EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.2 Exponentials \& Logs

1.2.1 Introduction to Logarithms

Introductionto Logarithms

What are logarithms?

- Alo garithm is the inverse of an exponent
- If $\boldsymbol{a}^{x}=b$ then $\log _{a}(b)=x$ where $a>0, b>0, a \neq 1$
- This is in the formula booklet
- The number a is called the base of the logarithm
- Your GDC will be able to use this function to solve equations involving exponents
- Try to get used to 'reading' logarithm statements to yours elf
- $\log _{a}(b)=x$ would be read as "the power that youraise a to, to get b, is X "
- So $\log _{5} 125=3$ would be read as "the powerthat youraise 5 to, to get 125 , is 3 "
- Two important cases are:
- $\ln x=\log _{\mathrm{e}}(x)$
- Where e is the mathematical constant 2.718...
- This is called the natural logarithm and will have its own button on yo ur GDC
- $\log x=\log _{10}(x)$
- Logarithms of base 10 are used often and so abbreviated to $\log \boldsymbol{x}$

Why use logarithms?

- Logarithms allow us to solve equations where the exponent is the unknownvalue
- We can solve some of these by inspection
- For example,forthe equation $2^{x}=8$ we know that x must be 3
- Lo garithms allow use to solve more complicated problems
- For example, the equation $2^{x}=10$ does not have a clear answer
- Instead, we can use our GDCs to find the value of $\log _{2} 10$

- Exam Tip

- Before going into the exam, make sure you are completely familiar with your GDC and know how to use its lo garithm functions

Exam Papers Practice

Worked example

Solve the following equations:
i) $x=\log _{3} 27$,

$$
x=\log _{3} 27 \quad 3^{x}=27
$$

We can see from inspection:

ii) $\quad 2^{x}=21.4$, giving your answer to 3 sf.

$$
\begin{aligned}
& 2^{x}=21.4 \text { This cannot be seen } \\
& \text { from inspection: }
\end{aligned}
$$

use GDC to find answer directly.

$$
\log _{2} 21.4=4.4195 \ldots
$$

$$
x=4.42 \text { (3 s.f.) }
$$

1.2.2 Laws of Logarithms

Laws of Logarithms

What are the laws of logarithms?

- Laws of logarithms allow you to simplify and manipulate expressions involving lo garithms
- The laws of lo garithms are equivalent to the laws of indices
- The laws you need to know are, given $a, x, y>0$:
- $\log _{a} x y=\log _{a} x+\log _{a} y$
- This relates to $a^{x} \times a^{y}=a^{x+y}$
- $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
- This relates to $a^{x} \div a^{y}=a^{x-y}$
- $\log _{a} X^{m}=m \log _{a} X$
- This relates to $\left(a^{x}\right) y=a^{x y}$
- These laws are in the formula booklet so youd o not need to remember them
- You must make sure youknow how to use them

Usefulresults from the laws of logarithms

- Given $\boldsymbol{a}>0, \boldsymbol{a} \neq 1$
- $\log _{a} 1=0$
- This is equivalent to $a^{0}=1$
- If we substitute bfor a into the givenidentity in the formula booklet
- $a^{x}=b \Leftrightarrow \log _{a} b=x$ where $a>0, b>0, a \neq 1$
- $a^{x}=a \Leftrightarrow \log _{a} a=x$ gives $a^{1}=a \Leftrightarrow \log _{a} a=1$
- This is an important and useful result
- Substituting this into the third law gives the result
- $\log _{a} a^{k}=k$
- Taking the inverse of its operation gives the result
- $a^{\log _{a} x}=X$
- From the third law we can also conclude that
- $\log _{a} \frac{1}{X}=-\log _{a} X$
$\log _{a} a=1$

$$
\log _{a} \frac{1}{x}=-\log _{a} x
$$

- These useful results are not in the formula booklet but can be deduced from the laws that are
- Beware...
- ... $\log _{a}(x+y) \neq \log _{a} x+\log _{a} y$
- These results apply to $\ln x\left(\log _{e} x\right)$ too
- Two particularlyuseful results are
- $\ln e^{x}=x$
- $e^{\ln x}=x$
- Laws of lo garithms can be used to ...
- simplifyexpressions
- solve logarithmic equations
- solve exponential equations

O Exam Tip

- Rememberto checkwhetheryour solutions are valid
- $\log (x+k)$ is only defined if $x>-k$
- You will lose marks if you forget to reject invalid solutions
a) Write the expression $2 \log 4-\log 2$ in the form $\log k$, where $k \in \mathbb{Z}$.

$$
\log 8=-\log \frac{1}{x}
$$

Use the index Law $\frac{1}{x}=x^{-1}$

$$
\begin{aligned}
\log 8 & =-\log x^{-1} \\
\log 8 & =\log x \\
8 & =x
\end{aligned}
$$

$$
x=8
$$

$$
\begin{aligned}
& \text { Using the law } \log _{a} x^{m}=m \log _{a} x \\
& 2 \log 4=\log 4^{2}=\log 16 \\
& 2 \log 4-\log 2=\log 4^{2}-\log 2 \\
& =\log 16-\log 2 \\
& \text { Using the law } \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\
& \log 16-\log 2=\log \frac{16}{2}=\log 8 \\
& 2 \log 4-\log 2=\log 8 \\
& \text { b) Hence, or otherwise, solve } 2 \log 4-\log 2=-\log \frac{1}{X} \text {. }
\end{aligned}
$$

Change of Base

Why change the base of a logarithm?

