- =

EXAM PAPERS PRACTICE

1.1 Programming part 2 Mark schemes.

Page 1 of 109

Mark schemes

Q1.
(@)

(b)

()

(d)

(€)

TCard //

TRecentScore [/

TDeck (Pascal only) //
TRecentScores (Pascal only);
R If any additional code

R If spelt incorrectly

| Case

cint (VB.Net/ VB6 only) //

val (Pascal only) //

StrToInt (Delphionly) //
parseInt (Java only) //
Integer.parselnt (Java only) //
int (Python only);

R If any additional code
R If spelt incorr
| Case

Deck//Recent es;

R If any addition
R If speltincorr
| Case

Temporary,

Most recent holder;

E)(AM PAPERS PRACTICE

(h)

When the name in the variable playerx is not in the array RecentScores;
A Answer that does not use identifiers but clearly suggests that the name is
not in the array

WHILE Found = False AND Position
A Alternative loop conditions that would provide correct functionality
€g Position 10
Console.Write (“Not a valid choice, please enter another
number: ")
NumberToGuess = Console.ReadLine ()
End While
Guess = 0
NumberOfGuesses = 0
While Guess <> NumberToGuess And NumberOfGuesses < 5
Console.Write (“Player Two have a guess: ”)

Guess = Console.ReadLine ()
NumberOfGuesses = NumberOfGuesses + 1
End While

If Guess = NumberToGuess Then
Console.Write (“Player Two wins”)

Page 2 of 109

Else
Console.Write (“Player One wins”)
End If
Console.ReadLine ()
End Sub
End Module

VB6
Private Sub Form Load()

Dim NumberToGuess As Integer

Dim NumberOfGuesses As Integer

Dim Guess As Integer

NumberToGuess = ReadLine (“Player One enter your
chosen number: ”)

While NumberToGuess < 1 Or NumberToGuess > 10

NumberToGuess = ReadLine (“Not a valid choice,
please enter another number: ”)
Wend
Guess = 0
NumberOfGuesses = 0
While Guess < > NumberToGuess And NumberOfGuesses <
5
ve a guess: ")
es + 1
Wend
If Gues
' ins”)
Else
ins”)
End If
End Sub
Alternative answers c use some of the following instead of

WriteLineWithMsg / ReadLine:

EXAM:PAPERS PRACTICE

WriteWithMsg
Msgbox
InputBox
WriteNoLine

Python 3

print (‘Player One enter your chosen number: ’)

NumberToGuess = int (input())

while (NumberToGuess < 1) or (NumberToGuess > 10)
print (‘Not a valid choice, please enter another

number: ')

NumberToGuess = int (input())
Guess = 0
NumberOfGuesses = 0
while (Guess != NumberToGuess) and (NumberOfGuesses <

S)
print (‘Player Two have a guess: ')
Guess = int (input())
NumberOfGuesses = NumberOfGuesses + 1

Page 3 of 109

if Guess == NumberToGuess
print (‘Player Two wins’)
else
print (‘Player One wins’)

Alternative print / input combinations:

NumberToGuess = int (input ('Player One enter your
chosen number: 7))

Guess = int (input (‘Player Two have a guess: '))
Python 2

print ‘Player One enter your chosen number: '
NumberToGuess = int (raw_input())

while (NumberToGuess 10)

print ‘Not a valid choice, please enter another
number: '

NumberToGuess = int (raw_input())
Guess = 0
NumberOfGuesses = 0
while (Guess != NumberToGuess) and (NumberOfGuesses <
5)
print ‘P er Two have a guess:
Guess = 1 (raw inpu
NumberOf - Nu 1
if Guess oGu
print ‘P1
else
print ‘Pl
Alternative print /inpu binations:
EXAM-EAPERS PRACTI f.'fE
Guess = int (raw_input (‘Player Two have a guess: '
JAVA
int numberToGuess;
int numberOfGuesses;
int guess;
numberToGuess = console.readlInteger (“Player One enter
your
chosen number: ”);
while (numberToGuess < 1 || numberToGuess > 10) {
numberToGuess = console.readInteger (“Not a valid
choice,
please enter another number: ”);
}
guess = 0;
numberOfGuesses = 0;
while (guess != numberToGuess && numberOfGuesses < 5) {

guess = console.readInteger (“Player Two have a guess:

Page 4 of 109

(b)

()

Il) .
’

numberOfGuesses++;

}

if (guess == numberToGuess) {
console.println(“Player Two wins”);
telse{

console.println (“Player One wins”);

}
13

SCREEN CAPTURE*
Must match code from (a), including prompts on screen capture matching
those in code. Code for (a) must be sensible.

Mark as follows:

'Player One enter your chosen number: ' + user input of O

‘Not a valid choice, please enter another number: ' Message shown;
user input of 11

‘Not a valid choice, please enter another number; ' Message shown;
user input of 5

'Player Two have a guess: ' + user input of 5;

'Player Two wins' message shown; R If no evidence of user input

A alternative ou if

*»**SCREEN C

Must match cod
those in code. C

capture matching

Mark as follow
'Player One enter your cho,
'Player Two have a gues
'Player Two have a gue

+user input of 6;
user input of 1
+ user input of 3

EXAM: BAPERS PRACTICE

(d)

Q4.

(@)

'Player Two have'a guess:
'Player One wins' message shown; R If no evidence of user input
A alternative output messages if match code for (a)

.
4

If a FOR loop was used then Player Two will always have 5 guesses //
a WHILE loop will mean that the loop will terminate when Player Twoguesses
correctly // the number of times to iterate is not known before the loop starts;

[21]

AmountToShift // StartPosition // EndPosition //
SizeOfRailFence // N // Count // Key // ASCIICode //
NewASCIICode

// Count2 // Countl // NoOfColumns // NoOfRows //
NoOfCiphertextCharacters //
NoOfCiphertextCharactersProcessed // 1 // 3 //
PositionOfNextCharacter // LastFullRowNo //

Page 5 of 109

AmountToReduceNoOfColumnsTimesjBy //
BeginningofNextRowIndex // CurrentPosition;
R if any additional code

R if spelt incorrectly

| case & spaces

(b) EveryNthCharacterSteganography;
R if any additional code (including routine interface)
R if spelt incorrectly
| case & spaces

(c) Pascal
Ord // Length;

VB.Net
Asc // Length;

VB6
Asc // Len;

Python
ord // len

Java
int // len

R if any addition
R if spelt incorre
| case & spaces

(d) Pascal
Ciphertext :="//

EXAR- XPAPERS PRACTICE

TextFromFile ;="
HiddenMessage =
| semicolons

VB.Net /VB6
Ciphertext = "" //
Plaintext = "" //
ChangedText = "" //
TextFromFile = "" //
HiddenMessage = "";

Python

Ciphertext = '' //
Plaintext = '' //
ChangedText = "' //
TextFromFile = '' //
HiddenMessage = ''

Java
ciphertext = "" //

Page 6 of 109

plaintext = "" //

changedText = "" //
textFromFile = "" //
hiddenMessage = ""

| semicolons

R if any additional code
R if spelt incorrectly
| case & spaces

(e) Because if decrypt has been selected; then the plaintext alphabet needs to be
shifted in the opposite direction;

® Mark as follows:
Identify the problem that will occur;
Explanation of how MOD 26 solves the problem,;
Max 1 if no example used in explanation

Example answer

Without MOD 2 6 then the shift will only be applied correctly to letters early in
the alphabet e.g. if the AmountToShift is 1 then the letter Z will be given a
NewASCIICo is does not represent a
letter; Using MO bet wraps round to the
beginning of the Code would become 65
the ASCII Code

6 ensures that the ciphertext a
habet (in this S

(99 ApplyShift SCIICodeForCharacter;

| case & spaces

NewASCIICode;

EXAM PAPERS PRACTICE

R if spelt incorrectly
| case & spaces

() GetTypeOfCharacter //
Ord (Pascal / Python only) //
Asc (VB only) //
int (Java only);
R if spelt incorrectly
| case & spaces

() Pascal/VB6
For 1 To Length(OriginalText);

VB.Net
For 0 To (OriginalText.Length - 1);

Python 2/3
for in range (0, len(OriginalText)) :;

Page 7 of 109

Java
for

(count = 0; count

count++) ;
A Alternative correct logic
A Any clear description that conveys correct logic

[12]
Q5.
(@) One mark per correct response.
Construct Example Valid?
identifier Player2name No;
parameter x, y:bool Yes;
procedure-def procedure No;
square (s:real)
procedure-def S :
in
A alternative cle , True / False and Tick /
Cross.
4
(b) () The<ty has
The <pro e- procedure without
parameters // cann just an identifier;
A answers comparing the figures the other way around, i.e.
. T u ch
T d to bajj
identifier
2
(i) Required as there can be a list of parameters // required as there can be
more than one parameter;
BNF does not support iteration // BNF can only achieve iteration through
recursion // would need infinite number of rules otherwise // recursion
allows for more than one parameter;
Max 1
A Input for parameter
NE Rule needs to loop
1
[7]

Q6.

Page 8 of 109

Answer Carry
0 0

~|alo|o
—~|lo|= |o

1 0
1 0 :
0 1

A 10 instead of 0 in the Answer column for the final row of the table

(3]

Q7.
(@ 011 0010;
R If not 7 bits

(b) 1011 0000

Mark as follows:
Correct data bits;
Correct parity bi
R If not 8 bits

(c) Error correction
Can detect whe
Reduces the ne
Decreases the i
Can locate an e

or the retrans ;
hood of an undetected error // i

oved error detection;
curred);
Max 1

[4]

EXAM. PARERS. PRACTICE

| additional variable declarations

Column initialised correctly before the start of the loop;

Answer initialised correctly before the start of the loop;

While/Repeat loop, with syntax allowed by the programming language used,
after the variable initialisations; and correct condition for the termination of the
loop;

R For loop

A any while/Repeat loop with logic corresponding to that in flowchart

(for a loop with a condition at the start accept >=1 or >0 but reject <>0)
Correct prompt "Enter bit value:" ;

followed by Bit assigned value entered by user;

followed by Answer given new value;

R if incorrect value would be calculated [followed by value of Column divided
by 2;

A multiplying by 0.5

Correct prompt and the assighment statements altering Bit, Answer and
Column are all within the loop;

After the loop — output message followed by value of answer;

| Case of variable names, player names and output messages

Page 9 of 109

A Minor typos in variable names and output messages

| spacing in prompts

A answers where formatting of decimal values is included e.g.
Writeln(‘Decimal value is: ', Answer : 3)

A initialisation of variables at declaration stage
A no brackets around column * bit

Pascal
Program Question;
Var
Answer : Integer;
Column : Integer;
Bit : Integer;
Begin
Answer := 0;
Column := 8;
Repeat
Writeln ('Enter bit value: ');
Readln (Bit) ;
Answer := Answer + (Column * Bit);
Column := Column DIV 2;
Until Column < 1;
Writeln ('Decimal value is: ', Answer);
Readln;
End.
VB.NET
Sub Main ()

Dim Answer
Dim Column
Dim Bit As
Answer
Column
Do

([
@® O

Console.

