

Page 1 of 32

1.1 Programming part 3 Mark schemes.

Page 2 of 32

Mark schemes

Q1.
(a) Do not use any global variables// use only local variables and/or parameters;

A Can be compiled independently // can be placed in a library
1

(b) Local and global variables with the same name can be misidentified//difficult
to test individual procedures/ functions//
Not clear that as a side-effect of executing procedure/function a global
variable could change its value;

1

[2]

Q2.
(a) It calls itself / is defined in terms of itself / contains within its body a reference

to itself;

Ensure ‘it’ refers to procedure, if meaning program or object no mark
1

(b) The current state of the machine is saved/preserved;
So can return correctly (to previous invocation/call of Process);
OR

Return address / procedure parameter / status register / other register values /
local variables must be saved/preserved;
So can return correctly to “correctly’ can be implied (previous invocation of

Process);
2

(c) Printed Output:
1; 3; 5, Bird; Bremner; 4, Fortune, Jones; 2, Smith;

Mark from left and stop marking when error encountered
Ignore punctuation.

6

(d) (in-order) traversal of a tree; A printing of tree (elements in order)
I wrong order

1

[10]

Q3.
(a) Integer;(1) R long integer

Whole numbers only // cannot have fractions // discrete number;(1)

R not a decimal number
2

(b) Text / string / alphanumeric;(1)
R numeric
Need a string as number would lose leading zero // not for calculations //
because telephone numbers can contain non-digit characters;(1)

2

Page 3 of 32

(c) Boolean // yes-no // logical // subrange with 2 possible values only; (1)
R tick box
R string[1]
R character
Only two possible values;
It’s a yes/no answer; (1)

2

(d) Real // single // floating point // float // fixed point; (1)
R double
R decimal
Average may be a fractional number // need decimal point / places; (1)
R decimal/decimal number on its own (n.e.)
A answer may not be an integer/integral/whole number

Reason marks independent of data types
2

[8]

Q4.
(a) (i) Var S: String // Var Count: Integer // Var Size: Integer;

1

(ii) If Size > 0 // If Size >0 Then // If Size > 0 Then EndIf ;
1

(iii) S := “fred” // Size := Length(S);
1

(iv) For Count := 1 to Size Do // For Count := 1 to Size Do EndFor;
1

(b) (i)

Subroutine Procedure Function

Length

ToUpper

2

(ii) Function returns a value // function has a (data) type //
Function appears in an expression //

Function appears on the RHS of an assignment statement;
Procedure does not have to return a value //
Procedure forms a statement on its own;

2

[8]

Q5.
(a) (i) Const MaxChars=5;

1

(ii) Message : Array[1..MaxChars] Of Char//
LastChar : Integer//
Position : Integer//

Page 4 of 32

Found : Boolean;
I var

1

(iii) Position := Position + 1//
Message[Position] := c//
Position := 0//
Found := FALSE//

Found := TRUE//
Find := Position//
Find := 0;

1

(iv) If LastChar < MaxChars (Then ….)//
If Message[Position] = c (Then ….)//
If Found (Then …..);

1

(v) While (Position < LastChar) And Not Found (Do …);
1

(b) (i) Found;
R var
I type

1

(ii) Message// LastChar// Position;
R var

I type
1

(iii) c;
I type

1

[8]

Q6.

(a) A procedure/routine which calls itself//is defined in terms of itself;
R re-entrant
A function instead of procedure
R program iteration Talked Out (no mark)

1

(b) (i)

E L H M List[M] Printed
Output

6502 1 11 ; 6 5789 ;

6502 7 11 ; 9 8407 ;

6502 7 8 ; 7 6502 ;

 True;

Accept True in row 3

Page 5 of 32

Marks in each row for all three/two parts correct
Accept empty cell to mean: same as in previous row.
Stop marking when logic goes wrong

7

(ii) Binary search;;
Search;
R any other type of search

2

[10]

Q7.
(a) It calls itself / is defined in terms of itself / is re-entrant / contains within its

body a reference to itself;

Ensure ‘it’ refers to procedure, if meaning program or object no mark
1

(b) The current state of the machine must be saved/preserved so can return
correctly to previous invocation of B;
OR
Return address / procedure parameter / status register / other register values /
local variables must be saved/preserved so can return correctly to previous
invocation of B);

1

(c)

Call Number Parameter

1 53

2 26

3 13

4 6 ;

5 3 ;

6 1 ;

Printed Output: 1 1 0 1 0 1;;;

1 mark for each correct pair of bits
Mark from left and stop marking when error encountered ignore punctuation. if

more than 6 bits give a max of 2 marks
6

(d) Conversion (of a denary number) into binary;
1

[9]

Q8.

(a) (i) Var S1: String / Var S2: String / Var Ptr : Integer / Var L :

Page 6 of 32

String; 1

(ii) IF S1 = S2;
1

(iii) For Ptr := 1 To 3 Do;
1

(b)

subroutine procedure function

copy Y;

concat Y;

print Y;

3

(c)

S1 Ptr L S2

“PAT” ““

 1 “P” “P”

 2 “A” “AP”

 3 “T” “TAP”

Printed Output: False

8

If S2 at end contains “PAT” then f.t. for True;
(If S2 does not contain “TAP” check that printer output is correct
Depending on what is in S1 and S2 in the candidate’s answer)
1 mark for each correct entry, 1 mark for S1 correctly left as “PAT” or empty

[14]

Q9.
(a) Any two at two each; If entrance method doesn’t match exit method mark one

wrong and the other correct

R Voice R Written to ticket

Computer system/Printer prints number on ticket at entrance;
Driver types number into system using a keypad at exit barrier;

Computer system encodes number on a magnetic stripe on ticket at entrance;
R Magnetic card
Ticket number read by a magnetic stripe reader at exit//inserted into a
magnetic stripe reader at exit; A magnetic strip/stripe scanner

