Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.2 Exponentials \& Logs

Al HL

1.2.1 Exponents

Laws of Indices

What are the laws of indices?

- Laws of indices (orindexlaws) allow you to simplify and manipulate expressions involving exponents
- An exponent is a power that a number (called the base) is raised to
- Laws of indices can be used when the numbers are written with the same base
- The indexlaws you need to know are:
- $(x y)^{m}=X^{m} y^{m}$
- $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$
- $X^{m} \times X^{n}=X^{m+n}$
- $X^{m} \div X^{n}=X^{m-n}$
- $\left(X^{m}\right)^{n}=X^{m n}$
- $X^{1}=x$
- $X^{0}=1$
- $\frac{1}{X^{m}}=X^{-m}$

- $x^{\frac{1}{n}}=\sqrt[n]{x}$
- $X^{\frac{m}{n}}=\sqrt[n]{X^{m}}$
- These laws are not in the formulabooklet so you must remember them

How are laws of indices used?

- You will need to be able to carryout multiple calculations with the laws of indices
- Take your time and apply each law ind ividually
- Work with numbers first and then with algebra
- Index laws onlywork with terms that have the same base, make sure you change the base of the term before using any of the ind ex laws
- Changing the base means rewriting the number as an exponent with the base you need
- For example, $9^{4}=\left(3^{2}\right)^{4}=3^{2 \times 4}=3^{8}$
- Using the above can them help with problems like $9^{4} \div 3^{7}=3^{8} \div 3^{7}=3^{1}=3$

(9) Exam Tip

- Index laws are rarely a question on their own in the exam but are often needed to helpyou solve other problems, especially when working with lo garithms or polynomials
- Look out fortimes when the laws of indices can be applied to help you solve a problem algebraic ally

(. Worked example

Simplify the following equations:
i) $\frac{\left(3 x^{2}\right)\left(2 x^{3} y^{2}\right)}{\left(6 x^{2} y\right)}$

Apply each law separately:

$$
\frac{\left(3 x^{2}\right)\left(2 x^{3} y^{2}\right)}{6 x^{2} y}=x^{3} y
$$

ii)

$$
\left(4 x^{2} y^{-4}\right)^{3}\left(2 x^{3} y^{-1}\right)^{-2} .
$$

© 2024 Exam Papers Practice

1.2.2 Logarithms

Introduction to Logarithms

What are logarithms?

- Alogarithm is the inverse of an exponent
- If $\boldsymbol{a}^{x}=b$ then $\log _{a}(b)=x$ where $a>0, b>0, a \neq 1$
- This is in the formula booklet
- The number ais called the base of the logarithm
- Your GDC will be able to use this function to solve equations involving exponents
- Try to get used to 'reading' lo garithm statements to yourself
- $\log _{a}(b)=x$ would be read as "the powerthat you raise a to, to get b, is X "
- So $\log _{5} 125=3$ would be read as "the powerthat you raise 5 to, to get 125 , is 3 "
- Two important cases are:
- $\ln x=\log _{\mathrm{e}}(x)$
- Where e is the mathematical constant 2.718...
- This is called the natural lo garithm and will have its own butto n on your GDC
- $\log x=\log _{10}(x)$
- Lo garithms of base 10 are used often and so abbreviated to $\log \boldsymbol{x}$

Why use logarithms?

- Lo garithms allow us to solve equations where the exponent is the unknown value
- We can solve some of these by inspection
- For example,for the equation $2^{x}=8$ we know that x must be 3
- Logarithms allow use to solve more complicated problems
- For example, the equation $2^{x}=10$ does not have a clear answer
- Instead, we can use our GDCs to find the value of $\log _{2} 10$

O Exam Tip

- Before going into the exam, make sure you are completely familiar with your GDC and know how to use its logarithm functions

Exam Papers Practice

Worked example

Solve the following equations:
i) $\quad x=\log _{3} 27$,

$$
x=\log _{3} 27 \quad 3^{x}=27
$$

We can see from inspection:

$$
3^{3}=27 \quad \Longleftrightarrow \quad x=3
$$

$O R$: use $G D C$ to find answer directly.
ii) $\quad 2^{x}=21.4$, giving your ans wert to 3 sf.

$$
2^{x}=21.4 \text { This cannot be seen }
$$

$$
\text { from inspection: } C
$$

Copyright
© 2024 Exam Papers Proc $2^{x}=21.4 \Longleftrightarrow x=\log _{2} 21.4$

Use $G D C$ to find answer directly.

$$
\log _{2} 21.4=4.4195 \ldots
$$

$$
x=4.42\left(3 \mathrm{~s} . \mathrm{f}_{\mathrm{s}}\right)
$$

Laws of Logarithms

What are the laws of logarithms?