Bit = Console
Answer = Ans + (Column * Bit)
Column = Column / 2

EXAM: PAPERS PRACTICE

End Sub

Alternative Answer
Column = Column \ 2

VB6

Private Sub Form Load()
Dim Answer As Integer
Dim Column As Integer
Dim Bit As Integer

Answer = 0
Column = 8
Do

Bit = InputBox ("Enter bit value: ")
Answer = Answer + (Column * Bit)
Column = Column / 2
Loop Until Column < 1
MsgBox ("Decimal value is: " & Answer)
End Sub

Alternative Answer
Column = Column \ 2

Page 10 of 109

Java
public class Question {
AQAConsole console=new AQAConsole();
public Question() {

int column;

int answer;

int bit;

answer=0;

column=8;

do{
console.print ("Enter bit value: ");
bit=console.readInteger ("");
answer=answer+ (column*bit) ;
column=column/2;

}while (column>=1) ;

console.print ("Decimal value is: ");

console.println (answer) ;

}
public static void main(String[] arrays) {
new Question () ;

}

Python 2.6
Answer = 0
Bit = 0
Column = 8
while Column 1:
print "Ent bit value:
Accept: i
Bit = inpu
Answer = A
Column = C

Python 3. 1

Answer =

EXAMMPAPERS PRACTICE

(b)

print ("Enter bit value: ")
Accept: Bit = 1nt(1nput("Enter bit value: ™))
Bit = int (input())
Answer Answer + (Column * Bit)
Column = Column // 2
print ("Decimal value is: " + str (Answer))
or print ("Decimal value is: {0}".format (Answer))

A. Answer and Bit not declared at start as long as they are spelt correctly and

when they are given an initial value that value is of the correct data type
11

****SCREEN CAPTURE****
Must match code from 16, including prompts on screen capture matching

those in code

Mark as follows:

"Enter bit value:" + first user input of 1
‘Enter bit value: ' + second user input of 1
‘Enter bit value: ’ + third user input of O
‘Enter bit value: ’ + fourth user input of 1

Page 11 of 109

()
(d)

(e)

(f)

Qo.
(@)

(b)

Value of 13 outputted:;

15;

16 // twice as many // double;

Design;
A Planning

Implementation;

[18]

ResetCavern; (all languages)

I/l GetNewRandomPosition (Pascal only)
Il iritewithMsg (VB6 only)

Il WiriteLineWithMsg (VB6 only)

/[WiriteLine (V
/[WriteNoLine
/l ReadLine (VB
/] SetUpTrapPo

veOptions // DisplayWonGameMessage //
DisplayTrapMessage / splayLostGameMessage // WriteWithMsg (VB6
only) // WriteLineWitthg (VB6 only) // writeLine (VBG6 only) //

DisplayMenu // Displ

EXAM:EAPERS PRACTICE

()

(d)

(e)

R If any additional code (including routine interface)
R if spelt incorrectly
| case

Countl // Count2 // Count;
R if any additional code

R if spelt incorrectly

| case

Cavern // TrapPositions;

R if any additional code (including routine interface)
R if spelt incorrectly

A LoadedGameData.TrapPositions

A CurrentGameData.TrapPositions

| case

When the value of the cell in the cavern array // When the value of the cell to
place the itemin;

Indicated by the Position variable;

Contains a space // does not contain another item;

Page 12 of 109

R is empty

Max 2 if no variable names used in description

3
() The number of times to repeat is known;
A fixed
1
(g) Makes the program code easier to understand;
Makes it easier to update the program;
Makes it easier to change the number of traps (in the game);
Max 1
(h) Intextfiles all data is stored as strings / ASCII values / lines/characters // Text
files use only byte values that display sensibly on a VDU // stores only values
that can be opened and read in a text editor;
Binary files store data using different data types; A by example A Binary files
can only be correctly interpreted by application that created them
2
0] Easier reuse of routines in other programs;
Routine can be included in a library:
Helps to make t "
Ensures that th tine is self-contained // routine dependent of the rest
of the program;
(Global variable ng) but local variables
use memory for ing;
reduces possibil
Using global varjaBles makes a program harder to ug;
Max 2
() (Ifit was not then) Monste iz ke is set to the Boolean value returned by the
second call to CheckIfS#l@Cel1;
this would overwrite any True value returned by the first call to
EXAM PAPERS PRACTICE
Otherwise the monster would never wake up when the player triggers the first
trap;;
I
Otherwise the monster would only wake up when the player triggers the
second trap;;
2

Q10.
(@)

[15]

() Appropriate option added;

Pascal
Procedure DisplayMoveOptions;
Begin

Writeln;
Writeln ('Enter
Writeln ('Enter
Writeln ('Enter
Writeln ('Enter
Writeln('Enter

to move NORTH') ;
to move EAST');
to move SOUTH');
to move WEST') ;
to move SOUTHEAST') ;

[w = I ca =

Page 13 of 109

Writeln('Enter M to return to the Main Menu'):;
Writeln;
End;

VB.NET
Sub DisplayMoveOptions ()
Console.WriteLine ()

(
Console.WriteLine ("Enter N to move NORTH")
Console.WritelLine ("Enter E to move EAST")
Console.WriteLine ("Enter S to move SOUTH")
Console.WriteLine ("Enter W to move WEST")
Console.Writeline ("Enter D to move SOUTHEAST")

Console.WritelLine ("Enter M to return to the Main Menu")
Console.WriteLine ()

End Sub
VB6
Private Sub DisplayMoveOptions ()
WriteLine ("")
WriteLine ("Enter N to move NORTH")
WriteLine ("Enter E to move EAST")
WriteLine ("Enter S to move SOUTH")
WriteLine ("Enter W to move WEST")
WriteLine ("Enter D to move SOUTHEAST")
WriteLine ("Enter M to return to the Main Menu")

Writ
End Sub
A Textl.

move SOUTHEAST "

Java

void dis yMoveOption
cons .println () ;
cons .println ("Enter TH") ;
cons ") ;
console.print TH") ;
console.prin ("Enter W to move WEST");
console.pri ("Enter D to move SOUTHEAST") ;

console.println("Enter M to return to the Main Menu")

EXAM PAPERS PRACTICE

Python 2

def DisplayMoveOptions() :
print "'
print 'Enter N to move NORTH'
print 'Enter E to move EAST'
print 'Enter S to move SOUTH'
print 'Enter W to move WEST'
print 'Enter D to move SOUTHEAST'

M

print 'Enter to return to the Main Menu'

print "'

Python 3

def DisplayMoveOptions() :
print ()
print ('Enter N to move NORTH')
print ('Enter E to move EAST')
print ('Enter S to move SOUTH')
print ('Enter W to move WEST')
print ('Enter D to move SOUTHEAST')
print ('Enter M to return to the Main Menu')
print ()

Page 14 of 109

A Any sensible prompt
A Prompt added anywhere in subroutine
R If prompt asks for character other than D

(ii) Additional case statement for option D added correctly and all of the
rest of the code added inside the correct option of the case statement;
A any character instead of D (except N, S, W, E) — only if matches
prompt from (a)(i)
NoOfCellsSouth incremented within the correct option of
the case statement;
NoOfCellsEast incremented within the correct option of
the case statement;

Pascal
Case Direction Of

'N' : PlayerPosition.NoOfCellsSouth
PlayerPosition.NoOfCellsSouth - 1;

'S' : PlayerPosition.NoOfCellsSouth :=
PlayerPosition.NoOfCellsSouth + 1;

'W' : PlayerPosition.NoOfCellsEast :=
PlayerPosition.NoOfCellsEast - 1;

'E' : PlayerPosition.NoOfCellsEast :=
PlayerPosition.NoOfCellsEast + 1;

IDI

si .
ion.NoOfCellsSouth + 1;
PlayerPosi
j fCel

Case "E"
PlayerPositi o0OfCellsEast =
PlayerPosition. fCellsEast + 1

Case '"D"

EXAM-EZAPERS DRACTICE

PlayerPosition.NoOfCellsEast + 1

VB6

Case "E"
PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

Case "D"
PlayerPosition.NoOfCellsSouth =

PlayerPosition.NoOfCellsSouth + 1
PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

Java

switch (direction) {

case 'N':
playerPosition.noOfCellsSouth--;
break;

case 'S':
playerPosition.noOfCellsSouth++;
break;

case 'W':
playerPosition.noOfCellsEast-—;

Page 15 of 109

break;

case 'E':
playerPosition.noOfCellsEast++;
break;

case 'D':
playerPosition.noOfCellsSouth++;
playerPosition.noOfCellsEast++;

break;
}
Python
elif Direction == 'E':
PlayerPosition.NoOfCellsEast += 1
elif Direction == 'D':

PlayerPosition.NoOfCellsSouth += 1
PlayerPosition.NoOfCellsEast += 1

(i) Additional condition added to TF statement ;
A answers using an additional IF statement
R if value of ‘D’ will result in False being returned by function
R if function will always return True

Pascal
ValidMowv
If Not ', 'M'])
CheckVval
VB.NET
ValidMow
If Not ction = "N" Or Direction " Or Direction = "W"
Or Direc irection = "D") Then
End If
CheckValidMove
M:P
EXAM: APERS PRACTICE
Di¥ec n = ection
Or Dlrectlon = "E" Or Direction = "M" Or Direction = "D") Then
ValidMove = False
End If
CheckValidMove = ValidMove
Java
validMove = true;
if (! (direction == 'N' || direction == "'S' || direction = =
'W'|| direction = 'E' || direction = = 'D' || direction = =
'M")) |
validMove = false;

}

return validMove;

Python
def CheckValidMove (PlayerPosition,Direction) :
ValidMove = True
if not (Direction in ['N','S','W',K6'E','D','M']):
ValidMove = False
return ValidMove

Page 16 of 109

(iv) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (i), (ii) and (iii)

Screen capture(s) showing modified menu shown to user and option ‘D’
selected;

Screen capture(s) showing both original position of player in the cavern
and the new position of the player in the cavern;

() () Selection structure with correct condition;
Inside the selection structure there is code that will display the correct
message on the screen;

| Capitalisation and minor typos in message
R different message
Selection structure is in the correct place in the code;

Pascal
Repeat

DisplayMoveOptions;

MoveDirection := GetMove;

ValidMove := CheckValidMove (PlayerPosition,
MoveDirection) ;

If Not ValidMove

The

again') ;
Until Va

ove, please try

Alternati

DisplayMoveOp
MoveDirectio GetMove ()

ValidMove = kvValidMove (PlayerPosition, MoveDirection)
If Not ValidMove Then

EXAM-PAPERS PRACTICE

Loop Untll ValidMove

ns ()

VB6
Do
Call DisplayMoveOptions ()
MoveDirection = GetMove ()
ValidMove = CheckValidMove (PlayerPosition, MoveDirection)
If Not ValidMove Then
WriteLine ("That is not a valid move, please try again')
End If
Loop Until ValidMove
A Textl.Text = Textl.Text & "That is not a valid move, please
try again "
A WriteLineWithMsg

Java
do {

displayMoveOptions () ;

moveDirection = getMove () ;

validMove = checkValidMove (playerPosition,
moveDirection) ;

Page 17 of 109

if ('validMove) {
console.println("That is not a valid move, please try
again") ;
}

} while (!validMove) ;

Alternative answer
if (validMove == false)

Python
while not ValidMove:
DisplayMoveOptions ()
MoveDirection = GetMove ()
ValidMove = CheckValidMove (PlayerPosition, MoveDirection)
if not VvalidMove:
Python 2:
print 'That is not a valid move, please try again'
Python 3:
print ('That is not a valid move, please try again')

Alternative answer
if vValidMove = False...

