Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.10 Systems of Linear Equations

1.10.1 Systems of Linear Equations

Introduction to Systems of Linear Equations

What are systems of linear equations?

- Alinear equation is an equation of the first order (degree 1)
- This means that the maximum degree of each term is 1
- These are examples of linear equations:
- $2 x+3 y=5 \& 5 x-y=10+5 z$
- These are examples of non-linear equations:
- $x^{2}+5 x+3=0 \& 3 x+2 x y-5 y=0$
- The terms x^{2} and $x y$ have degree 2
- A system of linear equations is where two or more linear equations work to gether
- These are also called simult aneous equations
- If there are \boldsymbol{n} variables then you will need at least \boldsymbol{n} equations in orderto solve it
- Foryour exam n will be 2 or 3
- A 2×2 system of linear equations can be written as

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

- A 3×3 system of linear equations can be written as

$$
a_{1} x+b_{1} y+c_{1} z=d_{1}
$$

- $a_{2} x+b_{2} y+c_{2} z=d_{2}$

$$
a_{3} x+b_{3} y+c_{3} z=d_{3}
$$

What do systems of linear equations represent?

- The most common application of systems of linear equations is in geometry
- Fora 2×2 system
- Each equation will represent a straight line in 2D
- The solution (if it exists and is unique) will correspond to the coordinates of the point where the two lines intersect
- Fora 3×3 system
- Each equation will represent a plane in 3D
- The solution (if it exists and is unique) will correspond to the coordinates of the point where the three planes intersect

Systems of Linear Equations

Howdo Iset up a system of linear equations?

- Not all questions will have the equations written out foryou
- There will be bits of information given about the variables
- Two bits of informationfora 2×2 system
- Three bits of information fora 3×3 system
- Look out for clues such as 'assuming a linear relationship'
- Choose to assign $\boldsymbol{x}, \boldsymbol{y} \boldsymbol{\&} \boldsymbol{z}$ to the given variables
- This will be helpful if using a GDC to solve
- Oryoucan choose to use more meaningful variables if you prefer
- Such as cfor the number of cats and dfor the number of dogs

How do luse my GDC to solve a system of linear equations?

- You can use your GDC to solve the system on the calculat or papers (paper 2 \& paper 3)
- Your GDC will have a function within the algebra menuto solve a system of linear equations
- You will need to choose the number of equations
- For two equations the variables will be x and y
- For three equations the variables will be x, y and z
- If required, write the equations in the given form
- $a x+b y=c$
- $a x+b y+c z=d$
- Your GDC will display the values of x and $y($ or x, y, and $z)$

© Exam Tip

- Make sure that you are familiar with how to use your GDC to solve a system of linear equations because even if you are asked to use an algebraic method and show your working, you can use your GDC to check your final answer
- If a systems of linear equations question is asked on a non-calculatorpaper, make sure you check your final answer byinputting the values into all original equations to ensure that they satisfy the equations

Worked example

On a mobile phone game, a player can purchase one of three power-ups (fire, ice, electricity) using their points.

- Ad am buys 5 fire, 3 ice and 2 electricity power-ups costing a total of 1275 points.
- Alice buys 2 fire, 1 ice and 7 electricity power-ups costing a total of 1795 points.
- Alex buys 1 fire and lice power-ups which in total costs 5 points less than a single electricity power up.
Find the cost of each power-up.

Let x be the cost of a fire power-up
Let y be the cost of an ice power-up
Let z be the cost of an electricity power-up
Form 3 equations
$5 x+3 y+2 z=1275$
$2 x+y+7 z=1795$
$x+y=z-5 \quad x+y-z=-5$
Write in form $a x+b y+c z=d$

- Type the 3 equations into the $G D C$ and solve

Copyright $x=120, y=85, z=210$
Fire costs 120 points
Ice costs 85 points
Electricity costs 210 points

1.10.2 Algebraic Solutions

Row Reduction

Howcan Iwrite a system of linear equations?

- To save space we canjust write the coefficients without the variables
- For2 variables:: $\begin{aligned} & a_{1} x+b_{1} y=c_{1} \\ & a_{2} x+b_{2} y=c_{2}\end{aligned}$ can be writtenshorthand as $\left[\begin{array}{cc|c}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right]$
- For3 variables: $a_{1} x+b_{1} y+c_{1} z=d_{1} y+c_{2} z=d_{2}$
$a_{3} x+b_{3} y+c_{3} z=d_{3}$ can be writtenshorthand as $\left[\begin{array}{ccc|c}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right]$

What is a row reduced system of linear equations?

- A system of linearequations is in row reduced form if it is written as:

Copyright . It is very helpful if the values of A_{7}, B_{2}, C_{3} are equal to 1

What are rowoperations?

