

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

1.10 Systems of Linear Equations

IB Maths - Revision Notes

AA HL

1.10.1 Systems of Linear Equations

Introduction to Systems of Linear Equations

What are systems of linear equations?

- A linear equation is an equation of the first order (**degree 1**)
 - This means that the **maximum degree** of each term is 1
 - These are examples of linear equations:
 - 2x + 3y = 5 & 5x y = 10 + 5z
 - These are examples of non-linear equations:
 - $x^2 + 5x + 3 = 0 \& 3x + 2xy 5y = 0$
 - The terms *x*² and *xy* have degree 2
- A system of linear equations is where two or more linear equations work together
 These are also called simultaneous equations
- If there are nvariables then you will need at least nequations in order to solve it
 - For your exam n will be 2 or 3
- A 2×2 system of linear equations can be written as
 - $a_1 x + b_1 y = c_1$

$$a_{2}x + b_{2}y = c_{1}$$

• A 3 × 3 system of linear equations can be written as

$$a_1 x + b_1 y + c_1 z = d_1$$

 $a_{2}x + b_{2}y + c_{2}z = d_{2}$ $a_{3}x + b_{3}y + c_{3}z = d_{3}$ appendix practice

Copyright

© 2 What do systems of linear equations represent?

- The most common application of systems of linear equations is in **geometry**
- Fora2×2 system
 - Each equation will represent a straight line in 2D
 - The solution (if it exists and is unique) will correspond to the **coordinates** of the point where the **two lines intersect**
- Fora3×3 system
 - Each equation will represent a **plane in 3D**
 - The solution (if it exists and is unique) will correspond to the **coordinates** of the point where the **three planes intersect**

Systems of Linear Equations

How do I set up a system of linear equations?

- Not all questions will have the equations written out for you
- There will be bits of information given about the variables
 - Two bits of information for a 2×2 system
 - Three bits of information for a 3×3 system
 - Look out for clues such as 'assuming a linear relationship'
- Choose to assign *x*, *y* & *z* to the given variables
 - This will be helpful if using a GDC to solve
- Or you can choose to use more meaningful variables if you prefer
 - Such as *c* for the number of cats and *d* for the number of dogs

How do luse my GDC to solve a system of linear equations?

- You can use your GDC to solve the system on the calculator papers (paper 2 & paper 3)
- Your GDC will have a function within the algebra menu to solve a system of linear equations
- You will need to choose the number of equations
 - For two equations the variables will be x and y
 - For three equations the variables will be *x*, yand *z*
- If required, write the equations in the given form
 - *ax*+*by*=*c*
 - *ax*+*by*+*cz*=*d*
- Your GDC will display the values of x and y(or x, y, and z)

🖸 Exam Tip

Make sure that you are familiar with how to use your GDC to solve a system of linear equations Copyright because even if you are asked to use an algebraic method and show your working, you can © 2024 Exuse your GDC to check your final answer

 If a systems of linear equations question is asked on a non-calculator paper, make sure you check your final answer by inputting the values into all original equations to ensure that they satisfy the equations

Worked example

On a mobile phone game, a player can purchase one of three power-ups (fire, ice, electricity) using their points.

- Adam buys 5 fire, 3 ice and 2 electricity power-ups costing a total of 1275 points.
- Alice buys 2 fire, 1 ice and 7 electricity power-ups costing a total of 1795 points.
- Alex buys 1 fire and 1 ice power-ups which in total costs 5 points less than a single electricity power up.

Find the cost of each power-up.

1.10.2 Algebraic Solutions

Row Reduction

How can I write a system of linear equations?

• To save space we can just write the **coefficients without the variables**

• For 2 variables:

$$a_1 x + b_1 y = c_1 can be written shorthand as \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$$

What is a row reduced system of linear equations?

• A system of linear equations is in row reduced form if it is written as:

• It is very helpful if the values of *A*₁, *B*₂, *C*₃ are **equal to 1** © 2024 Exam Papers Practice

What are row operations?

- Row operations are used to make the linear equations simpler to solve
 - They do not affect the solution
- You can switch any two rows

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \text{ can be written as } \begin{bmatrix} a_3 & b_3 & c_3 & d_3 \\ a_2 & b_2 & c_2 & d_2 \\ a_1 & b_1 & c_1 & d_1 \end{bmatrix} \text{ using } r_1 \leftrightarrow r_3$$

- This is useful for getting zeros to the bottom
- Orgetting a one to the top
- You can multiply any row by a (non-zero) constant

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \text{ can be written as } \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ ka_2 & kb_2 & kc_2 & kd_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \text{ using } k \times r_2 \to r_2$$

- This is useful for getting a las the first non-zero value in a row
- You can add multiples of a row to another row

$$\begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \text{ can be written as } \begin{bmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 + 5a_3 & b_2 + 5b_3 & c_2 + 5c_3 & d_2 + 5d_3 \\ a_3 & b_3 & c_3 & d_3 \end{bmatrix} \text{ using } r_2 + 5r_3 \rightarrow r_2$$

This is useful for creating zeros under a 1

How can I row reduce a system of linear equations?