(i) If statement with a correct condition;
Correctlo

if illegal north move is

made;

R if avalu i ed@@the function

R if all no moves will r

R if all mo when PlayerPosition.NoOfC sSouth isin row 1 will
return fals

Value of True retu
made;

EXAM:PAPERS“PRACTICE

| missing option 'D' in code

correctly by the function if legal north move is

Pascal

ValidMove := True;

If Not (Direction In ['N','S','W','E','D','M'])
Then ValidMove := False;

If (PlayerPosition.NoOfCellsSouth = 1) And (Direction = 'N')
Then ValidMove := False;

CheckValidMove := ValidMove;

Alternative answer

If ValidMove And (Direction = 'N'")
Then ValidMove := ValidMove And
(PlayerPosition <> 1);

VB.NET

If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "D" Or Direction = "M") Then
ValidMove = False

End If

If PlayerPosition.NoOfCellsSouth = 1 And Direction = "N" Then
ValidMove = False

Page 18 of 109

EXA

End If
CheckValidMove = ValidMove

Alternative answer

If Not (Direction = "N" Or Direction = "S" Or Direction = "W"
Or Direction = "E" Or Direction = "M") Then
ValidMove = False
End If
If ValidMove And (Direction = "N") Then

ValidMove = (ValidMove And (PlayerPosition.NoOfCellsSouth
<> 1))

End If

VB6

If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "D" Or Direction = "M") Then
ValidMove = False

End If

If PlayerPosition.NoOfCellsSouth = 1 And Direction = "N" Then
ValidMove = False

End If

CheckValidMove = ValidMove

Alternative answer
If Not (Direction = "N" Or Direction = "S" Or Direction = "W"
Then

ition.NoOfCellsSouth

if (! (direction 'N'" || direction == "'S' || direction = =
'"W'| | direction 'E' || direction = = 'D' || direction = =
'M")) |

i.EAPERS. PRACTICE

validMove = validMove &&
(playerPosition.noOfCellsSouth != 1);
}

return validMove;

Alternative answer

if (playerPosition.noOfCellsSouth = = 1 && direction = = 'N"')
{

validMove = false;

}

Python
def CheckValidMove (PlayerPosition,Direction) :
ValidMove = True

if not (Direction in ['N','S','W',K6'E','D','M']):
ValidMove = False
if (PlayerPosition.NoOfCellsSouth = = 1) and (Direction =
= 'N'):
ValidMove = False
return ValidMove

Page 19 of 109

Alternative answer
if not (Direction in ['N','S','W',K6'E','D','M']):
ValidMove = False
if ValidMove and (Direction = = 'N'):
ValidMove = (ValidMove and (PlayerPosition. NoOfCellsSouth
1= 1))

(i) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (b)(i) and correct code for (b)(ii).

Screen capture(s) showing correct cavern state with a player at the
northern end of the cavern (top line), 'N' being entered at prompt,
followed by correct error message being displayed;

() NoOfMoves Is assigned the value 0 — before the first repetition structure
in PlayGame;
I. Case of variable names
A. Minor typos in variable name
A assignment statement(s) in other subroutine(s) if correct functionality
would be obtained
NoOfMoves incremented in any sensible place in the code inside the first
selection i ay ine.

One corre
Second ¢
Correct lo
correct cir

layed only under the

A. minor t i . italisati acing in messages

A. more than one lin code used to display a message
A. NoOfMoves decl as global
|. NoOfMoves decl ion not shown in PROGRAM SOURCE CODE

EXAM:2PAPERS PRACTICE

FlaskFound := False;

DisplayCavern (Cavern, MonsterAwake);
NoOfMoves := 0;

Repeat

If MoveDirection <> 'M'

Then
Begin
MakeMove (Cavern, MoveDirection, PlayerPosition);
NoOfMoves := NoOfMoves + 1;

DisplayCavern (Cavern, MonsterAwake);

If FlaskFound
Then
Begin
DisplayWonGameMessage;
Writeln('The number of moves you took to
find the flask was ', NoOfMoves) ;
End;

If Eaten
Then

Page 20 of 109

Begin
DisplayLostGameMessage;
Writeln ('The number of moves you
survived in the cavern for was ', NoOfMoves) ;
End;

Alternative answer
Until Eaten Or FlaskFound Or (MoveDirection = 'M');
If Eaten

Then Writeln ('The number of moves that you survived in the
cavern for was ', NoOfMoves) ;
If FlaskFound

Then Writeln ('The number of moves you took to find the flask
was ', NoOfMoves) ;

Alternative answer
If FlaskFound
Then DisplayWonGameMessage (NoOfMoves) ;

If Eaten
Then DisplaylostGameMessage (NoOfMoves) ;

together with modified DisplayWonGameMessage to include additional

output message (I missing parameter if NoOfMoves declared as global)
Procedure DisplayWonGameMessage (NoOfMoves : Integer);

n('Well done! You have fo
the Styx potion."'");

n('You have

the flask containing

ONSTER! ") ;
ok to find the flask

and modified Displ

message (I missin

Procedure Displ
Begin

EXAM PAPERS PRACTICE

Writeln('Maybe you will have better luck next time you
play MONSTER!')
Wr1te1n('The number of moves you survived in the cavern
for was ', NoOfMoves) ;
Writeln;
End;

stGameMessage t0 include additional output

ameter if NoOfMoves declared as global)
ostGameMessage (NoOfMoves : Integer);

VB.NET

Dim ValidMove As Boolean

Eaten = False

FlaskFound = False

DisplayCavern (Cavern, MonsterAwake)
NoOfMoves = 0

Do

If MoveDirection <> "M" Then
MakeMove (Cavern, MoveDirection, PlayerPosition)
NoOfMoves = NoOfMoves + 1
DisplayCavern (Cavern, MonsterAwake)

If FlaskFound Then
DisplayWonGameMessage ()

Page 21 of 109

Console.WriteLine ("The number of moves you took to find the
flask was " & NoOfMoves)
End If

If Eaten Then

DisplayLostGameMessage ()

Console.WritelLine ("The number of moves that you survived in
the cavern for was " & NoOfMoves)
End If

Alternative answer
Loop Until Eaten Or FlaskFound Or MoveDirection = "M"
If Eaten Then
Console.WriteLine ("The number of moves that you survived in
the cavern for was " & NoOfMoves)
End If
If FlaskFound Then
Console.WriteLine ("The number of moves you took to find the
flask was " & NoOfMoves)
End If

Alternative answer
If FlaskFound Then
DisplayWonGameMessage (NoOfMoves)

End If
If Eaten en

Displ ostGameMess
End If

to include additional
es declared as global)
Sub Disp s As Integer)
Console. ! ave found the flask
containing the § ian potion.")
Console.Wri ne ("You have won the game of MONSTER!")
Console.Writeline ("The number of moves you took to find the

together modified Disp

EXAM:PAPERS PRACTICE

and modified DisplayLostGameMessage to include additional output

message (I missing parameter if NoOfMoves declared as global)
Sub DisplayLostGameMessage (ByVal NoOfMoves As Integer)
Console.WritelLine ("ARGHHHHHH! The monster has
eaten you. GAME OVER.")
Console.WritelLine ("Maybe you will have better luck next
time you play MONSTER!")
Console.WritelLine ("The number of moves you survived in the
cavern for was " & NoOfMoves) ;
Console.WritelLine ()
End Sub

VB6

Dim ValidMove As Boolean

Eaten = False

FlaskFound = False

Call DisplayCavern (Cavern, MonsterAwake)
NoOfMoves = 0

Do

Page 22 of 109

If MoveDirection <> "M" Then
Call MakeMove (Cavern, MoveDirection, PlayerPosition)
NoOfMoves = NoOfMoves + 1
Call DisplayCavern (Cavern, MonsterAwake)

If FlaskFound Then

Call DisplayWonGameMessage ()

WriteLine ("The number of moves you took to find the flask
was " & NoOfMoves)
End If

If Eaten Then

Call DisplayLostGameMessage ()

WriteLine ("The number of moves that you survived in the
cavern for was " & NoOfMoves)
End If

Alternative answer
Loop Until Eaten Or FlaskFound Or MoveDirection = "M"
If Eaten Then
WriteLine ("The number of moves that you survived in the
cavern for was " & NoOfMoves)
End If

ok to find the flask

Alternati
If Flask

Displ onGameMessa
End If

If Eaten
DisplayLostGa ssage (NoOfMoves)
End If

WriteLine ("Well done! You have found the flask containing
the Styxian potion.")

WriteLine ("You have won the game of MONSTER!")

Writeline ("The number of moves you took to find the flask
was " & NoOfMoves) ;

WriteLine("")
End Sub

and modified DisplayLostGameMessage to include additional output
message (I missing parameter if NoOfMoves declared as global)
Sub DisplayLostGameMessage (ByVal NoOfMoves As Integer)

WriteLine ("ARGHHHHHH! The monster has eaten you. GAME
OVER.")

WriteLine ("Maybe you will have better luck next time you
play MONSTER!"™)

WriteLine ("The number of moves you survived in the cavern
for was " & NoOfMoves) ;

WriteLine ("")
End Sub
A. Textl.Text = Textl.Text & "The number of moves that you
survived in the cavern for was "

Page 23 of 109

A. Textl.Text = Textl.Text & "The number of moves you took to
find the flask was "

A. WriteLineWithMsg

Java

eaten = false;

flaskFound = false;

displayCavern (cavern, monsterAwake);
noOfMoves = 0;

do {
if (moveDirection != 'M'") {
makeMove (cavern, moveDirection, playerPosition);
noOfMoves++;

displayCavern (cavern, monsterAwake);
flaskFound = checkIfSameCell (playerPosition,
flaskPosition);
if (flaskFound) {
displayWonGameMessage () ;
console.println("The number of moves you took to
find the flask was " + noOfMoves) ;
}

if (eaten) {

displayLostGameMessage () ;

moves you survived in
the " +

Alternati
mo i i = 'M"));

you took to find the

if (eaten) {
console.pri ("The number of moves you survived in the "
+ "cavern for was " + noOfMoves) ;

EXAM PAPERS PRACTICE

}

Iternative an
eaten = false;

flaskFound = false;
displayCavern (cavern, monsterAwake);
noOfMoves = 0;

do {
if (moveDirection != 'M') {
makeMove (cavern, moveDirection, playerPosition);
noOfMoves++;

displayCavern (cavern, monsterAwake) ;

together with modified displaylostGameMessage and
displayWonGameMessage to include additional output message (|
missing parameter if NoOfMoves declared as global)
void displayWonGameMessage (int noOfMoves) {
console.println ("ARGHHHHHH! The monster has eaten you. GAME
OVER.") ;

console.println ("Maybe you will have better luck next time
you play MONSTER!");

console.println("The number of moves you survived in the

Page 24 of 109

cavern was " + noOfMoves) ;
console.println();
}
void displayWonGameMessage (int noOfMoves) {
console.println ("Well done! You have found the flask
containing the Styxian potion.");
console.println ("You have won the game of MONSTER!");
console.println("The number of moves you took to find the
flask was " + noOfMoves) ;
}

Python
Eaten = False
FlaskFound = False
MoveDirection = ''
DisplayCavern (Cavern, MonsterAwake)
NoOfMoves = 0
while not (Eaten or FlaskFound or (MoveDirection == 'M')):
ValidMove = False
while not ValidMove:
DisplayMoveOptions ()
MoveDirection = GetMove ()
ValidMove = CheckValidMove (PlayerPosition,
MoveDirection)
if not ValidMove:
. £

e, please try again'
ove (Cavern, MoveDirection layerPosition)
rA)

if

k to find the flask
was',

answer:
print 'Th er of moves you took to find the flask was
' + str (NoOfMo

EXAM PABERS.PRACTICE

' 4+ str (NoOfMoves)
Alternative answer:
print (' The number of moves you took to find the flask was
{0}'.format (NoOfMoves)) #Py3

if Eaten:
DisplayLostGameMessage ()
Python 2:
print 'The number of moves that you survived in the cavern
for was', NoOfMoves
Alternative answer:
print 'The number of moves that you survived in the cavern
for was ' + str (NoOfMoves)
Python 3:
print ('The number of moves that you survived in the cavern
for was ' + str (NoOfMoves))
Alternative answer:
print ('The number of moves that you survived in the cavern
for was {0}'.format (NoOfMoves))

Alternative Answer

Page 25 of 109

Python 2
if Eaten:

print 'The number of moves that you survived in the cavern
for was', NoOfMoves
else:

print 'The number of moves you took to find the flask was',
NoOfMoves

Python 3
if Eaten:

print ('The number of moves that you survived in the cavern
for was' + str (NoOfMoves))
else:

print ('The number of moves you took to find the flask was'
+ str (NoOfMoves))

A .format (NoOfMoves)

Alternative answer
if FlaskFound:
DisplayWonGameMessage (NoOfMoves)

if Eaten:
DisplayLostGameMessage (NoOfMoves)

together e and
displayW utput message (!
missing p al)
Python
def Disp

print ell Done! Y flask containing the
Styxian .

print TER!'

print o find the flask was

‘', NoOfMoves
def DisplayLost
print 'ARGH

Message (NoOfMoves) :
H! The monster has eaten you. GAME OVER.'