- Laws of logarithms allow you to simplify and manipulate expressions involving logarithms
- The laws of logarithms are equivalent to the laws of indices
- The laws you need to know are, given $\boldsymbol{a}, \boldsymbol{x}, \boldsymbol{y}>0$
- $\log _{a} x y=\log _{a} x+\log _{a} y$
- This relates to $a^{x} \times a^{y}=a^{x+y}$
- $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
- This relates to $a^{x} \div a^{y}=a^{x-y}$
- $\log _{a} X^{m}=m \log _{a} X$
- This relates to $\left(a^{x}\right) y=a^{x y}$
- These laws are in the formula booklet so you do not need to remember them
- You must make sure you know how to use them
$\log _{a} x y=\log _{a} x+\log _{a} y \quad$ RELATES TO $a^{x} x a^{y}=a^{x+y}$

$$
\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y
$$

$$
\text { RELATES TO } \frac{a^{x}}{a^{y}}=a^{x-y}
$$

$\log _{\mathrm{a}} x^{k}=k \log _{a} x$

$$
\text { RELATES TO }\left(\alpha^{x}\right)^{y}=\alpha^{x y}
$$

Useful results from the laws of logarithms

- Given $a>0, a \neq 1$
- $\log _{a} 1=0$
- This is equivalent to $a^{0}=1$
- If we substitute bfor ainto the given identity in the formula booklet
- $a^{x}=b \Leftrightarrow \log _{a} b=x$ where $a>0, b>0, a \neq 1$
- $a^{x}=a \Leftrightarrow \log _{a} a=x$ gives $a^{1}=a \Leftrightarrow \log _{a} a=1$
- This is an important and useful result
- Substituting this into the third law gives the result
- $\log _{a} a^{k}=k$
- Taking the inverse of its operation gives the result
- $a^{\log _{a} x}=x$
- From the third law we can also conclude that
- $\log _{a} \frac{1}{X}=-\log _{a} X$

$$
\text { a TO, TO GET a, IS } 1^{n \prime}
$$ a TO, TO GET a, IS 1"

"THE POWER YOU RAISE
$\log _{a} a^{x}=x$
$\log _{a} a^{x}=x$

$$
a^{\log _{a} x}=x
$$

$$
\log _{a} 1=0
$$

$$
\log _{a} \frac{1}{x}=-\log _{a} x
$$

 AN OPERATION AND
 ITS INVERSE
$a^{0}=1$
$\log _{a} \frac{1}{x}=\log _{a} x^{-1}$
$=-\log _{a} x$

- These useful results are not inthe formulabooklet but can be deduced from the laws that are
- Beware...
- ... $\log _{a}(x+y) \neq \log _{a} x+\log _{a} y$
- These results applyto $\ln X\left(\log _{e} x\right)$ too
- Two particularly us eful results are
- $\ln e^{x}=x$
- $e^{\ln x}=x$

24 Laws oflogarithms can be used to ...

- simplify expressions
- solve logarithmic equations
- solve exponential equations

(9) Exam Tip

- Rememberto check whetheryour solutions are valid
- $\log (x+k)$ is only defined if $x>-k$
- You will lose marks if you forget to reject invalid solutions
a)

Write the expression $2 \log 4-\log 2$ in the form $\log k$, where $k \in \mathbb{Z}$.

$$
\begin{aligned}
& \text { Using the } \operatorname{law} \log _{a} x^{m}=m \log _{a} x \\
& \begin{aligned}
2 \log 4=\log 4^{2} & =\log 16 \\
2 \log 4-\log 2 & =\log 4^{2}-\log 2 \\
& =\log 16-\log 2
\end{aligned}
\end{aligned}
$$

Using the law $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$

$$
\log 16-\log 2=\log \frac{16}{2}=\log 8
$$

b) Hence, or otherwise, solve $2 \log 4-\log 2=-\log \frac{1}{x}$.

To solve $2 \log 4-\log 2=\log \frac{1}{x}$ rewrite as

$$
\log 8=-\log \frac{1}{x}
$$

Use the index law $\frac{1}{x}=x^{-1}$

$$
\begin{aligned}
\log 8 & =-\log x^{-1} \\
\log 8 & =\log x \\
8 & =x \\
x & =8
\end{aligned}
$$