- Rowoperations are used to make the linear equations simpler to solve
- They do not affect the solution
- Youcanswitch any two rows
- $\left[\begin{array}{lll|l}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right]$ can be written as $\left[\begin{array}{lll|l}a_{3} & b_{3} & c_{3} & d_{3} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{1} & b_{1} & c_{1} & d_{1}\end{array}\right]$ using $r_{7} \leftrightarrow r_{3}$
- This is us eful for gettingzeros to the bottom
- Orgetting a one to the top
- You can multiply any row by a (non-zero) constant
- $\left[\begin{array}{lll|l}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right]$ can be written as $\left[\begin{array}{ccc|c}a_{1} & b_{1} & c_{1} & d_{1} \\ k a_{2} & k b_{2} & k c_{2} & k d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right]$ using $k \times r_{2} \rightarrow r_{2}$
- This is useful for getting a 1 as the first non-zero value in a row
- Youcanadd multiples of a row to another row
- $\left[\begin{array}{lll|l}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right]$ can be written as $\left[\begin{array}{ccc|c}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2}+5 a_{3} & b_{2}+5 b_{3} & c_{2}+5 c_{3} & d_{2}+5 d_{3} \\ a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right]$ using $r_{2}+5 r_{3} \rightarrow r_{2}$
- This is us eful for creating zeros underal

Howcan Irow reduce a system of linear equations?

- STEP 1: Get a 1 in the top left corner
- Youcan do this by dividing the row by the current value in its place
- If the current value is O or an awkward number then you can swap rows first
- $\left[\begin{array}{ccc|c}1 & B_{1} & C_{1} & D_{1} \\ * & * & * & * \\ * & * & * & *\end{array}\right]$
- STEP 2: Get 0's in the entries below the 1
- Youcan do this by adding/subtracting a multiple of the first row to each row
- $\left[\begin{array}{ccc|c}1 & B_{1} & C_{1} & D_{1} \\ 0 & * & * & * \\ 0 & * & * & *\end{array}\right]$
- STEP 3: Ignore the first row and column as they are now complete
- Repeat STEPS 1-2 to the remaining section
- Get a 1: $\left[\begin{array}{ccc|c}1 & B_{1} & C_{1} & D_{1} \\ 0 & 1 & C_{2} & D_{2} \\ 0 & * & * & *\end{array}\right]$
- Then O und erneath: $\left[\begin{array}{ccc|c}1 & B_{1} & C_{1} & D_{1} \\ 0 & 1 & C_{2} & D_{2} \\ 0 & 0 & * & *\end{array}\right]$
- STEP 4: Get a 1 in the third row
- Using the same idea as STEP 1

Exam Papers Practice

- $\left[\begin{array}{ccc|c}1 & B_{1} & C_{1} & D_{1} \\ 0 & 1 & C_{2} & D_{2} \\ 0 & 0 & 1 & D_{3}\end{array}\right]$

Howdo Isolve a system of linear equations once it is in rowreduced form?

- Once you row reduced the equations you can then convert back to the variables
- \(\left[\begin{array}{ccc|c}1 \& B_{1} \& C_{1} \& D_{1}

0 \& 1 \& C_{2} \& D_{2}

0 \& 0 \& 1 \& D_{3}\end{array}\right]\) corresponds to | $x+B_{1} y+C_{1} z=D_{1}$ |
| ---: |
| $y+C_{2} z=D_{2}$ |
| $z=D_{3}$ |

- Solve the equations starting at the bottom
- You have the value for zfrom the third equation
- Substitute zinto the second equation and solve fory
- Substitute zand y into the first each and solve for x

- Exam Tip

- To reduce the number of operations you do whilst solving a system of operations, you can do a couple of things:
- Youcan set up your original matrix with the equations in anyorder, so if one of the equations already has alin the top left corner, put that one first
- Youdo not need to make every equation so that it only has a single variable with a value of 1, you just need to do that for 1 of the equations and use that result to work out the others

© 2024 Exam Papers Practice

Worked example

Solve the following system of linear equations using algebra.

$$
\begin{aligned}
2 x-3 y+4 z & =14 \\
x+2 y-2 z & =-2 \\
3 x-y-2 z & =10
\end{aligned}
$$

Exam Papers Practice

Write without the variables $\left[\begin{array}{ccc|c}2 & -3 & 4 & 14 \\ 1 & 2 & -2 & -2 \\ 3 & -1 & -2 & 10\end{array}\right]$
Swap rows to get 1 in top left comer $\left[\begin{array}{ccc|c}1 & 2 & -2 & -2 \\ 2 & -3 & 4 & 14 \\ 3 & -1 & -2 & 10\end{array}\right] R_{1} \leftrightarrow R_{2}$
Add multiples of R_{1} to R_{2} and R_{3}
to get zeros under the 1 $\left[\begin{array}{ccc|c}1 & 2 & -2 & -2 \\ 0 & -7 & 8 & 18 \\ 0 & -7 & 4 & 16\end{array}\right] \begin{aligned} & R_{2}-2 R_{1} \rightarrow R_{2} \\ & R_{3}-3 R_{1} \rightarrow R_{3}\end{aligned}$
Multiple the second row to get a l