EXAM:PARERS.PRACTICE

(ii)

for was', NoOfMoves

Python 3
def DisplayWonGameMessage (NoOfMoves) :
print ('Well Done! You have found the flask containing the
Styxian potion.')
print ('You have won the game of MONSTER!')
print ('The number of moves you took to find the flask was'
+ str (NoOfMoves))
def DisplayLostGameMessage (NoOfMoves) :
print ('ARGHHHHHH! The monster has eaten you. GAME OVER.')
print ('Maybe you will have better luck the next time you play
MONSTER! ")
print ('The number of moves that you survived in the cavern for
was'+ str (NoOfMoves))

****SCREEN CAPTURE(S)****

This is conditional on sensible code for (c)(i).

Screen capture(s) showing correct cavern state:

Page 26 of 109

M k'

followed by message "The number of moves you took to find the
flask was 3",

A Different message — if it matches code in (c)(i) and displays final value
of NoOfMoves correctly

R If message "The number of moves that you survived .." is also
shown

(i) ****SCREEN CAPTURE(S)***

This is conglidi Si

Screen captlire(s) showing correct cavern st

EXAML L[| IPRACTICE

followed by message "The number of moves that you survived in the
cavern for was 2",

A Different message — if it matches code in (c)(i) and displays final value
of NoOfMoves correctly
R If message "The number of moves you took.." is also shown

(d) (i) CalculateDistance subroutine created — with begin and
end of subroutine;
PlayerPosition and MonsterPosition passed as parameters to the
CalculateDistance subroutine;
| additional unnecessary parameters
R global variables
A four integer values instead of two CellReference values
R passing by value for parameters of type Cel1Reference
(VB6 only)

Integer value returned by subroutine either as parameter passed by

Page 27 of 109

reference or by function return value; R global variable A real value

Calculates difference between the NoofcellsEast for the monster and
the player; R if the result can be a negative distance

Calculates difference between the NoofCellsSouth for the monster and
the player; R if the result can be a negative distance

Calculates the total distance between the monster and the player;
A Incorrect values for differences in NoOfCellsEast and
NoOfCellsSouth being added together

Distance calculated is actually returned by the subroutine; A use of
global variable

| Case of identifiers
A Minor typos in identifiers
| Order of parameters in routine interface

Pascal
Function CalculateDistance (PlayerPosition, MonsterPosition :
TCellReference) : Integer;
Var
Di
Begin
If ayerPosition.NoOfCellsEas
MonsterP

tion.NoOfCe

.NoOfCellsEast -

se Distance on.NoOfCellsEast -
ion.NoOfCellsEast;

Pos

>

ce := Distance +
PlayerPosition. CellsSouth -
MonsterPosition®oOfCellsSouth

Else Distance := Dis

EXAM:PAPERS PRACTICE

CalculateDistance := Distance;
End;

Then Di

Alternative answer

Distance := Abs(PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast) +

Abs (PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth)) ;

Alternative answer

Distance := Trunc(Sqrt (Sqgr (PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast)) +

Sgrt (Sqgr (PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth)));

Alternative answer

Distance := Round (Sqgrt (Sqgr (PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast)) +

Sgrt (Sgr (PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth)));

Alternative answer

Page 28 of 109

Distance2 : Integer;

Distance := PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast;
If Distance < O

Then
Distance := Distance * -1;
Distance?2 := PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth;
If Distance2 < 0

Then
Distance?2 := Distance2 * -1;
Distance := Distance + Distance?2;

VB.NET

Function CalculateDistance (ByVal PlayerPosition As
CellReference, ByVal MonsterPosition As CellReference) As
Integer

Dim Distance As Integer

If PlayerPosition.NoOfCellsEast >
MonsterPosition.NoOfCellsEast Then

Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

Else
Dlstance = MonsterPosition.NoOfCellsEast -
PlayerPo el
End I
If Pl rPosition.NoOfCellsSouth
MonsterP tion.NoOfCe n
Di i Po ion.NoOfCellsSouth -
MonsterP

Di nce = Distance + MonsterPo ion.NoOfCellsSouth -
PlayerPo '
End I
CalculateDist Distance
End Function

EXAM PAPERS PRACTICE

System.Math.Abs (PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth)

A this alternative answer if System.Math included
A give benefit of doubt for this answer if no evidence of System.Math
included

Alternative answer

Distance = (((PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast) ~ 2) ~ 0.5) +
(((PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth) ~ 2) ~ 0.5)

Alternative answer
Dim Distance2 As Integer

Distance = PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast
If Distance < 0 Then
Distance = Distance * -1
End If

Page 29 of 109

Distance2 = PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth
If Distance2 < 0 Then

Distance?2 = Distance?2 * -1
End If
Distance = Distance + Distance?2
VB6

Private Function CalculateDistance (ByRef PlayerPosition As
CellReference, ByRef MonsterPosition As CellReference) As
Integer
Dim Distance As Integer
If PlayerPosition.NoOfCellsEast >
MonsterPosition.NoOfCellsEast Then
Distance = PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast
Else
Distance = MonsterPosition.NoOfCellsEast -
PlayerPosition.NoOfCellsEast
End If
If PlayerPosition.NoOfCellsSouth >
MonsterPosition.NoOfCellsSouth Then

Distance = Distance + PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth
Else
Di ta ion.NoOfCellsSouth -

PlayerPo
End I

Alternati nswer
Distance (((PlayerP031tlon NoOfCel
.No .5) +
(((Playe ion

MonsterPosition. CellsSouth) ~ 2) ~ 0.5)

Alternative answer

EXAM PAPERS PRACTICE

MonsterPosition.NoOfCellsSouth)

Alternative answer
Dim Distance2 As Integer

Distance = PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast
If Distance < 0 Then
Distance = Distance * -1
End If
Distance2 = PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth
If Distance2 < 0 Then
Distance2 = Distance2 * -1
End If
Distance = Distance + Distance?2

Java
int calculateDistance (CellReference playerPosition,
CellReference monsterPosition) {
int distance;
f(playerPosition.noOfCellsEast>monsterPosition.noOfCellsEa

Page 30 of 109

st) {

distance=playerPosition.noOfCellsEast-monsterPosition.no
OfCellsEast;

} else{

distance=monsterPosition.noOfCellsEast-playerPosition.no
OfCellsEast;

}
if (playerPosition.noOfCellsSouth>monsterPosition.no0OfCellsS
outh) {
distance=distance+playerPosition.noOfCellsSouth-monsterPosi
tion.noOfCellsSouth;

telse(
distance=distance+monsterPosition.noOfCellsSouth-playerPosi
tion.noOfCellsSouth;

}

return distance;

Alternative Answer
int calculateDistance (CellReference playerPosition,
CellReference monsterPosition) {

int distance;

distance = Math.abs(playerPosition.noOfCellsSouth -
monsterPosition.noOfCellsSouth) ;

distance += Math.abs(playerPosition.noOfCellsEast -

Alternati
distance

OfCellsS
+ (int)Ma
ast - mo
Alternati
distance
Position.noOfCel
2))
+Math.sqgrt (Math.pow ((double

EXAM BAPERS PRACTICE

int distance?2;

e) (playerPosition.no
sSouth), 2))
rPosition.noOfCellsE

));

.pow ((double) (player
outh - monsterPosition.noOfCellsSouth),

playerPosition.noOfCellsEast -

distance = playerPosition.noOfCellsEast -
monsterPosition.noOfCellsEast;
if (distance < 0) {
distance = distance * -1;
}
distance?2 = playerPosition.noOfCellsSouth -
monsterPosition.noOfCellsSouth;
if (distance2 < 0) {
distance2 = distance2 * -1;
}

distance = distance + distance2;

Python
dgf CalculateDistance (PlayerPosition, MonsterPosition):
if PlayerPosition.NoOfCellsEast >
MonsterPosition.NoOfCellsEast:
Distance = PlayerPosition.NoOfCellsEast -
MonsterPosition.NoOfCellsEast
else:
Distance = MonsterPositionNoOfCellsEast -

Page 31 of 109

PlayerPosition.NoOfCellsEast
if PlayerPosition.NoOfCellsSouth >
MonsterPosition.NoOfCellsSouth:

Distance = Distance + PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth
else:

Distance = Distance + MonsterPositionNoOfCellsSouth -
PlayerPosition.NoOfCellsSouth
return Distance

Alternative Answer
Distance = abs (PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +
abs (PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth)

Alternative Answer
return abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +
abs (PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth)

Alternative Answer
import math

Distance =

math.tru .NoOfCellsEast -
. Ce
math.sqgr ow ((PlayerP
MonsterP tion.NoOfCe

South -

Alternati nswer
import m
Distance

round (math.sqgrt ((PlayerPo ion.NoOfCellsEast -

1T10n [©)

MonsterPosition. fCellsSouth) **2))

Alternative Answer

EXAM-PAPERS PRACTICE

if Distan
Distance = Distance * -1
Distance2 = PlayerPosition.NoOfCellsSouth -
MonsterPosition.NoOfCellsSouth
if Distance2 < 0:
Distance?2 = Distance2 * -1
Distance = Distance + Distance?2

(i) Callto calculateDistance subroutine;
R if parameter list does not match answer to (d)(i)
Displays "Distance between monster and player:
" in correct place;
A. any place in code after call to DisplayMoveOptions and before call
to MakeMove
A. minor typos in prompt
| capitalisation

Displays the calculated distance;

R. if no evidence of any calculation for the distance
R. if distance is displayed before call to CalculateDistance subroutine

Page 32 of 109

R. if distance returned by CalculateDistance stored in a global
variable

R. if distance calculated in part (d)(i) would not actually be displayed e.qg.
program would not compile/run

A. use of temporary variable to store the value returned by
CalculateDistance with contents of temporary variable then displayed
using output message

| Case of identifiers and output messages
A. Minor typos in output messages
| spacing in output messages

Pascal

DisplayMoveOptions;

Writeln('Distance between monster and player: ',
CalculateDistance (PlayerPosition, MonsterPosition)) ;

VB.NET

DisplayMoveOptions ()

Console.Writeline ("Distance between monster and player: " &
CalculateDistance (PlayerPosition, MonsterPosition))

player: " &

stance (PlayerPosition, Mo rPosition))

A Textl. t = Textl.T c tween monster and
player: ition,
MonsterP
A WriteL
Java

displ

console.print 'Distance between monster and player: " +
calculateDistan layerPosition, monsterPosition)) ;

EXAM: ZAPERS PRACTICE

CalculateDistance (PlayerPosition, MonsterPosition)

Alternative answer

DisplayMoveOptions ()

print 'Distance to monster:' +

str (CalculateDistance (PlayerPosition, MonsterPosition))

Python 3

DisplayMoveOptions ()

print('Distance to monster:' +

str (CalculateDistance (PlayerPosition, MonsterPosition))

(i) ***SCREEN CAPTURE(S)****
This is conditional on sensible code for (d)(i) and/or (d)(ii)

Player shown in the cell 3 south and 5 east of the northwest corner
AND

"Distance between monster and player: 3"
shown;

Page 33 of 109

I monster symbol (M) displayed in the cavern

(iv) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (d)(i) and/or (d)(ii)

Player shown in the cell 2 south and 5 east of the northwest corner
AND

"Distance between monster and player: 2"
shown;

I monster symbol (M

XAM:BAPERS - PRACTICE

AND

"Distance between monster and player: 2"
shown;

played in the cavern

| monster symbol (M) displayed in the cavern

35

Q11.