Computer system/Printer prints number printed on ticket at entrance;
Number read by an optical character reader/OCR at exit//ticket inserted into an
optical character reader at exit;

Page 7 of 32

Computer system/Printer prints number in barcode form on ticket at entrance;
Number read by barcode reader at exit//ticket inserted into barcode reader at
exit;

Computer system/Printer at entrance punches holes on ticket which are a
coded form of number//Kimbal tag produced at entrance which encodes
number;
Number read by sensor (mechanical or optical) at exit//ticket inserted into
sensor at exit//Number read by Kimball tag reader at exit;

Computer system/printer prints number using magnetic ink;

At exit MICR reader reads number;

Computer system/printer prints marks (encoding number) on ticket;
At exit, OMR device is used;

4

(b) R any other data types. Mark is for field name + correct data type.

NB synonyms for RandomNumber must include Number, e.g. IDNo, TicketNo,
Number. A RandomInteger, R e.g. Vehicle ID A VehicleIDNo

A DateTicketWasIssued
Record

 RandomNo : Integer;

R anything else
1

CurrentDate :

 String/Date/DateTime/TDateTime/TDate;

1
 ArrivalTime :

 String/Integer/Time/DateTime/TDateTime/TTime;

1
 LengthOfTime/LengthOfStay/TimeStayed : Integer;

R anything else
1

 Cost/AmountToPay : Integer/BCD;

1
End;

A Alphanumeric for String
R Text R LeavingTime R Binary,Byte,LongInteger
R Date for FieldName
R Date/Time but don’t penalise twice

[9]

Q10.
(a) Head (Tail (Days)) = Mon

R [Mon], MON (1)

Tail([Head(Days)]) = [] (1)

Empty(Tail(Tail(Tail(Days))))=False (1)
3

(b) Elements in a list can only be accessed sequentially;
elements in an array can be accessed directly;

Page 8 of 32

using the subscript;

Any 2 points
2

[5]

Q11.

(a) (i) Const Max = 200;
1

(ii) EndOfList := False / Ptr := 1 / EndOfList := True / Ptr := Ptr +1;
A without :

1

(iii) If Ptr > Max Then …../ If EndOfList (Then) …..;
1

(iv) While WantedName < > Member[Ptr].Name And Not EndOfList Do …;
A While …. End While;

1

(b) (i) Tmember;
A (Type) Tmember = Record;

1

(ii) WantedName;

A WantedName: String;
R whole line

1

(iii) EndOfList; A (Var) EndOfList: Boolean;
1

(c) When the programmer wants to change the value it only needs changing in
the declaration;
Can’t be changed accidentally/by the program; easier to understand/ debug
program;

A less error prone;
R easier to read;

1

(d) (i) Because the age would need to be manually updated when it’s
someone’s birthday;
A an answer which implies age changes value; I lack of accuracy

1

(ii) Store the date of birth and calculate the age from that and today’s date;
A date of birth on its own

1

(e) TRUE and FALSE / 1 and 0 / 0 and –1 / on and off / Yes and No / high and
low;

1

[11]

Q12.

(a) (i) Assembler;

Page 9 of 32

1

(ii) Interpreter / compiler;
Max 1

(b) Problem oriented;
Portable; machine independent;

One-to-many mapping of HLL statement to machine code statement;
Datatypes; structured statements; local variables; parameters; data structures;
A example of a datastructure;

Named variables; named constants; English-like keywords/commands;
Quick/easy to understand / write / debug / learn / maintain;
R quick/ easy to use
R modular
R procedures
R takes longer to translate
R closer to English

Max 2

(c) Easier to understand / more transparent; less error prone; easier to maintain /
change (if the value changes);

Allow by example
eg if VAT rate changes only need to change value in declaration

Max 1

(d) (i) Accept any imperative HLL such as Pascal/VB/C/C++/PL1/Cobol;

SEE TABLE FOR DIFFERENT LANGUAGE EXAMPLES FOR (ii) & (iii)
Ignore line breaks in statements

1

(ii) 1 mark for correct key words in correct order (shown in bold in table
overleaf); 1 mark for correct Boolean expression / loop control
expression ;

2

(iii) 1 mark for correct key words in correct order (shown in bold in table
overleaf); 1 mark for correct boolean expression;

2

If (i) does not match (ii) and (iii) do not give marks for (ii) and (iii)
If candidate names a language you are not familiar with, contact your
team leader

Language Bool

expr
Iteration
....are possible statements(ignore)

Selection
....are possible statements(ignore)

Pascal
Delphi
Kylix

a>b
a=b
a< >b

a<b
a>=b
a<=b

FOR <variable>:= <value1> TO
<value2> DO
REPEAT

UNTIL <bool expr>
WHILE <bool expr>
DO

IF <bool expr> THEN
else part optional
CASE <variable> OF

<value1>.....
<value2>......
ENDCASE
else part optional.

No of values can vary

Visual Basic

VSScript

a>b

a=b
a< >b
a<b
a>=b

a<=b

FOR <variable> = <value 1> TO

<value2>
.....
NEXT
DO WHILE/UNTIL <bool expr>

.....LOOP
DO

IF <bool expr> THEN

.....
END IF
Else part optional
SELECT CASE <variable>

CASE <value1>
.....

