, a \neq 1$

- $a^x = a \Leftrightarrow \log_a a = x$ gives $a^1 = a \Leftrightarrow \log_a a = 1$
 - This is an important and useful result
- Substituting this into the third law gives the result
 - $\log_a a^k = k$

• Taking the inverse of its operation gives the result

$$\bullet a^{\log_a x} = x$$

• From the third law we can also conclude that

$$\log_a \frac{1}{x} = -\log_a x$$

• These useful results are **not in the formula booklet** but can be deduced from the laws that are

oers Practice

Beware...

$$\log_a(x+y) \neq \log_a x + \log_a y$$

- These results apply to $\ln x (\log_{e} x)$ too
 - Two particularly useful results are

 $\ln e^x = x$

ht $e^{\ln x} = x$

 \mathcal{O}

Laws of logarithms can be used to ...

- simplify expressions
- solve logarithmic equations
- solve exponential equations

💽 Exam Tip

- Remember to check whether your solutions are valid
 - log(x+k) is only defined if x > -k
 - You will lose marks if you forget to reject invalid solutions

Worked example

a)

Write the expression $2 \log 4 - \log 2$ in the form $\log k$, where $k \in \mathbb{Z}$.

Using the law
$$\log_{a} x^{m} = m \log_{a} x$$

 $2\log_{a} + \log_{a} + \log_$

b) Hence, or otherwise, solve $2 \log 4 - \log 2 = -\log \frac{1}{x}$. EXAMPLE To solve $2 \log 4 - \log 2 = \log \frac{1}{x}$ rewrite as the copyright 0 2024 Exam Papers Practice $\log 8 = -\log \frac{1}{x}$ from part (a) Use the index law $\frac{1}{x} = x^{-1}$ $\log 8 = -\log x^{-1}$ $\log 8 = -\log x^{-1}$ $\log 8 = \log x$ 8 = xx = 8

Page 8 of 8 For more help visit our website www.exampaperspractice.co.uk