Page 34 of 109

(@) Connected // There is a path between each pair of vertices;
Undirected // No direction is associated with each edge;
Has no cycles // No (simple) circuits // No closed chains // No closed paths in
which all the edges are different and all the intermediate vertices are different
/I No route from a vertex back to itself that doesn’t use an edge more than
once or visit an intermediate vertex more than once;
A no loops
Alternative definitions:
A simple cycle is formed if any edge is added to graph;
Any two vertices can be connected by a unique simple path;

Max 1
(b) No route from entrance to exit / through maze;
Maze contains a loop/circuit ;
A more than one route through maze;
Part of the maze is inaccessible / enclosed;
R Responses that clearly relate to a graph rather than the maze
Max 1
(€)
1 2 3 - 5 & 7
1 0 1 0 0 0 0 0
2 1 0 1 1 0 0 0
3 0 1 0 0 0 0 0
4 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1
6 0 0 0 0 1 0 0
7 0 0 0 0 1 0 0
(allow some synhh nused)
or
1 3 - 5 6 7
1 0 1 0 0 0 0 0
EXJz oo JACTICE
3 0 0 0 0 0
4 0 1 0 0
5 0 1 1
6 0 0
7 0

(with the shaded portion in either half — some indication must be made that
half of the matrix is not being used. This could just be leaving it blank, unless
the candidate has also represented absence of an edge by leaving cells blank)

1 mark for drawing a 7x7 matrix, labelled with indices on both axis and filled
only with Os and 1s, or some other symbol to indicate presence/absence of
edge. e.g. T/F. Absence can be represented by an empty cell.
1 mark for correct values entered into matrix, as shown above;

(d) () Routine defined in terms of itself // Routine that calls itself;

A alternative names for routine e.g. procedure, algorithm
NE repeats itself

Page 35 of 109

(e)

(ii)

Stores return addresses;

Stores parameters;

Stores local variables; NE temporary variables
Stores contents of registers;

A To keep track of calls to subroutines/methods etc.

Max 1

Procedures / invocations / calls must be returned to in reverse order (of
being called);

As itis a LIFO structure;

A FILO

As more than one / many return addresses / sets of values may need to
be stored (at same time) // As the routine calls itself and for each
call/invocation a new return address / new values must be stored;

Max 1

Discovered Completely
Explored

Call \V|U|En|1|2|3|4|5|6|7|1|2|3(4|5|6|7|F

-|-| " |F|F|F|F|F|F|F|F|F|F|F|F|F|F|F

DFS(1.7)| 1

[]
1

DFS(2.7)| 2

DFS(3.7)| 3

[]
1

DFS(2.7)| 2 | 4

DFES(4.7

=]
o
o
|]

1

DES(5.7)| 5|4 7

DFS(6.7)[6|5 | 7

DES(5.T)|5| 7| 7

DES(7.7)| 7|5 | 7

DFS(3.7)| 5| - | 7

DFS(4.7)|4 |- | 7

DES(27)|2 |- | 7

DFES(1.7)|1|-]| 7

1 mark for having the correct values changes in each region highlighted by a

Page 36 of 109

rectangle and no incorrect changes in the region. Ignore the contents of any
cells that are not changed.

A alternative indicators that clearly mean True and False.
A it is not necessary to repeat values that are already set (shown lighter in

table)
5
[12]
Q12.
(@ VB.Net
Sub Main ()

Dim Names (4) As String
Dim Current As Integer
Dim Max As Integer

Dim Found As Boolean

Dim PlayerName As String

Names (1) = "Ben"

Names (2) = "Thor"

Names (3) = "Zoe"

Names (4) = "Kate"

;Max = 4

Current

Found =

Console.W elLine ("What ooking for?")

PlayerNam Console.Re

End While
If Found = True
Console.WritelLine ("Yes, they have a top score")

EXAM: PAPERS PRACTICE

Console.ReadLine (

End Sub
VB6
Private Sub Form Load()
Dim Names (4) As String A. Names (1l To 4)

Dim Current As Integer
Dim Max As Integer

Dim Found As Boolean

Dim PlayerName As String

Names (1) = "Ben"

Names (2) = "Thoxr"
Names (3) = "Zoe"

Names (4) = "Kate"
Max = 4

Current =1

Found = False
PlayerName = InputBox ("What player are you looking for?")
While Found = False And Current <= Max
If Names (Current) = PlayerName Then
Found = True

Page 37 of 109

Else
Current = Current + 1
End If
End While
If Found = True Then
MsgBox ("Yes, they have a top score")

Else
MsgBox ("No, they do not have a top score")
End If
End
End Sub
Pascal
Program Question;
Var
Names : Array[l..4] Of String;
Current : Integer;

Max : Integer;
Found : Boolean;
PlayerName : String;
Begin
Names [1
Names [2
Names[3
Names [4
Max := 4;
Current
Found :=
Writeln ('
Readln (
While
Do

] 'Ben'
] := '"Thor'
1 := '"Zoe'
] := '"Kate'

:= Current + 1;
End;

If Found = True

Then Writeln('Yes, they have a top score'

EXAM: PAPERS PRACTICE

Java
public class Question {

AQAConsole console = new AQAConsole();

public Question() {
String[] names = new String[5];
int max;

int current;
boolean found;
String playerName;

names[1l] = "Ben";
names[2] = "Thor";
names[3] = "Zoe";
names[4] = "Kate";

/lpossible alternative, which declares and
/linstantiates in one.
//String[] names={"","Ben","Thor","Zoe","Kate"};

Page 38 of 109

current = 1;
max = 4;
found = false;

playerName = console.readLine ("What player are you
looking for? ");
while ((found == false) && (current <= max)) {

if (names|[current].equals (playerName)) {
found = true;
} else {
current++;
} // end if/else
} // end while

if (found == true) {
console.println ("Yes, they have a top score");
} else {

console.println ("No, they do not have a top score");
} // end if/else
}// end CONSTRUCTOR
/**
* (@param args the command line arguments
*/
public static void main(String[] args) {
new Questy

}

Python 2.6

Names = ["",

Names [1] "B

Names[2] = "T

Names[3] = "Z

Names[4] = "K

Or:

Names [llll, llBenll, IIT l, "Zoe", llKatell]

EXAM.PAPERS PRACTICE

Names.append ("Thor")
Names.append ("Zoe")
Names.append ("Kate")

Max = 4

Current = 1

Found = False

PlayerName = raw input ("What player are you looking

for?")
while (Found == False) and (Current <= Max):
if Names[Current] == PlayerName:
Found = True
else:
Current += 1
if Found == True: # accept if Found:
print "Yes, they do have a top score"
else:

print "No, they do not have a top score"
A Answers where Max is set to 5 and loop condition of Current <
Max

A Answers where Max is set to 4 and loop condition of Current <
Max + 1

Page 39 of 109

Python 3

Names = ["™", ™"", "wmw, mwn,onn]
Names[1l] = "Ben"

Names[2] = "Thor"

Names [3] = "Zoe"

Names[4] = "Kate"

Or:

Names["", "Ben","Thor", "Zoe","Kate"]
Or:

Names = [""]

Names.append ("Ben")

Names.append ("Thor")

Names.append ("Zoe")

Names.append ("Kate")

Max = 4

Current =1

Found = False
PlayerName = input ("What player are you looking

for?")
while (Found == False) and (Current <= Max):
if Names[Current] == PlayerName:
Foun
else:
Curr +=1
if Found == # accept
print ("Y do ha
else:
print(they do not ")

A Answers whe Current <

Max

A Answers where Max is 0 4 and loop condition of Current <

Mark as follows:
rmRct yaria eglar ur) u

EXAM WARPERS. PRACTICE

Four correct values assigned to the correct positions in the Names array;

Max, Current, Found initialised correctly;

Correct prompt followed by pPlayerName assigned value entered by user;

WHILE loop formed correctly and correct conditions for the termination of the

loop;

First 1F followed by correct condition and IF statement is inside the loop;

THEN followed by correct assignment statement within a correctly

formed IF statement;

ELSE followed by correct assignment statement within a correctly formed 1F

statement;

Second 1F followed by correct condition and IF is after the loop;

THEN followed by correct output within a correctly formed 1r statement;

ELSE followed by correct output within a correctly formed 1F statement;

| Case of variable names, player names and output messages

A Minor typos in variable names and output messages

A Max declared as a constant instead of a variable

A Alternative conditions with equivalent logic for the loop

A Array positions 0-3 used instead of 1-4 if consistent usage throughout
program

Page 40 of 109

(b)

()

Q13.
(@)

11

** ** SCREEN CAPTURE* * * *
Must match code from (a), including prompts on screen capture matching
those in code. Code for (a) must be sensible.

Mark as follows:

'‘What player are you looking for' + user input of * Thor’ ;
'Yes, they have a top scor' message shown;

| spacing

R If code for (a) would not produce this test run

*** * SCREEN CAPTURE* * * *
Must match code from (a), including prompts on screen capture matching
those in code. Code for (a) must be sensible.

Mark as follows:

'‘What player are you looking for?' + user input of ‘Imran’ ;
‘No, they do not have a top score' message shown;

| spacing

R If code for (a) would not produce this test run

[15]

VB.Net/VB6

Const MaxSize
| capitalisation

Pascal
Const MaxSize = 4
| missing semicolon, capi ation
NE MaxSize

EXAM PAPERS PRACTICE

(b)

()

(d)

final int MAX SIZE = 4;
I missing semicolon, capitalisation
NE MAX SIZE

Python 2.6 and 3
MAX SIZE = 4

Improves readability of code // Easier to update the programming code if the
value changes (A by implication) // reduce the likelihood of errors;

PlayerOneName // PlayerTwoName;
R if any additional code

R if spelt incorrectly

| case & spaces

A Max SIZE (Python only)

A Currentfile (R for VB6/VB.Net)

LowestCurrentTopScore ;
A PositionOfLowestCurrentTopScore;

Page 41 of 109

(e)
0}
(¢))

(h)

(i)

()

(k)

()

R if any additional code

R if spelt incorrectly
| case & spaces

b;
True;

False;

UpdateTopScores;
R if spelt incorrectly
| case & spaces

VirtualDiceGame;
R if spelt incorrectly
| case & spaces

AppealDieResult;
RollAppealDie;

R if spelt incorrectly

R RollAppealDie (Python only)

| case & spaces

Until PlayerOu
A any unambig

Because the sc
Because they a
A Because whe

: of the two vari

ntil PlayerOu

cal

SIS

ren

is out;
condition

EXAMes PARERS.ERACTICE

Q14.
(a)

with the lowest score found so far // with LowestCurrentTopScore;

if it is less than it then it changes the lowest score found so far; R swaps
and makes the position of the lowest top score equal to count / equal to the
current position in the array;

VB.Net

If VirtualDiceGame Then

AppealDieResult = Int (Rnd()

Else

*

5)

1

[18]

Console.WritelLine ("Please roll the appeal die and then
enter your result.")

Console.
Console.

Console

Console.
Console.