Page 10 of 32

LOOP UNTIL/WHILE <bool expr>
WHILE <bool expr>
WEND

CASE <value2>
.....
End Selct

Else part optional
No of CASE values can vary

C/C++
Java
Javascript

a>b
a==b
a!=b
a<b

a>=b
a<=b

FOR (<initialisation>; <condition>;
<increment>).....
WHILE (bool expr) DO

IF (bool expr) { }
Else part optional
SWITCH () {CASE <value>:
BREAK}

No of CASE values can vary

COBOL a>b
a=b
a< >b

a<b
a>=b
a<=b

PERFORM<number> TIMES
PERFORM VARYING
<variable> FROM <value>BY

<value> UNTIL <bool expr using
variable>

IF <bool expr> PERFORM
Else part optional

Fortran a.LT.b
a.GE.b

a.LE.b
a.GT.b
a.NE.b
a.EQ.b

DO <number> < variable>=
<init value> <final value>

step value optional

IF <bool expr>
IF (<arithmetic expr>) label1,

label2, label3

Basic a>b
a=b

a< >b
a<b
a>=b
a<=b

FOR <variable> = <start value> TO
<stop value>

....
NEXT <variable>
step value optional
REPEAT

....
UNTIL <bool expr>

IF <bool expr> THEN
GOTO label1, label2, label3

DEPENDING ON <variable>

2

[10]

Q13.
Reason mark not dependent on correct data type

(a) Integer/byte; R long integer

Whole numbers only/ can NOT have fractions/ discrete number;
R not a decimal number

2

(b) Text / string / alphanumeric; R numeric
Need a string as number would lose leading zero / not for calculations /
because telephone numbers can contain non-digit characters;

2

(c) Boolean / yes-no / logical / subrange with 2 possible values only;

R tick box
R string [1]
R character

Only two possible values; it’s a yes/no answer;
2

(d) Real / single / floating point / fixed point
R double
R decimal.

Average may be a fractional number / need decimal point/places
R answer may not be an integer/integral/whole number

A answer may not be an integer/integral/whole number

Page 11 of 32

If number already implied from data type given;
2

[8]

Q14.
(a) To give a set of statements a name;

To avoid repeating code; procedures can be called up many times; so a
program may be developed by more than one programmer;
To enable top-down development;
To enable stub-testing; so libraries of code written by other programmers may
be used;
For creating libraries of code;
Allows for modular programming; allows for modular testing;
To make program easier to debug / maintain / understand;

Max 2

(b) To pass data/value within programs / to pass data/value in and out of

procedures/functions;
1

[3]

Q15.
(a) CONST max=5;

1

(b) VAR Tptr: INTEGER/
VAR store: ARRAY[1..max] OF CHAR/

VAR ptr: INTEGER;

1

(c) ptr;
1

(d) Tptr/store;
1

(e) a;
1

(f) Tptr := Tptr +1/
store[Tptr] := a /2

take := store[1]/

Tptr := Tptr –1/

store[ptr]:= store[ptr+1];

1

(g) IF Tptr<max THEN…./
IF Tptr>0 THEN…..;

1

(h) FOR ptr:=1 TO Tptr DO …..;
not case sensitive

1

[8]

Q16.

Page 12 of 32

(a) Tail(Ports) - [Barcelona, Athens, Alexandria, Tunis, Lisbon]

square brackets needed
1

Head(Tail(Tail(Ports))) – Athens (2)

[Athens] (1)
2

Empty(T(T(T(T(T(T(Ports))))))) – True (2)

True [] (1)

[True] (0)
2

(b) Recursively defined
A definition which is defined in terms of itself/contains within its body a
reference to itself/calls itself ;
A re-entrant; (In specimen papers 2001/2, but refers specifically to a
procedure)

1

(c) Stack necessary
The state of the machine/contents of appropriate registers/ return address //
saved each time the procedure is called (1) and retrieved in reverse order from
the stack as control is progressively returned (1)
OR
Different value of parameters /local variables (1) must be available each time
procedure is called (1)
OR
P must be re-entrant (In specimen papers 2001/2)(2)

2

(d) Lisbon first (1)
Southampton last(1)
All 6 in order (1)
No punctuation (1)

i.e. Lisbon Tunis Alexandria Athens Barcelona Southampton;
4

(e)

2

Page 13 of 32

[14]

Q17.
(a) Easier maintenance/upgradeable; can get an overview of system;

Quicker to write/Easier development; can break problem down into sub tasks/
can re–use modules/ distribute among team;
R easier to read so can get a team to write program;
More systematic testing; can test a module at a time;

Fewer mistakes made; clear organisation of code;
Quicker/easier to debug; easier to see where errors are;
Fewer lines of code using subroutines; code not duplicated;

(1 mark for reason, 1 mark for explanation
OR 2 marks for good explanation per point)

Max 4

(b) Structured statements such as iteration / selection;
Use of Procedures / functions/subroutines/modules/libraries;
User defined data types; built–in data types; Data structures;
Can choose sensible names for identifiers;

English–like keywords / constructs; Indentation; Comments;
Use of local variables; parameters; named constants;
R closer to natural language/ almost written in English
R machine independent / problem oriented / top–down

Max 3

(c) Compiler translates whole source code into object/machine/runnable code /
exe file;
Compiled program runs faster than interpreted program;
Interpreter translates line by line as it executes/is running;
Interpreter must be in memory to execute program; compiler only needed
during translation stage, not during execution of program.;

interpreter runs one line at a time;
Max 2

[9]

Q18.
(a) Integer/Byte (1)

Whole numbers only / can not have fractions / discrete number (1)
2

(b) Real / single / floating point / fixed point; R double (1)
Average may be a fractional number / need decimals (1)

2

(c) Text / string (1)
Need string as number would lose leading zero/ not for calculations / because
telephone numbers can contain non-digit characters (1)

2

[6]

Q19.
(a) (i) VAR/CONST/TYPE/DIM/FUNCTION/PROCEDURE/LABEL

Or similar, name and type;; keyword and name;;
2

Page 14 of 32

(ii) Eg x:=5 / y ← y – 1
1

(iii) Example of IF / CASE / SWITCH statement

(1 mark for keyword, 1 mark for selection criteria)
2

(b) (i)

1 mark for each correct entry
10

(ii) Algorithm: reverse content of array
R re-arrange

1

[16]

Q20.