- The laws of logarithms can only be used if the logs have the same base
- If a problem involves logarithms with different bases, you can change the base of the logarithm and then apply the laws of logarithms
- Changing the base of a logarithm can be particularly useful if you need to evaluate a log problem without a calculator
- Choose the base such that you would know how to solve the problem from the equivalent exponent

How do Ichange the base of a logarithm?

- The formula for changing the base of a lo garithm is

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

- This is in the formula booklet
- The value you choose for b does not matter, however if you do not have a calculator, you can choose bsuch that the problem will be possible to solve

© Exam Tip

- Changing the base is a key skill which can help you with many different types of questions, make sure you are confident with it
- It is a particularly useful skill for examinations where a GDC is not permitted

Worked example

By choosing a suitable value forb, use the change of base law to find the value of $\log _{8} 32$ without using a calculator.

$$
\begin{gathered}
\text { Change of base law: } \log _{a} x=\frac{\log _{b} x}{\log _{b} a} \\
\qquad \log _{8} 32^{x^{2}}=32 \\
2^{3}=8 \\
\text { Choose } b=2 \text { to allow for a solution by inspection } \\
\qquad \begin{array}{l}
\log _{8} 32=\frac{\log _{2} 32}{\log _{2} 8}=\frac{5}{3} \\
\log _{8} 32=1 \frac{2}{3}
\end{array}
\end{gathered}
$$

Page 6 of 8
For more help visit our website www.exampaperspractice.co.uk

1.2.3 Solving Exponential Equations

Solving Exponential Equations

What are exponential equations?

- An exponential equation is an equation where the unknown is a power
- In simple cases the solution can be spotted without the use of a calculator
- Forexample,

$$
\begin{aligned}
5^{2 x} & =125 \\
2 x & =3 \\
x & =\frac{3}{2}
\end{aligned}
$$

- In more complicated cases the laws of logarithms should be used to solve exponential equations
- The change of base law can be used to solve some exponential equations without a calculator
- Forexample,

$$
\begin{aligned}
27^{x} & =9 \\
x & =\log _{27} 9 \\
& =\frac{\log _{3} 9}{\log _{3} 27}
\end{aligned}
$$

Howdo we use logarithms to solve exponential equations?

- An exponential equation can be solved bytaking logarithms of both sides
- The laws of indices may be needed to rewrite the equation first
- The laws of logarithms can then be used to solve the equation
- In ($\log _{\mathrm{e}}$) is oftenused
- The answeris often written interms of In
- A question my askyou to give your answer in a particular form
- Follow these steps to solve exponential equations
- STEP 1: Take lo garithms of both sides
- STEP 2: Use the laws of logarithms to remove the powers
- STEP 3: Rearrange to is olate x
- STEP 4: Use logarithms to solve for x

What about hidden quadratics?

- Look for hiddensquared terms that could be changed to form a quadratic
- In particular look out forterms such as
- $4^{x}=\left(2^{2}\right)^{x}=2^{2 x}=\left(2^{x}\right)^{2}$
- $e^{2 x}=\left(e^{2 x}=\left(e^{x}\right)^{2}\right.$

(-) Exam Tip

- Always check which form the question asks you to give your answer in, this can help you decide how to solve it
- If the question requires an exact value you may need to leave your answer as a logarithm

Worked example

Solve the equation $4^{x}-3\left(2^{x+1}\right)+9=0$. Give your answercorrect to three significant figures.

Spot the hidden quadratic: $4^{x}=\left(2^{2}\right)^{x}=\left(2^{x}\right)^{2}$

$$
\text { By the laws of indices } 2^{x+1}=2^{x} \times 2^{1}
$$

$$
\begin{array}{ll}
\left(2^{x}\right)^{2}-3\left(2^{x+1}\right)+9=0 & =2 \times 2^{x} \\
\left(2^{x}\right)^{2}-3 \times 2 \times 2^{x}+9=0
\end{array}
$$

$$
\text { © } 2024 \text { Exam Papers Letticu }=2^{x} u^{2}-6 u+9=0
$$

$$
(u-3)(u-3)=0
$$

$$
u=3 \quad \therefore \quad 2^{x}=3
$$

Solve the exponential equation $2^{x}=3$
Step 1: Take Logarithms of both sides: $\ln \left(2^{x}\right)=\ln (3)$
Step 2: Use the Law $\log _{a} x^{m}=m \log _{a} x \quad x \ln 2=\ln 3$
Step 3: Rearrange to isolate $x \quad x=\frac{\ln 3}{\ln 2}$
Step 4: Solve

$$
x=\frac{\ln 3}{\ln 2}=1.584 \ldots
$$

$$
x=1.58 \quad \text { (3s.f.) }
$$