Console

WriteLine ()

WritelLine ("Enter
.WriteLine ("Enter
WriteLine ("Enter
WriteLine ("Enter
.WriteLine ("Enter

g w N

Page 42 of 109

if
if
if
if
if

the
the
the
the
the

result
result
result
result
result

is
is
is
is
is

NOT OUT")
CAUGHT")
LBW")
BOWLED")
RUN OUT")

Console.WriteLine ()
Console.Write ("Result: ")
AppealDieResult = Console.ReadLine
Console.WriteLine ()

End If

VB6
If VirtualDiceGame Then
AppealDieResult = Int(Rnd() * 5) + 1

Else
WriteLine ("Please roll the appeal die and then enter your
result.™)
WriteLine ("")
WriteLine ("Enter 1 if the result is NOT OUT")
WriteLine ("Enter 2 if the result is CAUGHT")
WritelLine ("Enter 3 if the result is LBW")
WriteLine ("Enter 4 if the result is BOWLED")
WritelLine ("Enter 5 if the result is RUN OUT")
WriteLine ("")
AppealDieResult = ReadLine ("Result:")
WriteLine ("")
End If

A Textl.Text = Textl.Text & “Enter 5 if the result is RUN OUT*
A WriteLineWithMsg

Pascal

iteln ('Pleas

is NOT OUT');

Writel nter 2 if the result is CAUGHT') ;
Write nter 3 if the result is LBW') ;
Writeln ('Enter 4 if the result BOWLED'

EXAM pﬁEEEﬁS*ﬁﬁAé“ﬁCE

Readln (AppealDieResult) ;
Writeln;
End;

Java
if (virtualDiceGame) {

appealDieResult = objRandom.nextInt(5) + 1;
} else {

console.println("Please roll the appeal die and
then enter your result.");

console.println();

console.println ("Enter 1 if the result is NOT
ouT") ;

console.println ("Enter 2 if the result is
CAUGHT") ;

console.println ("Enter 3 if the result is LBW");

console.println ("Enter 4 if the result is

BOWLED") ;

console.println("Enter 5 if the result is RUN
OouT") ;

console.println();

appealDieResult = console.readInteger ("Result:

Page 43 of 109

(ii)

")
console.println();

}

Python 2.6
def RollAppealDie (VirtualDiceGame) :
if VirtualDiceGame:

AppealDieResult = random.randint (1,5)

else:

print "Please roll the appeal die and then enter your

result."

print mwn
print "Enter
print "Enter
print "Enter
print "Enter
print "Enter

print ""

if the result
if the result
if the result
if the result
if the result

s wN -

AppealDieResult = input ("Result:

prlnt mwn
return AppealDieResult

Python 3
def RollAppealDie (VirtualDiceGame) :
if VirtualDiceGame:

els
int ("Please roll the a
result."

is
is
is
is
is

S
S
S
S
S

NOT OUT"
CAUGHT"
LBW"
BOWLED"
RUN OUT"

")

t(1,5)

e and then enter your

NOT OUT")
CAUGHT")
LBW")
BOWLED")
RUN OUT")

esult = int (input ("Result: "))

EXAM. PAPERS PRACTICE

Generates random number between 1 and 5;

Appropriate prompt added if real dice being used,;

| minor typos and capitalisation in prompt
A alternative sensible prompt

VB.Net
Select Case AppealDieResult
Case 1
Console.WriteLine ("Not out!")
Case 2
Console.WritelLine ("Caught!")
Case 3
Console.WriteLine ("LBW!")
Case 4
Console.WriteLine ("Bowled!")
Case 5
Console.WriteLine ("Run Out!")
End Select

VB6

Page 44 of 109

Select Case AppealDieResult

Case 1

WriteLineWithMsg ("Not out!")
Case 2

WriteLineWithMsg ("Caught!")
Case 3

WriteLineWithMsg ("LBW!")
Case 4

WriteLineWithMsg ("Bowled!")
Case 5

WriteLineWithMsg ("Run out!")

End Select

A WriteLine / WriteWithMsg / Msgbox instead of WriteLineWithMsg
A Textl.Text = Textl.Text & “Run out!”

Pascal
Case AppealDleResult Of

1 Writeln ('Not out!');
2 Writeln ('Caught!');
3 Writeln ('LBW!'");
4 : Writeln('Bowled!"');
5 : Writeln('Run out!');
End;
Java
switch (ea

cas

onsole println ("Bowled!")

EXAM PAPERS. PRACTICE

break; /////////////optlonal

Python 2.6
def DisplayAppealDieResult (AppealDieResult) :
if AppealDieResult == 1:
print "Not out!"
elif AppealDieResult ==
print "Caught!"
elif AppealDieResult ==
print "LBW!"
elif AppealDieResult == 4:
print "Bowled!"
elif AppealDieResult ==
print "Run out!"

Python 3
def DisplayAppealDieResult (AppealDieResult) :
if AppealDieResult ==
print ("Not out!")
elif AppealDieResult ==
print ("Caught!")

Page 45 of 109

elif AppealDieResult == 3:
print ("LBW!")
elif AppealDieResult

print ("Bowled!")
elif AppealDieResult == 5:
print ("Run out!")

Mark as follows:

5th case option added;

Appropriate output message in 5" case option;

I minor typos and capitalisation in output message 2

(i) ****SCREEN CAPTURE(S)* * * *
This is conditional on sensible code for (a)(i) and (a)(ii)

Screen capture showing run out (option 5) message shown to user;
User enters “5” and correct output message showing ‘RUN OUT!’;
A Alternative output message if matches code for (a)(i) / (a)(ii)

() (@) VB.Net
If PlayerOneScore > PlayerTwoScore Then
Console.WritelLine (PlayerOneName & " wins!")
If Playe
Console.
If Playe eScore = PlayerTwoScore T
Console. telLine ("A d

VB6
If Playe eScore > P1 T
WritelLin thMsg (PlayerOneName & " s!™)

S!")

If PlayerOneScor PlayerTwoScore Then

WriteLineWithMs 'A draw!")
A HIsin 0RO X/ \Ait edai jteladth M tpwdk in
EXAM-wi ICE
ext.TextI = T ! w!"
Pascal
If (PlayerOneScore > PlayerTwoScore)
Then Writeln (PlayerOneName, ' wins!');
If (PlayerTwoScore > PlayerOneScore)
Then Writeln (PlayerTwoName, ' wins!');

If (PlayerOneScore = PlayerTwoScore)
Then Writeln('A draw!');

Java

if (playerOneScore > playerTwoScore) {
console.println (playerOneName + " wins!");

} // end if

if (playerTwoScore > playerOneScore) {
console.println (playerTwoName + " wins!");

} // end if

if (playerTwoScore == playerOneScore) {
console.println("A draw!");

}

Python 2.6

Page 46 of 109

if PlayerOneScore > PlayerTwoScore:
print PlayerOneName, " wins!"

if PlayerTwoScore > PlayerOneScore:
print PlayerTwoName, " wins!"

if PlayerOneScore = = PlayerTwoScore:
print "A draw!"

Python 3

if PlayerOneScore > PlayerTwoScore:
print PlayerOneName, "wins!"

if PlayerTwoScore > PlayerOneScore:
print PlayerTwoName, "wins!"

if PlayerOneScore = = PlayerTwoScore:
print "A draw!"

Mark as follows:

IF statement;

with correct condition;

suitable output message shown under, and only under, correct
circumstances;

(i) ***SCREEN CAPTURE(S)****

Correct m ensible code for (b)(ii)

© () VB.Net
Console.
BowlDieR
Console.
While Bo

te ("Result:
Console.ReadLine ()

t > 6
e ("Please enter a value between 1

BowlDieResu = Console.ReadLine

EXAM.PAPERS PRACTICE

Console.Write ("Result: ")
BowlDieResult = Console.ReadLine
If BowlDieResult < 1 Or BowlDieResult > 6 Then
Console.WritelLine ("Please enter a number between 1 and
6 only")
End If
Loop Until BowlDieResult >= 1 And BowlDieResult <=6

VB6

BowlDieResult = ReadLine ("Result:")

While BowlDieResult < 1 Or BowlDieResult > ©
BowlDieResult = ReadLine ("Please enter a value

between 1 and 6 only")

End While

A InputBox instead of ReadLine

Alternative Answer —VB6
Do
BowlDieResult = ReadLine ("Result:")
If BowlDieResult < 1 Or BowlDieResult > 6 Then
BowlDieResult = Writeline ("Please enter a value between

Page 47 of 109

1 and 6 only")
End If
Loop Until BowlDieResult >= 1 And BowlDieResult <=6

Pascal
Repeat

Write ('Result: ');

Readln (BowlDieResult) ;

If (BowlDieResult < 1) Or (BowlDieResult > 6)

Then Writeln('Please enter a value between 1 and 6

only');

Until (BowlDieResult >= 1) And (BowlDieResult <=6);

Alternative Answer - Pascal

Write ('Result: '");

Readln (BowlDieResult) ;

Writeln;

While (BowlDieResult < 1) Or (BowlDieResult > 6)

Do
Begin

Writeln('Please enter a value between 1 and 6 only');
Readln (BowlDieResult) ;

End;
Java
do {
bowl co . ("Result: ");
if | wlDieResult Di sult > 6))
{
con In (" a lue between 1 and 6
only");
}
} while wlDieResult < 1 || bowlDi sult > 6);
Python 2.

while BowlDieRes not in [1,2,3,4,5,6]:
while BowlDieR t not in range(l,7):
while BowlDieResult < 1 or BowlDieResult >6:

EXAM _PAPERS PRACTICE

Python 3
while BowlDieResult not in [1,2,3,4,5,6]:
while BowlDieResult not in range(1l,7):
while BowlDieResult < 1 or BowlDieResult >6:
while not (1 <= BowlDieResult <= 6):
BowlDieResult = int (input ("Please enter a value
between 1 and 6 only: "))

Mark as follows:

Suitable iteration structure used in appropriate place in the Skeleton
Program with one correct condition;

Use of OR logical operator and have second condition correct for
iterative structure;

A Alternative logic using AND and NOT logical operators

Correct error message and get choice from user — both inside the
loop;

Error message is displayed if, and only if, invalid data entered by
user;

I. minor typos and capitalisation in output message

Page 48 of 109

(ii)

d ()

SCREEN CAPTURE(S)*
This is conditional on sensible code for (c)(i)

Mark as follows:

Test showing a value of 0 entered and the correct output message;
Test showing a value of 2 entered and the correct output message;
Test showing a value of 7 entered and the correct output message;

| Order of tests
A Alternative error message if matches code for (c)(i)

VB.Net

Console.WritelLine ("4. Display top scores")
Console.WritelLine("5. Save top scores")
Console.WriteLine ("9. Quit")

VB6

WriteLine ("4. Display top scores")
WriteLine ("5. Save top scores")
WriteLine ("9. Quit")

Pascal
Writeln('4. Display top scores');
Writeln(
Writeln (

Java

console.
console.
console.