(a) (i) Value passed into, or out of, procedure from / to calling program
1

(ii) Variable defined outside any procedure and so in scope for whole
program

1

(b) Saves memory since parameter takes no space when not in use
Enables portability of procedures / blackbox programming / incorporation of
procedures into library

Enables re-using of variable / identifier names for formal parameters without
interfering with other procedures
Passing by value prevents accidental alteration of a value having unexpected
side-effects in other procedures
1 mark for a relevant point

1

[3]

Q21.

Page 15 of 32

(a) Causes process to repeat indefinitely

NOT repeats until maintain is TRUE
1

(b) Maintain has two values, TRUE / FALSE (1), => must be Boolean (1) n is
used as an array subscript (1) => must be integer (1) or n is used as a loop
control and can never be non-integer within the algorithm (1) => integer (1)

NOT numeric - too vague
4

(c) See table for model solution 1 mark each indicated section completed
correctly, including follow–through (7x1); additional 1 mark for correctly
modifying n downwards in penultimate section If candidates go completely
wrong but clearly deserve some credit marks can be awarded on the following
criteria, up to a maximum of 2 marks for correct sequence of loop repetitions,
including the change from 6 to 5 then 6 - i.e. the column for n, including
correct exit 2 marks for correct completion of the sequence of stations, ie the
org, dest, start, finish columns

2 marks for correct completion of totalkm column, i.e. correct lookups and

totalling 2 marks for correctly executing inner if branches, i.e. setting maintain
and resetting totalkm in correct places. Total 8 marks for all-correct trace
follow-through marks should be awarded where appropriate

8

(d) 2 marks for diagram, or explanation, showing that the journeys indicated
above cover all routes in both directions marks can be awarded for any
reasoned answer (indicating achievement or not) providing it is consistent with
the candidate’s trace table Note: the sequence is MK -> SW -> CW -> SW ->

TW -> HK -> MK -> QB -> SW etc., which does cover all lines in both
directions. Strictly speaking, whether the objective is achieved depends

whether journeys to/from MK depot are passenger-carrying / revenue-earning
or not. Either interpretation is acceptable - the marks are awarded for the
explanation.

n org dest last start finish totalkm maintain Remarks

 0 3 1

 FALSE

 MK

 SW

 15

 3

0

Given

Page 16 of 32

1

 4 if ignored

 SW if ignored

 CW

 +27 =
42

 4 N<6 so rpt

1 mark

2

 3 if ignored

 CW if ignored

 SW

 +27 =
69

 3 N<6 so rpt

1 mark

3

 1 if ignored

 SW if ignored

 TW

 +37=106

 1 N<6 so rpt

1 mark

4

 5 if ignored

 TW if ignored

 HK

Page 17 of 32

 +34=140

 5 N<6 so rpt

5

1 mark

 2 if ignored

 0 >140 so if
executed

 5

 True

 HK

 MK

 +12=152

 0 N<6 so rpt

1 mark

6 TRUE so if
executed

5

 0

 False

 2

 if ignored

 MK

 QB

 +28 =
28

 2 N<6 so rpt

1 mark

6

Page 18 of 32

 3 if ignored

 QB if ignored

 SW

 +43 =
71

 3

 N = 6 so
stop
repeat
loop

 end while

1 mark
2

[15]

Q22.
(i) 10110000

1

(ii) 00110010
1

(iii) 00000001
1

(iv) 10001011
1

[4]

Q23.
(a) 00001000

1

(b) Or / XOr
1

[2]

Q24.
Statements must be sufficient to demonstrate general principle e.g.

(a) X: =Y+Z;
1

(b) IF X>l0 THEN PRINT “GOOD”../CASE OF / SWITCH;
1

(b) WHILE X<10 DO.X=X+1../REPEAT...UNTIL X=l0/FOr X=l TO 10 DO;

Page 19 of 32

1

1 mark for each example
Max 3

[3]

Q25.

(a) Variable with only two possible values, e.g. true/false, on/off
1

(b) (i) FALSE

(ii) TRUE

LY = F AND (NOT F OR F) = F AND (T OR F) = F AND T = F

LY = T AND (NOT T OR T) = T AND (F OR T) = T AND T = T

1 mark each
2

[3]

Q26.
(a) Information passed to / from a function or procedure to define the values it is

to use - e.g. in calling OPENSCREEN, the values “Admin Computer” and 10
[actual or real parameters] are to be used as the values of COMPUTERNAME
and CHANNEL [formal parameters or placeholders]

3

(b) Enables same function to be used in a number of contexts, enables
“black-box” programming, or enables different programmers to work on

various modules

Accept: saves memory by not using global variables, or prevents inadvertent
modification of variables in a procedure

2

(c) As a series of contiguous / consecutive memory locations
1

(d) Extract a character from the MSG array, at the position indicated by COUNT
Call the SENDCHARACTER function, passing it CH and other data Increment

COUNT and COL
Repeat the process as long as CH does not have the value 13 [4 important
points are: repetition, what condition determines whether to repeat (examine
current value of CH variable), if condition is true what happens (execute block
to endwhile), effect of instructions in loop (next character in sequence sent to
other computer and screen coordinates adjusted)]

4

(e) Prints one of the specified messages, depending on the value of ERR
2

(f) Would be too long for the MSG array and so might overwrite other data or
code
Accept: data truncated, interpreter produces runtime error (array bounds

Page 20 of 32

exceeded), compiler error causes program build to abort
1

[13]

Q27.
See trace table below. Sections corresponding to marks are shaded.