- STEP 1: Get a l in the top left corner
 - You can do this by **dividing the row** by the current value in its place
 - If the current value is 0 or an awkward number then you can **swap rows first**
 - $\begin{tabular}{|c|c|c|c|c|} \hline 1 & B_1 & C_1 & D_1 \\ \hline * & * & * & * \\ \hline * & * & * & * \\ \hline * & * & * & * \\ \hline \end{array}$
- STEP 2: Get 0's in the entries below the 1
 - You can do this by adding/subtracting a multiple of the first row to each row

 D_2

'actice

$$\blacksquare \begin{bmatrix} 1 & B_1 & C_1 & D_1 \\ 0 & * & * & * \\ 0 & * & * & * \end{bmatrix}$$

STEP 3: Ignore the first row and column as they are now complete
 Repeat STEPS 1 – 2 to the remaining section

Popyright
2024 Exam Papers Pr
Get a l:
$$\begin{bmatrix} 1 & B_1 & C_1 \\ 0 & 1 & C_2 \\ 0 & * & * \end{bmatrix}$$

Then 0 underneath: $\begin{bmatrix} 1 & B_1 & C_1 \\ 0 & 1 & C_2 \\ 0 & 0 & * \end{bmatrix}$

• STEP 4: Get a lin the third row

• Using the same idea as **STEP1**

$$\bullet \begin{bmatrix} 1 & B_1 & C_1 & D_1 \\ 0 & 1 & C_2 & D_2 \\ 0 & 0 & 1 & D_3 \end{bmatrix}$$

н

How do I solve a system of linear equations once it is in row reduced form?

• Once you row reduced the equations you can then **convert back to the variables**

$$\begin{bmatrix} 1 & B_1 & C_1 & D_1 \\ 0 & 1 & C_2 & D_2 \\ 0 & 0 & 1 & D_3 \end{bmatrix} \begin{bmatrix} x + B_1 y + C_1 z = D_1 \\ corresponds to \\ y + C_2 z = D_2 \\ z = D_3 \end{bmatrix}$$

- Solve the equations starting at the bottom
 - You have the value for *z* from the third equation
 - Substitute zinto the second equation and solve for y
 - Substitute zand yinto the first each and solve for x

💽 Exam Tip

- To reduce the number of operations you do whilst solving a system of operations, you can do a couple of things:
 - You can set up your original matrix with the equations in any order, so if one of the equations already has a lin the top left corner, put that one first
 - You do not need to make every equation so that it only has a single variable with a value of
 - l, you just need to do that for l of the equations and use that result to work out the others

Copyright © 2024 Exam Papers Practice

Worked example

Solve the following system of linear equations using algebra.

2x - 3y + 4z = 14x + 2y - 2z = -23x - y - 2z = 10

Number of Solutions to a System

How many solutions can a system of linear equations have?

- There could be
 - Iunique solution
 - No solutions
 - An infinite number of solutions
- You can determine the case by looking at the row reduced form

How do I know if the system of linear equations has no solutions?

- Systems with **no solutions** are called **inconsistent**
- When trying to solve the system after using the row reduction method you will end up with a mathematical statement which is never true:
 - Such as: 0 = 1
- The row reduced system will contain:
 - At least one row where the entries to the left of the line are zero and the entry on the right of the line is non-zero
 - Such a row is called **inconsistent**
 - For example:

How do I know if the system of linear equations has an infinite number of solutions?

Systems with at least one solution are called consistent

- © 2024 Exam Papers Practice
- When trying to solve the system after using the row reduction method you will end up with a mathematical statement which is always true
 - Such as: 0 = 0
- The row reduced system will contain:
 - At least one row where all the entries are zero
 - No inconsistent rows
 - Forexample:

$$\left[\begin{array}{cccc} 1 & B_1 & C_1 & D_1 \\ 0 & 1 & C_2 & D_2 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

How do I find the general solution of a dependent system?

- A dependent system of linear equations is one where there are infinite number of solutions
- The general solution will depend on **one or two parameters**
- In the case where two rows are zero
 - Let the variables corresponding to the zero rows be equal to the parameters λ & μ
 For example: If the first and second rows are zero rows then let x=λ & y=μ
 - Find the third variable in terms of the two parameters using the equation from the third row
 - For example: $z = 4\lambda 5\mu + 6$
- In the case where only one row is zero
 - Let the variable corresponding to the zero row be equal to the parameter λ
 For example: If the first row is a zero row then let x=λ
 - Find the remaining two variables in terms of the parameter using the equations formed by the other two rows
 - For example: $y = 3\lambda 5 \& z = 7 2\lambda$

💽 Exam Tip

- Common questions that pop up in an IB exam include questions with equations of lines
- Being able to recognise whether there are no solutions, 1 solution or infinite solutions is really useful for identifying if lines are coincident, skew or intersect!

Exam Papers Practice

© 2024 Exam Papers Practice

Worked example

$$x + 2y - z = 3$$
$$3x + 7y + z = 4$$
$$x - 9z = k$$

a) Given that the system of linear equations has an infinite number of equations, find the value of k.