Python 2.
def DisplayMenu (
print "Dice cket"
print ""
print "1. Play game version with virtual dice"

EXAM:PAPERS PRACTICE

(ii)

print "5. Save top scores"
print "9. Quit"

Python 3

print ("4. Display top scores")
print("5. Save top scores")
print ("9. Quit")

A minor typos in output message

VB.Net /VB6
If OptionChosen < 1 Or (OptionChosen > 5 And
OptionChosen <> 9) Then

Pascal
If (OptionChosen < 1) Or ((OptionChosen > 5) And
(OptionChosen <> 9))
Then
Java
if ((optionChosen < 1) || ((optionChosen > 5) &&

Page 49 of 109

(optionChosen != 9))) {

Python 2.6
def GetMenuChoice():
OptionChosen = input ("Please enter your choice:")
if (OptionChosen < 1 or (OptionChosen > 5 and
OptionChosen != 9)):
Print ""
print "That was not one of the allowed options.
Please try again: "
return OptionChosen

Python 3
def GetMenuChoice() :
OptionChosen = int (input ("Please enter your

choice: ™))
if (OptionChosen < 1 or (OptionChosen > 5and
OptionChosen != 9)):

print ()
print ("That was not one of the allowed options. Please
try again: ")
return OptionChosen

Mark as follows:
OptionCh

(i) VB.Net

Sub Save TopScore)

FileO , i . .Output)

Lin .Name & "," &
TopScores
PrintLine (
Next
FileClose (

EXAM ‘PAPERS PRACTICE

Prlvate Sub SaveTopScores (ByRef TopScores (
TTopScore)
Dim Count As Integer
Open "HiScores.txt" For Output As #1
For Count = 1 To MaxSize
Print #1, TopScores (Count) .Name & "," &
Str (TopScores (Count) .Score)
Next
Close #1
End Sub

ineToAddToFile)

Pascal
Procedure SaveTopScores (TopScores : TTopScores);
Var
Count : Integer;
LineToAddToFile : String;
CurrentFile : TextFile;
Begin
Assign (CurrentFile, 'HiScores.txt');
ReWrite (CurrentFile);
For Count := 1 To MaxSize
Do

Page 50 of 109

Begin

LineToAddToFile :=
IntToStr (TopScores[Count] .Score)
LineToAddToFile := TopScores[Count].Name + ',' +
LineToAddToFile;
Writeln (CurrentFile, LineToAddToFile);
End;
Close (CurrentFile);
End;
A Str (TopScores[Count].Score, LineToAddToFile);
instead of
LineToAddToFile := IntToStr (TopScores[Count].Score)
Java

void saveTopScores (TopScore[] topScores) {
AQAWriteTextFile currentFile = new
AQAWriteTextFile () ;
currentFile.openFile ("hitest.txt");
int count;
for (count = 1; count <= MAX SIZE; count++) {
String lineToAddToFile = topScores[count] .name + ", ";
lineToAddToFile = lineToAddToFile +
String.valueOf (topScores[count].score) ;
currentFile.writeToTextFile (lineToAddToFile) ;
} // end for count

t] .Name + "," +

OutFile.clo

or more likely

EXAM:BAPERS-2RACTICE

TopScores[3], TopScores[4]):

Line = score.Name + “,”+
str (score.Score) + “\n”
Outfile.write(line)

Outfile.close()

Python 3
def SaveTopScores (TopScores) :
CurrentFile = open ("HiScores.txt","w")
Count = 1
for Count in range(l, MAX SIZE+1):
LineToAddToFile = TopScores[Count].Name + "," +
str (TopScores[Count] .Score) + "\n"
CurrentFile.write (LineToAddToFile)
CurrentFile.close()

Mark as follows:

Correctly named subroutine declared; | capitalisation R other
mistakes in identifier

File opened correctly (for output);

First line to add into file consists of the 1stname; a comma and the

Page 51 of 109

(iv)

1stscore;

First line written to file correctly;

2nd, 3raand 4 lines would be written to the file correctly;
File closed correctly;

Additional marks for good programming practice=

(Max 3)

TopScores array passed as a parameter;

Use of iterative structure and counter used within iterative structure -
going from 1 to MaxSize (R 4);

Sensible identifier names used for all variables/parameters;
Evidence of sensible commenting of source code;

VB.Net
Loop Until (OptionSelected >= 1 And OptionSelected
<= 5) Or OptionSelected = 9
Console.WriteLine ()
If OptionSelected >= 1 And OptionSelected <= 5 Then
Select Case OptionSelected

Case 1 : PlayDiceGame (PlayerOneName,
PlayerTwoName, True, TopScores)

Case 2 : PlayDiceGame (PlayerOneName,
PlayerTwoName, False, TopScores)

es)
cores)
s)
End
VB6
Loop Unt (OptionSele a8 ionSelected
<= 5) Or tionSelected
If Optio d <= 5 Then
Selec
Case 1: 1 PlayDiceGame (PlayerOneName,
PlayerTwoName, e, TopScores)

Case 2: Call PlayDiceGame (PlayerOneName,

EXAM PAPERS PRACTICE

Case 5: Call SaveTopScores (TopScores)

Pascal
Until OptionSelected In [1..5, 9];
Writeln;
If OptionSelected In [1..5]
Then

Case OptionSelected Of
1 : PlayDiceGame (PlayerOneName,
PlayerTwoName, True, TopScores);

2 : PlayDiceGame (PlayerOneName,
PlayerTwoName, False, TopScores);
3 : LoadTopScores (TopScores) ;

4 : DisplayTopScores (TopScores) ;
5 : SaveTopScores (TopScores) ;

End;
Java
do {
displayMenu() ;
optionSelected = getMenuChoice() ;
} while (! ((optionSelected >= 1 && optionSelected

Page 52 of 109

10

<= 5) || optionSelected == 9));
if (optionSelected >= 1 && optionSelected <= 5) {
switch (optionSelected) {
case 1:
playDiceGame (playerOneName, playerTwoName, true,
topScores) ;
break;
case 2:
playDiceGame (playerOneName, playerTwoName, false,
topScores) ;
break;
case 3:
loadTopScores (topScores) ;
break;
case 4:
displayTopScores (topScores) ;
break;
case 5:
saveTopScores (topScores) ;
break; //optional
} // end case
} // end if

Python 2.6
while OptionSelected != 9:

Opti G
ptionSelected not in

elected ==

OneName,

TwoName, False, TopScores)
elif OptlonSelected

EXAM PAPERS P RACTICE

DlsplayTopScores(TopScores
elif OptionSelected =
SaveTopScores(TopScores)

PlayDiceGame(Pl

Python 3
while OptionSelected != 9:
DisplayMenu ()
OptionSelected = GetMenuChoice ()
while OptionSelected not in [1,2,3,4,5,9]:
DisplayMenu ()
OptionSelected = GetMenuChoice ()
print ()
if OptionSelected in [1,2,3,4,5]:
if OptionSelected ==
PlayDiceGame (PlayerOneName, PlayerTwoName, True,
TopScores)
elif OptionSelected == 2:
PlayDiceGame (PlayerOneName,
PlayerTwoName, False, TopScores)
elif OptionSelected ==
LoadTopScores (TopScores)
elif OptionSelected ==
DisplayTopScores (TopScores)

Page 53 of 109

(iv)

v)

€ ()

EXA

elif OptionSelected ==
SaveTopScores (TopScores)

Mark as follows:

Additional case statement for optionSelected being 5;
Procedure call;

Passing TopScores as a parameter;

Loop terminating condition and selection condition range both
changed from 1-4 to 1-5;

¥ *SCREEN CAPTURE****

Adapted menu is displayed; This is conditional on sensible answer for
question (d)(i)

option 5 is selected, and accepted as valid input; This is conditional on
sensible answer for questions (d)(ii) and (d)(iv)

****SCREEN CAPTURE****
This is conditional on sensible answer for (d)(ii), (i) and (iv)

Contents Qffyi tly

Ricky,12
Sachin,45
Brian,2
Janet,4

A Screen
| Minor ty
R If Janet’s name in text file does not match the name used in (d)(iv)

Generate wider ra of random numbers; add extra case statements

WSAPERS PRACTICE

Create a list/array containing a list of possible bowl die results where
there are more 1s and 5s than 3s and 4s; generate a random number
between 1 and the list size and use the bowl die result in that position in
the list/array;

Mark as follows:

Generate a wider range of random numbers; Explain how the extra
random numbers could be used to have a higher chance of getting a
score of 1 or O than a score of 4 or 6;

A Replace case statement with if statements to allow different score
values to have ranges of values associated with them (Pascal Only)

A Other sensible suggestions for modifications to the Skeleton Program
that would result in the desired behaviour change.

MAX 1 if suggested changes would adversely effect other aspects of the
game represented in the Skeleton Program e.g. does result in more
lower scores than higher scores but would prevent a player from getting
a result of out.

Page 54 of 109

Q15.

@) An abstraction / leaving out non-essential details // A mathematical
representation of reality;

(b) 1 mark for naming or describing two pointers from this list:

. Front/start/head pointer
. Next node pointer

. Previous node pointer

. Rear/end/tail pointer

R Next free space pointer
1 mark for stating the purpose of one of the pointers that have been named:
. (Front/start/head pointer) to indicate where to remove items from // who

should be served next // who is currently being served;
NE to points to start of list

. (Next node pointer) to link items in list together // to show order of list //
so items can be inserted into middle of list // to traverse list;

. (Previous node pointer) to link items in list together // to show order of
list // so items can be inserted into middle of list // to traverse list
backwards;

. (Read/ e to new items to // so new
people ca added to queue
NE to poi end of list

nstead of list or adding
people to

R Answer ich clearly rel ed-size array.

(i) Priority (q

(c) Allow any reasonable example that would require randomness e.g. time next

EXAM ARE RS- EIACTICE

in queue

[5]

Q16.

Meaningful/appropriate/suitable identifiers //

A example;

Indentation // effective use of white space;

Subroutines / Procedures and functions/methods/modules; with interfaces // using
parameters to pass values;

Subroutines / Procedures and functions/methods/modules should execute a single
task;

Appropriate use of structured statements // use of (selection and
repetition)/repetition;

Avoid use of goto statements;

Consistent use of case/style for identifier names;

Use of named constants;

Use of user-defined data types;

Use of libraries;

Page 55 of 109

House-style naming conventions // following conventions;
A by explained example

A Use of local variables

R Commenting

R "easier to understand”

Max 3
[3]

Q17.

(@ () Board // PlayerOneName // PlayerTwoName // PlayerOneScore //
PlayerTwoScore // XCoord // YCoord // ValidMove // NoOfMoves
// GameHasBeenWon // GameHasBeenDrawn // CurrentSymbol //
StartSymbol // PlayerOneSymbol // PlayerTwoSymbol // Answer

Javaonly: console;

(i) Row // Column // RandomNo // ValidMove // XOrOHasWon //
WhoStarts;

VB6 only: BoardAsString;
Java and Python: x // ¥;
Java and C#: ObjRandom;

(i) Aglobal v here in the program,
i program block /
h it is declared;

Local vari procedure / function /
subroutin [i [s exist / use memory

the whole
2
(iv) When the user enters ‘X'; or ‘O’; // When PlayerOneSymbol contains
or
EXAM J)APERS PRACTICE :
Because players could be making moves referring to non-empty cells;
as no check is made for this (in the CheckvalidMove subroutine); //
Because some illegal moves are allowed;;
Mark as follows:
a move that is not legal being attempted (A by example); and is allowed
(A by implication);
2

(vi) NoOfMoves // Row // Column;

(vi) PlayerOneName // PlayerTwoName // WhoStarts //
PlayerTwoSymbol // RandomNo;

Pythononly: x // Y; 1
(viii) CheckvalidMove;

(ix) VB.NET
RandomNo = Rnd () *100 // WhoStarts = "X" // WhoStarts = “0”//
GetWhoStarts = WhoStarts;

VB6

Page 56 of 109

)

RandomNo = Rnd () *100 + 1 // WhoStarts = “X” // WhoStarts = “0”
// GetWhoStarts = WhoStarts;

Pascal

RandomNo := Random(100) // WhoStarts := ‘O ’ // [WhoStarts :=
X' // GetWhoStarts := WhoStarts;

Java

Random objRandom = new Random() //

randomNo = objRandom.nextInt (100) // whoStarts = 'X' //
whoStarts = 'O'

Python

RandomNo = random.randint (0, 100) //

WhoStarts = 'X' // WhoStarts = '0O';

R if extra code included

It looks at the remainder obtained by dividing RandomNo by 2;
A any explanation that clearly explains both sides of comparison
A if the random number /RandomNo is even;

If the value is O/even it sets WhoStarts to 'X';
if the value is not 0/odd it sets WwhoStarts to ‘O°

Award onl
candidate

led with asterisks(*) if
outcomes in terms of
e into WhoStarts.

identified co
instead

Candidate arts to get this 1 mark if
specific v

3

(b) () Boundary n and just outside the

range of allowed val

1

EXAM. ERS PRACTICE

Max 1 if additional values given

3

Q18.
©)

(iii)

SCREEN CAPTURE(S)*

Screen capture showing boundary test resulting in correct behaviour;
Must match one of the boundary values given in(b)(ii).