1 mark for newstring, message and procedure call correct. 1 mark for x and piece
correct. 1 mark for outstring correct. 1 mark for changing x and a. 1 mark for tracing
the second call to docharacter. 1 for section correct. 1 mark for third call correct. 1
mark for endprocs all correctly traced. 1 mark for outputs correct

   Trace table 

 New string message a Out string x piece x>0? a Out string x piece x>0? a Out string x

piece x>0? output marks

Input message CAT

New string: = “” ‘’’

Output message CAT

Docharacter (message,

new string)

 CAT ‘’’

x :=1en(a) 3

Piece := Right$(a,1) T

Outstring:=outstring+piec
e

 T

x := x-1 2

If x>0 then true

a= Left$(a,x) CA

Docharacter (message,
new string)

 CA T

x :=1en(a) 2

Piece :=Right$(a, 1) A

Outstring: =

outstring+piece

 TA

x :=x-1 1

If x>0 then true

a= Left$ (a, x) C

Docharacter (message,
new string)

 C TA

x :=1en(a) 1

Piece :=Right$(a, l) C

Outstring: =
outstring+piece

 TAC

x :=x-1 0

If x>0 then false

Endif

endproc C TAC

Endif

endproc C TAC

Endif

endproc TAC C

Output new string TAC

Note that there is no need to trace a and outstring separately in each cell as there
are parameters passed by reference. If they are included in the trace then recursive
calls must be shown. X and piece must be shown as additional columns for each
cell.

[9]

Q28.

(a) (i) 00000010
AND

1 for mask. 1 for AND
2

(ii) 10000000
OR

Page 21 of 32

1 for mask. 1 for OR
2

(b) Repeat
 Test active

 If active = true then

 Test external motion sensor

 If external motion sensor = true then

 security light: = on

 else

 security light: = off

 endif

 Test internal motion sensor

 Test window contact

 Test door contact

 If ((internal motion sensor = true)or (window contact =

false)or

 (door contact = false)) then

 Alarm: =on

 else

 Alarm off

 endif

 endif

until set = false

1 mark for suitable loop including termination.
1 mark for testing set.
1 mark for If correctly used with endif.
1 mark for testing external sensor and handling light.
1 mark for testing all three sensors (and alarm on.)
2 marks for a single if construct, just 1 if there are 3 separate ifs

7

[11]

Q29.
(a)

Labelling must clearly indicate term
3

(b)

Page 22 of 32

Must clearly indicate subsets
2

(c) A procedure which is defined in terms of/ calls itself /re-entrant
1

(d) State of machine/return address/parameter (1) needs to be stored/held (1) to
enable a previous execution of T to be resumed (1)

Or
So that each call to T(1) can pass(1) a new value of the parameter(1)

3

(e)

Call Number Parameter

1 tree('*', tree('+', tree('A', empty,empty), tree('B',empty,empty)),
 tree('-', tree('C', empty,empty), tree('D',empty,empty)),
)

2 tree('+', tree('A',empty,empty), tree('B',empty,empty))

3 tree('A',empty,empty),

4 tree('B',empty,empty), (1)

5 tree('-', tree('C',empty,empty),tree('D',empty,empty)) (1)

6 tree('C',empty,empty), (1)

7 tree('D',empty,empty), (1)

Page 23 of 32

10

(f) In-order traversal
1

[20]

Page 24 of 32

Examiner reports

Q1.
This question showed that many candidates have not had sufficient exposure to

programming techniques.

Parts (a) and (b) often showed up the candidates’ inability to express themselves clearly.

(a) Many candidates described recursion. Those that didn’t often restated the question.
Only the very best candidates were able give a satisfactory answer.

(b) The responses to this part were also very disappointing. Answers were often
irrelevant and/or badly expressed.

Q2.
Part (a) and (b) have been asked many times before. However, many candidates were
unable to explain how a stack is used in the execution of a recursive procedure. Correct
responses included that the return address (held in the program counter) and other
register values are saved so control can return correctly to the previous invocation of the

procedure. Many candidates gained full marks for stating, correctly, the printed output
after dry-running the procedure. However, many others could not even get the first few
printed items in the correct order.

Many candidates correctly spotted that the procedure described an in-order traversal of a
tree.

Q3.
This question enabled candidates to score well but many candidates were unable to give
satisfactory data types.

(a) It was important that candidates recognised that the number of students in a school
will be a whole number.

(b) It was pleasing to see the number of candidates who now appreciate that an issue
with the storing of telephone numbers is the possible loss of a leading 0.

(c) Most candidates were able to answer this part correctly.

(d) Candidates found this part the most difficult. Even when they realised that the
number to be stored would involve fractions and gave a suitable data type they often
failed to obtain the second mark. Candidates often gave very poor descriptions.

Q4.
(a) The variable declaration was normally identified. Many candidates found it difficult

to identify selection, assignment and iteration statements correctly. This suggests
that they have not had sufficient exposure to programming techniques.

(b) It was very disappointing to see how few candidates understand the difference
between a function and a procedure. There were many confused and completely
incorrect answers. Although there were many correct answers to part (i), few
candidates obtained full credit for part (ii). Although many candidates were able to

state that a function returned a value, few were able to give the main features of a

Page 25 of 32

procedure.

Q5.
(a) Some candidates failed to obtain marks when they failed to copy complete

statements. It was surprising how many candidates were unable to identify an
assignment statement and also how many candidates confused selection and
iteration.

(b) This part was not answered as well as (a). Few candidates seem to be clear about
global variables and even fewer were able to identify a parameter.

Q6.
(a) Most candidates could correctly state that recursively defined means that a

procedure is defined in terms of itself or that it calls itself. Some candidates failed to
gain marks because they could not express this clearly enough. A common
misconception was that the procedure was in a loop.

(b) Many candidates managed to gain full marks for completing the trace table:

E L H M List[M] Printed
Output

6502 1 11 ; 6 5789 ;

6502 7 11 ; 9 8407 ;

6502 7 8 ; 7 6502 ;

 True;

A common mistake was to have False as printed output in the first 2 rows until it
changed to True.