Repeat the steps $\left[\begin{array}{ccc|c}1 & 2 & -2 & -2 \\ 0 & 1 & -\frac{8}{7} & -\frac{18}{7} \\ 0 & 0 & -4 & -2\end{array}\right] R_{3}+7 R_{2} \rightarrow R_{3}\left[\begin{array}{ccc|c}1 & 2 & -2 & -2 \\ 0 & 1 & -\frac{8}{7} & -\frac{18}{7} \\ 0 & 0 & 1 & \frac{1}{2}\end{array}\right] R_{3} \times-\frac{1}{4} \rightarrow R_{3}$
Write out the equations starting at the bottom
Exa

$$
\begin{aligned}
& z=\frac{1}{2} \\
& y=\frac{8}{7} z=-\frac{18}{7} \quad \Rightarrow y-\frac{4}{7}=-\frac{18}{7} \Rightarrow y=-\frac{14}{7}=-2 \\
& x+2 y-2 z=-2 \Rightarrow x-4-1=-2 \Rightarrow x=3 \\
& x=3, y=-2, z=\frac{1}{2}
\end{aligned}
$$

Number of Solutions to a System

How many solutions can a system of linear equations have?

- There could be
- lunique solution
- No solutions
- Aninfinite number of solutions
- You can determine the case bylooking at the row reduced form

How do Iknow if the system of linear equations has no solutions?

- Systems with no solutions are called inconsistent
- When trying to solve the system after using the row reduction method you will end up with a mathematical statement which is never true:
- Suchas:0=1
- The row reduced system will contain:
- At least one row where the entries to the left of the line are zero and the entry on the right of the line is non-zero
- Such a row is called inconsistent
- Forexample:
- Row 2 is inconsistent $\left[\begin{array}{ccc|c}1 & B_{1} & C_{1} & D_{1} \\ 0 & 0 & 0 & D_{2} \\ 0 & 0 & 1 & D_{3}\end{array}\right]$ if D_{2} is non-zero

How do Iknowif the system of linear equations has an infinite number of solutions?

- Systems with at least one solution are called consistent
- The solution could be unique orthere could be an infinite number of solutions
- When trying to solve the system after using the row reduction method you will end up with a mathematical statement which is always true
- Suchas: O=0
- The row reduced system will contain:
- At least one row where all the entries are zero
- No inconsistent rows
- Forexample:
$\cdot\left[\begin{array}{ccc|c}1 & B_{1} & C_{1} & D_{1} \\ 0 & 1 & C_{2} & D_{2} \\ 0 & 0 & 0 & 0\end{array}\right]$

How do Ifind the general solution of a dependent system?

- Adependent system of linear equations is one where there are infinite number of solutions
- The general solution will depend on one or two parameters
- In the case where two rows arezero
- Let the variables corresponding to the zero rows be equal to the parameters $\lambda \& \mu$
- For example: If the first and second rows are zero rows then let $x=\lambda \& y=\mu$
- Find the third variable in terms of the two parameters using the equation from the third row
- For example: $z=4 \lambda-5 \mu+6$
- In the case where only one row is zero
- Let the variable corresponding to the zero row be equal to the parameter λ
- For example: If the first row is azero row then let $x=\lambda$
- Find the remaining two variables interms of the parameter using the equations formed by the othertwo rows
- For example: $y=3 \lambda-5 \& z=7-2 \lambda$

- Exam Tip

- Common questions that pop up in an IB exam include questions with equations of lines
- Being able to recognise whether there are no solutions, l solutionorinfinite solutions is really us eful for identifying if lines are coincident, skew or intersect!
© 2024 Exam Papers Practice
(.) Worked example

$$
\begin{array}{r}
x+2 y-z=3 \\
3 x+7 y+z=4 \\
x-9 z=k
\end{array}
$$

a) Given that the system of linear equations has an infinite number of equations, find the value of k.

Write without the variables

$$
\left[\begin{array}{rrr|r}
1 & 2 & -1 & 3 \\
3 & 7 & 1 & 4 \\
1 & 0 & -9 & k
\end{array}\right]
$$

Use the row reduction method
$\left[\begin{array}{ccc|c}1 & 2 & -1 & 3 \\ 0 & 1 & 4 & -5 \\ 0 & -2 & -8 & k-3\end{array}\right] \begin{gathered}r_{2}-3 r_{1} \rightarrow r_{2} \\ r_{3}-r_{1} \rightarrow r_{3}\end{gathered}\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 0 & 1 & 4 & -5 \\ 0 & 0 & 0 & k-13\end{array}\right] r_{3}+2 r_{2} \rightarrow r_{3}$
There are an infinite number of solutions if a row is zero

$$
k-13=0
$$

$k=13$
b) Find a general solution to the system.

The third row is zero so let the third variable (z) equal a parameter
$z=\lambda$
Use equations to find expressions for the other variables

$$
\begin{aligned}
& y+4 z=-5 \quad \Rightarrow y+4 \lambda=-5 \quad \Rightarrow \quad y=-4 \lambda-5 \\
& x+2 y-1=3 \quad \Rightarrow x-8 \lambda-10-\lambda=3 \Rightarrow x=9 \lambda+13 \\
& x=9 \lambda+13, y=-4 \lambda-5, z=\lambda \text { for } \lambda \in \mathbb{R}
\end{aligned}
$$