Some candidates who correctly completed the trace table could not see that the
process was a binary search and some who did not complete the table correctly did
manage to identify the process correctly.

Candidates should be aware of the need to fill in trace tables carefully, showing how
values change chronologically. This may mean leaving some cells empty if no
values are assigned to variables initially.

Q7.
Those candidates who clearly understood recursion scored high marks in this question,
but a worrying number of candidates could not explain that a procedure is recursively

defined when it is defined in terms of itself. A stack is needed so that register values such
as return address and parameter values can be saved and can be returned to in the
correct order. Most candidates managed to complete the trace table correctly but many
did not give the correct printed output. Many candidates did not provide the correct
number of digits, or in reverse order. A large majority wrongly thought that procedure B
described a binary search. Interestingly, some of the candidates who got the printed
output wrong still stated the correct purpose of the procedure: converting the denary
number provided as parameter into binary.

Page 26 of 32

Q8.
In part (a), a large number of candidates failed to differentiate correctly between a

selection statement and iteration.

For (b), very few candidates correctly identified the given subroutines as 2 functions and
one procedure. Even though the description of the subroutines in the question stem
should have made candidates realise that both copy and concat were the same type of

subroutine, many seemed to hedge their bets and opted for one of each type. Many other
candidates got the choice exactly the wrong way round.

In (c), the response to the dry run was much more promising, suggesting that candidates
are getting more opportunity to practice this type of skill. A large number of candidates
were able to follow the algorithm with only the S2 value causing any problems.

Q9.
Many candidates were able to suggest a suitable method at the exit barrier for submitting
the number assigned to the ticket to the computer system. Fewer were careful enough to

describe how the ticket was assigned to the ticket at the entrance barrier. The examiners
were expecting a printer to be referenced or the action of printing in the case of a barcode,
OMR, OCR, MICR and plain text solution for writing a number to the ticket; the action of
encoding or writing to the ticket in the case of a magnetic stripe or smart card and the
action of punching in the case of Kimball or Kimball-type tags. The better candidates
offered such descriptions.

A lack of experience of using a third generation programming language was exposed by
part (b). Many candidates gave data types that were lifted straight from Microsoft
ACCESS and therefore gained no credit. The question explicitly requested data types that
would be available in a third generation programming language. Candidates must
understand that their study of this subject must extend beyond products that have been
intentionally designed to enable people with no background in Computing, and no desire

to be educated in this subject, to achieve practical results in the minimum of time. For very
simple practical tasks, this is desirable but as a foundation for more extensive tasks this is
a recipe for disaster. Assembling flat-pack furniture is not considered adequate enough to
qualify as a cabinetmaker.

Some candidates had difficulty selecting relevant fields and in some cases when they did
choose relevant ones lost a mark for poor choice of identifier. For example, several
candidates chose Date instead of CurrentDate. The clue was in the question stem which
stated that “the computer system remembers the Current Date, Arrival Time and
Randomly generated Number.“ A principle of software engineering is that identifiers

should be meaningful and reflect the real world entities which they represent.

Q10.
Parts (a) (i) and (a) (iii) were answered correctly by most candidates as Mon and False

respectively, (not [Mon]). However, in (a) (ii) [Head(Days)} is the list [Sun] and the tail of
this list is the empty set []. Had these data been stored in a one dimensional array,
instead of in a list, each element could have been accessed directly using the subscript,
rather than having to be found through a sequential search or using the Head / Tail
functions defined.

Q11.
The evidence suggests that this part of the specification is being lightly treated in some
instances since all candidates from some centres appeared to be guessing wildly.

Page 27 of 32

Candidates who had studied, and presumably used, a High Level Language found this
question easy – especially if it involved Pascal. Those that had not, struggled.

(a) Many candidates did not follow the instructions ‘copy one relevant statement from
the above code’. Instead they only gave a keyword, insufficient to earn the mark
available. The assignment statement caused most confusion. Many candidates
wrongly picked the type declaration, presumably because of the ‘=’ symbol.

(b) Here candidates were asked to copy one relevant part statement. However, many
candidates copied whole statements, thereby not making it clear which part was
relevant. Very few candidates could identify the user-defined type or the parameter

used in the given code. Local variables seemed to be rather better known.

(c) Many candidates correctly stated that using named constants made the program
easier to understand or that if its value needed to be changed it would need to be
changed in only one place.

Many candidates suggested that the code was easier to read. This was not given
credit, as being able to read something is clearly not the same as being able to
understand it!

(d) Most candidates spotted that if a person’s age is recorded it will have to be
changed/updated yearly and therefore it would be better to use date-of-birth. A large
number of candidates felt that many people would not like to give their age but then,
surprisingly, would be quite happy to give their date of birth!

(e) This part was answered well, with most candidates knowing what values a Boolean

variable could take.

Q12.
(a) Candidates often gave two high-level languages, which were inappropriate

responses. The question asked for translators and the only correct responses were
assembler and compiler/interpreter respectively.

(b) Most candidates gained one mark for the obvious answer that it is easier to write
programs in a high level language, without being entirely convincing that they knew
what they were talking about. Fewer candidates could list a second characteristic,
e.g. that such languages are problem oriented rather than machine oriented, or that
they support data structures and structured statements. The response ‘can use
English words’ was not enough to gain credit.

(c) Many candidates gained credit for stating that the use of named constants makes a

program easier to maintain or understand.

(d) Those who had, clearly, studied a high level language had little difficulty with this
part. Nearly all candidates gained the mark for part (i) since they had heard of a
programming language. The responses to (ii) and (iii) however showed that far too
many candidates do not get enough exposure to practical programming in a high
level language. HTML is not appropriate here.

Q13.
For candidates who had studied a high level language such as Pascal this was an easy
question, for those who hadn’t it became a lottery with many candidates assuming a data
type ‘numerical’ for parts (a) (b) and (d) with the reason in each case being ‘because it’s a
number’. Candidates should realise that ‘numbers’ such as telephone numbers need to be

Page 28 of 32

stored as strings as they are not numbers in the mathematical sense of being used for
calculations. A significant minority of candidates seem to think that averages should still
be expressed as whole numbers ‘because you can’t have half a car’. Candidates also
need to understand that the term ‘decimal number’ describes a number in base 10, not
necessarily a number with a decimal point and fractional part.

Q14.
The few candidates who studied the topic had no difficulty answering this question. Those
who had not, often assumed that ‘procedure’ was a method of programming, ‘parameters’

were a set of rules or limits beyond which the program could not go. It is important that
candidates gain some experience of programming with functions and procedures and
appreciate the role of parameters in passing data into / out of these subroutines. A
creditworthy response was that the use of procedures avoided repeating code because a
procedure could be called up many times from different parts of the program.

Q15.
Parts (a), (b), (d), (f) and (g) were more often answered correctly than the other parts.
Very few candidates seemed to understand the term ‘parameter’. Surprisingly, ‘local
variable’ was also not very well known. A considerable number also gave an IF…
statement as the answer to iteration.

Q16.

(a) This part asked what result would have been returned by the specified function
calls. So Tail (Ports) would have returned [Barcelona, Athens, Alexandra, Tunis,
Lisbon] with the brackets being part of the correct answer. Head(Tail(Tail(Ports)))
would have returned Athens, without brackets and the answer to the last part was
True, not [True] or True [].

(b) Most candidates could say what recursively defined was, although some answers
were barely sufficient and ‘It calls itself’ was deemed insufficient.

(c) Explanations of why a stack was necessary to execute procedure P recursively
frequently missed the point.

(d) Full marks were gained for this part by an answer of:
Lisbon Tunis Alexandria Barcelona Southampton,
or even of:
LisbonTunisAlexandriaBarcelonaSouthampton,

as no punctuation was printed. A list of:
• Lisbon
• Tunis
• Alexandria
• Barcelona
• Southampton
was also accepted.

(e) Candidates who did not score full marks for 10(e) mainly numbered the ports in
alphabetical order, rather than using the pointers to point to the next port in the list,
or gave inadmissible or absent end-of-list markers.

Q17.

This question was generally done poorly. Most candidates read into the question that a

Page 29 of 32

comparison with machine code or assembly code programming was required. This was
clearly not appropriate.

(a) Candidates often quoted the detail of the question again as an answer, but many
gained some credit for answers including that it was easier to debug a structured
program because it would be easier to find errors in procedures. The misconception
that structured code makes it easier for the compiler was rather widespread.

(b) Candidates do not know what features are, with many carrying on answering as in
part (a). Often no distinction between the features of an editor used to type a
program and the features of the actual programming language itself were made.

Most candidates thought that programming in a high level language was almost like
writing in English, for which no credit was given. Good answers included use of
procedures/functions, English-like keywords, data types, data structures, local
variables, parameters, being able to choose sensible names for identifiers and the
existence of constructs such as IF..THEN..ELSE, REPEAT..UNTIL etc.

(c) The distinction between a compiler and an interpreter was clearly taught well in
some centres and not in others. The fact that a compiler will translate the whole
source code into object code, which can then be executed independently of the
compiler seemed to evade many. That an interpreter translates one line at a time as
it executes without producing object code was also only fully understood by few.

Q18.

Parts (a) and (b) were usually well answered, although a surprising number of candidates
confused ‘integer’ and ‘real’. Most candidates appreciated the appropriate data type for
whole numbers to be ‘integers’, and for fractional numbers to be ‘reals’. In part (c),
however, there did not seem to be a great understanding of the significance of the 0 at the
start of the telephone number. This makes a string data type necessary. Candidates from
some centres had no idea at all and suggested databases and spreadsheets as data
types.

Q19.
Part (a) was always attempted, but many candidates confused a declaration with an
assignment. Some candidates tried to answer in general terms rather than with examples
asked for. In part (b) some candidates got full marks and demonstrated clearly their ability
to follow through an algorithm. Many candidates did not seem to understand how to dry

run algorithms; or this was not taught in some centres. Many candidates guessed wrongly
that it was a sort of algorithm and simply wrote down the letters in alphabetical order into
the array. Some candidates thought that the algorithm reversed the letters and then back
again. Most candidates who correctly followed through the algorithm then correctly
recognised that the order of the letters in the array was reversed.

Q20.
Parameters are clearly widely misunderstood - many answers reflected the common
misunderstanding of the word as “boundaries” rather than context-determining factors.
Almost any answer about passing data to / from procedures or functions would do. Most,
on the other hand, understood global variables. Answers to (b) were not encouraging,
probably because parameters are misunderstood - the best answers were either the use
of portable procedures and the ability to include them in libraries for re-use, or the saving

of memory by discarding variables not currently in use. Another popular correct answer is
the risk of a procedure accidentally altering a global and therefore having unexpected side
effects in other procedures.

Page 30 of 32

Q21.
This question divided the candidates into two groups, those who could answer it and

those who could not - an encouraging number scored nearly full marks, but an alarming
number scored close to zero.

For part (a), although the while (TRUE) construction is standard terminology for an infinite
loop few realised it, instead many tried wrongly to relate it to the state of the maintain
variable, presumably because it was the only Boolean in sight.

Most candidates understood the data types for (b) - not many gave the correct reason for
n being an integer (it is used as an array subscript), but many commented that it was only
required to take the values 0 to 6 and so didn’t need to be anything else, perfectly valid
reasoning. Many students could not even attempt the trace table, but many perfect
attempts were seen, conversely some students made marking difficult by making
elementary arithmetic errors early on which had to be laboriously followed through to give
appropriate credit.

For the last part, which should have demonstrated ability to interpret the table in terms of
the original problem, many elaborate flights of logic appeared, which were rewarded
provided they were plausible and argued from the student’s trace table.

Q22.
Those candidates that were prepared for this question usually got full marks. The XOR
operation proved the most difficult.

Q23.
Almost all candidates answered this correctly. Those who did get it wrong seemed to have
little knowledge of masking.

Q24.
This question required candidates to give actual examples of programming statements

from a high level language with which they were familiar. In too many cases, three easy
marks were lost by those candidates who did not read the question and either described
the statement or wrote, for example,
IF..... . .THEN. . .ELSE”.

Q25.
Most candidates knew what a Boolean variable is but few could manipulate them - many
clearly guessed the significance of 1999, 2000 and LY and wrote down the (correct)
answers apparently conjured out of thin air. Many candidates clearly could not understand
the distinction between 1999 mod 400, which is a numeric expression evaluating to 399,
and 1999 mod 400 = 0, which is a statement capable of being evaluated as either true or
false: consequently these candidates frequently asserted correctly that a Boolean variable
is either 0 or 1, then promptly made the Boolean LY into 399 or other clearly impossible

values.

Q26.
This question also asked candidates to relate theory to practical examples to illustrate
their understanding of it rather than simply recalling, and in some respects fell down badly.
In (a) and (b) the able candidates could describe what the term parameters means and
quote examples of where they were mentioned in the pseudocode, but only the very

Page 31 of 32

ablest described their use: a good answer would have been something like “parameters
are values passed into subprograms, such as the variable values col and row being
passed into the SendCharacter procedure, where they take the place of the variables
(formal parameters) x and y”. Several good candidates explained the difference between
passing by value and by reference, although this was not necessary to gain the marks.
Part (c) elicited hardly any correct answers, although the fact that array elements are
stored in consecutive locations in memory is virtually the definition of an array.

Part (d) attracted varied replies, although many did not really say very much about the
way the loop works, the point of the question: many answers actually described a “repeat

until” construction which is quite different in important respects. The important points
needed for the four marks were condition test and selection, what happened in the two
possible cases, and repetition. The commonest failing was no mention of what happened
when the condition failed (ie character 13 entered): “ the loop stops” was common, but “ a
jump to the instruction following endwhile” wasn’t. Part (e) was well done. The last part
gave a mark to most candidates who gave it any thought at all, although “it would crash”
without explanation was inadequate. The answer is actually dependent on the language of
the program: most compilers will generate code that would produce an array-bounds
execution error, although some (notoriously C or C++), would cheerfully allow the last ten
characters to overflow the allotted memory and overwrite some other, potentially vital,
data, causing a possible crash later.

Q27.

The majority of candidates had problems tracing this recursive algorithm. Many failed to
trace the main program at all. Very few candidates indicated what each line of the trace
showed making it difficult to give credit for success in some sections.

Candidates should be encouraged to show the trace as a table rather than as a rewritten
algorithm with values included. In this algorithm the identifiers piece and x are local to the
procedure and therefore separate instances are needed for each recursive call. The
parameters a and outstring are passed by reference so there is no need to create extra
columns for these as the identifiers message and newstring will be used throughout.
Candidates who chose to trace a and outstring were given credit but were expected to be
consistent in their use of this approach.

Most candidates scored the marks available for the first procedure call and for the correct
outputs.

Q28.
A minority of weaker candidates made no attempt to answer this question. In part (a) the
general principles of masking to read or set individual bits without changing others
seemed not to be known by many candidates. Even when the masks were correct the
logical operators were sometimes wrong.

Masks were not actually required for the algorithm in part (b), credit was given for simply
stating the bits to be tested and the action needed. Where masks were given they were
credited. Very few candidates bothered to check that the system was active. The vast
majority neglected to provide any kind of loop to allow for continuous monitoring. Another
common error was to use an ELSE clause in a way that resulted in testing the internal
motion sensor and door and window contacts only when the security light had been

activated. Others required both the door and window contacts to be broken before
activating the alarm. Credit was given for appropriate use of a loop and IF THEN (ELSE)
ENDIF constructs within the algorithm.

Answers tended to suffer where candidates failed to indent correctly. Where identifiers are

Page 32 of 32

used they should be explained. Many candidates might have gained more marks if they
had added comments to explain what they were trying to do.

Q29.
This question was answered successfully by the better candidates with many scoring full
marks. Surprisingly, several candidates identified an internal node as a leaf node and
others could not indicate a branch, clearly. In the latter case, candidates indicated their
uncertainty by writing “branch” level with an internal node and omitting to link it to the tree
diagram by arrow. The same identification problem arose with labelling the left and right

sub-trees. Marks cannot be given when there is doubt in the mind of the examiner as to
whether the candidate really knows the correct answer. The left and right sub-trees should
be ringed and clearly labelled to eliminate doubt in the mind of the examiner.

Recursion has been examined frequently in recent years. It is therefore pleasing to note
an increase in the number of candidates who can define the term accurately and who are
able to explain why a stack is needed. Sadly, many candidates still have difficulty
dry-running the execution of a recursively-defined procedure successfully. Many
candidates completed the table correctly but a significant number made no attempt to
show the printed output and many others produced output that was wrong. Many
candidates looked at the first parameter of each call and incorrectly used it to generate the
printed output. These candidates described the procedure as a pre-order tree traversal
algorithm, whereas, in fact, it was an in-order traversal. Candidates who dry-ran the

procedure successfully had little difficulty in stating in-order. Some candidates recognised
in the layout of the procedure the structure of an in-order traversal. These candidates

gained credit for their knowledge even though some did not complete the dry run
successfully or at all.