R. If screen capture does not show a correct boundary value given as an
answer to question (b)(ii)

[20]

VB.NET / VB6
If YCoordinate < 1 Or YCoordinate > 3 Then ValidMove = False
If ValidMove = True then
If Board(XCoordinate, YCoordinate) <> " " Then ValidMove
= False

Page 57 of 109

End If

A If Board(XCoordinate, YCoordinate) = "X" Or
Board (XCoordinate, YCoordinate) = "O" Then

A If Not (Board (XCoordinate, YCoordinate) = " ") Then
A If ValidMove = True ANdAISO Board (XCoordinate,
YCoordinate) <> " " Then ValidMove = False (VB.NET only)

Pascal
If (YCoordinate < 1) Or (YCoordinate > 3) Then
ValidMove:=False;
If ValidMove = True Then

If Board[XCoordinate, YCoordinate] <> ' ' Then
ValidMove:=False;

Java
boolean checkValidMove (int xCoordinate, int yCoordinate,
char[][] board) {

boolean validMove = true;

//check the x Coordinate is valid

if (xCoordinate < 1 || xCoordinate > 3) validMove = false;

//check the y Coordinate is valid

if (yCoordinate < 1 || yCoordinate > 3) validMove = false;

//check the cell is empty

if (validMove) {

if (

lidMove (XCoordinate, YCoo ate,Board) :

<1l) or (XCoordinate > 3):
False

<1l) or (YCoordinate > 3):
ValidMove = Fa

EXAM PAPERS. -RPRACTICE

ValidMove = False
return ValidMove

Mark as follows:

IF statement with condition Y Coordinate<1, correct logic and second
condition of YCoordinate>3;

Return a value of false if y coordinate is an illegal value; R if value would
not actually be returned;

IF statement checking that move is valid so far;

IF statement comparing value of Board(XCoordinate, YCoordinate) with
returning a value of false if cell is not empty; R if value would not actually
be returned;

A Equivalent logic

A Alternative answers where Return statements are used after each
validation check instead of assigning a Boolean value to ValidMove

Alternative Answer (Java, Python, VB.NET)

Using only one IF statement and short-circuit evaluation operators, one
mark

Page 58 of 109

for each correct condition plus one mark for correct Boolean operators -
as

long as the check that the Board cell is empty is the last condition (if
Board

cell is not the last condition marks can only be awarded for any correct
conditions that appear before it). Operators for short-circuit evaluation:
VB.NET AndAlso/OrElse instead of And/Or; Python and/or instead of &/|;
Java &&/|| instead of &/|

Alternative Answer (Pascal)

Using only one IF statement with all conditions connected by OR
operators

and the check for non-empty cell being the last condition. If non-empty
cell

test is not the last condition maximum of 4 marks.

Alternative Answer

VB.NET /VB6

If XCoordinate < 1 Or XCoordinate >3 then
ValidMove = False

Else
If YCoordinate < 1 Or YCoordinate > 3
Then ValidMove = False

Els

00 ate) <> " " Then
ValidMov False
End

End If

Pascal
If (XCoo 3)
Then
End
Else
Begin
EXAM PAPERS PRACTICE
Begin
ValidMove := False;
End
Else
Begin
If Board[XCoordinate, YCoordinate] <> ' '
Then ValidMove := False;
End
End;

Mark as follows:

IF statement with condition Y Coordinate<1, correct logic and second
condition of YCoordinate>3;

Return a value of false if y coordinate is an illegal value; R if value would
not actually be returned;

Correct use of nested ifs so that checking cell is empty on board only
occurs if xcoordinate and ycoordinate are in the allowed range;

IF statement comparing value of Board(XCoordinate, YCoordinate) with
returning a value of false if cell is not empty; R if value would not actually
be returned

Page 59 of 109

(b)

(ii)

(iii)

A Equivalent logic
A Alternative answers where Return statements are used after each
validation check instead of assigning a value to ValidMove

****SCREEN CAPTURE(S)****
This is conditional on sensible code for (a)(i)

Mark as follows:
Test showing coordinate (2,-3) and error message;
Test showing coordinate (2, 7) and error message;

R other coordinates
A In VB6 a test showing only Y value of the coordinate i.e. -3, 7 and
error message.

****SCREEN CAPTURE****

This is conditional on sensible code for (a)(i). Mark should not be
awarded if code would not work.

E.g. if Boolean values are assigned to ValidMove and there is no Return
statement after the validation check.

E.g. trying to reference a position in the array that is out of bounds and
would res uitgi

tes of illegal move and

2, 2) =

xOrOHasWon = True
Board (3, 1) And Board(2, 2) =
ard(2, 2) <> " " Then xOrOHasWon = True

Board (1,
If Board(2,
Board (1, 3) An

EXAM:#APERS- PRACTICE

tea

Alternative answer

If Board(2, 2) = Board(3, 3) Then
If Board(2, 2) = Board(l, 1) Then
If Board(2, 2) <> " " Then
xOrOHasWon = True
End If
End If
End If
If Board(2, 2) = Board(3, 1) Then
If Board(2, 2) = Board(l, 3) Then
If Board(2, 2) <> " " Then
xOrOHasWon = True
End If
End If
End If
Pascal
If (Board[2, 2] = Board[3, 3]) And (Board[2, 2] =
Board[1l, 1]) And (Board[2, 2] <> ' ') Then xOrOHasWon :=
True;
If (Board[2, 2] = Board[3, 1]) And (Board[2, 2] =

Page 60 of 109

Board[1l, 3]) And (Board[2, 2] <> ' ') Then xOrOHasWon :=
True;

Alternative answer
((Board[2,2]= 'X') OR (Board[2,2] ='0"))
instead of <> ' !

Alternative answer

If (Board[2, 2] = Board[3, 3]) Then
If (Board[2, 2] = Board[l, 1]) Then
If (Board[2, 2] <> " ') Then
xOrOHasWon := True;
If (Board[2, 2] = Board[3, 1]) Then
If (Board[2, 2] = Board[l, 3]) Then
If (Board[2, 2] <> ' ') Then
xOrOHasWon := True;
Java
if (board[1l][1] == board[2][2] &&
board[2] [2] == board[3][3] &&
board[1][1] !'= " ") {

xOrOHasWon = true;

} // end if diagonal
if (board[3][1] == board[2][2] &&
board[2] [2] == board[1l][3] &&

return True
if (Board[2][2] Board[3][l]) and (Board[2][2] ==
Board[1][3]) a oard[2][2] ="' "):

xOorOHasWon = True # accept return True

EXAM.-RAPERS PRACTICE

Comparison of two cel agonal,

Comparison of other cell on the diagonal with one of the two cells just
checked;

Check that the line is of Xs or Os (not blanks);

Return True if line of three symbols found on the 1stdiagonal;

R if value would not actually be returned

All correct conditions for 2nd diagonal;

Return True if line of three symbols found on the 2nd diagonal;

R if value would not actually be returned

I. additional comparisons of cells — as long as they do not result in check
for three symbols in a line not working

Max 4 if diagonal check is inside a loop.

(i) ****SCREEN CAPTURE****
This is conditional on sensible code for (b)(i)

Mark as follows:

Screen capture showing winning message and three symbols in a line in
positions [1,1], [2,2], [3,3] // Screen capture showing winning message
and three symbols in a line in positions [1,3], [2,2], [3,1];

Page 61 of 109

(i) **SCREEN CAPTURE***
This is conditional on sensible code for (b)(i)

Mark as follows:

Screen capture showing winning message and three symbols in a line in
positions [1,1], [2,2], [3,3] // Screen capture showing winning message
and three symbols in a line in positions [1,3], [2,2], [3,1];

R Same diagonal line as shown in part (i)

(c) () VB.NET

Else
Console.WritelLine ("A draw this time! ")
PlayerOneScore = PlayerOneScore + 0.5
PlayerTwoScore = PlayerTwoScore + 0.5

Endif

VB6

Else
MsgBox ("A draw this time!")
PlayerOneScore = PlayerOneScore + 0.5
PlayerTwoScore = PlayerTwoScore + 0.5

End If

Pascal

Else
Begi

A dra ")
yerOneScore es + 0.5;
yerTwoScore PlayerTwoS + 0.5;

End;

Java

} else {

console.prin ("A draw this time!")

EXAM BAPERS PRACTICE

Python 2

else:
print "A draw this time!"
PlayerOneScore += 0.5 # accept
PlayerOneScore = PlayerOneScore + 0.5
PlayerTwoScore += 0.5

Python 3
else:
print ("A draw this time!"™)
PlayerOneScore += 0.5 # accept
PlayerOneScore = PlayerOneScore + 0.5
PlayerTwoScore += 0.5

Mark as follows:

At least one player’s score changed within the existing IF statement;
A if in THEN part of NoOfMoves=9 statement

Both scores increased by correct amount;

Page 62 of 109

(i) *»***SCREEN CAPTURE****
This is conditional on sensible answer for (c)(i).

Drawn board position with 9 symbols (as defined in preliminary material);
Messages saying players have score of 0.5; R other scores

d () VB.NET
Dim Board (4, 4) As Char

VB6
Dim Board(l to 4, 1 to 4) As String

Pascal
TBoard = Array([l..4,1..4] Of Char;

Java
char board[][] = new char[5][5];
Python
Board = [[0,0,0,0,07,
(0,0,0,0,0],
[OI OI OI OIO] 4
0,
0,
Mark as f
Existing d ration of Boar
A No cha made as posi i used (not Pascal / VB6)
only acce
A 0..3 instead of 1.. scal)

A 0 to 3instead of 4 (VB6)

EXAM:PARERS PRACTICE

Java

if (noOfMoves == 16) {
gameHasBeenDrawn = true;

}

Python

if NoOfMoves == 16:

Mark as follows: Value of 9 changed to 16;

(i) VB.NET/VB6
For Row = 1 To 4
For Column = 1 To 4

Pascal
For Row := 1 To 4
Do
Begin
For Column := 1 To 4

Page 63 of 109

Java

for (row = 1; row <= 4; row++) {
for (column = 1; column <= 4; column++) {
Python

def ClearBoard (Board) :
for Row in range(1l,5):
for Column in range(1,5):
Board[Column] [Row] = " '

A range(4) if candidate has used O for array position instead of 4.

Mark as follows:
Outer FOR loop changed to iterate 4 times and
Inner FOR loop changed to iterate 4 times;

A 0to 3instead of 1to 4 — only if indicated O position would be used in
answer to (d)(i).

(v) VB.NET
Console.WriteLine(" | 1 2 3 4 ™)
Console.WriteLine ("-—+-——-———-——- "y
For Row = 1 To 4

Console.Write(Row & " | ")
For

VB6
BoardAsS

For =1 To 4
rdAsString = BoardAsStrin

il um

Pascal
Writeln(
Writeln(

EXAM- PAiﬂERs PRACTICE

Write (Row, '

For Column := 1 To 4
Do
Begin
Java
console.println(" | 1 2 3 4 ");
console.println ("--+-=-=-=-=----- ")
for (row = 1; row <= 4; row++) {
console.write(" | ");
for (column = 1; column <= 4; column++) {
Python 2
def DisplayBoard (Board) :
print ' | 1 2 3 4"
print '-—+-——————-—- !
for Row in range(l,5):
print str(Row) + '| ',
for Column in range(l,5):
print Board[Column] [Row]
print
print '\n'

Page 64 of 109

v)

(Vi)

Python 3
def DisplayBoard (Board) :
print(' | 1 2 3 4 ")
print ('-——+--—---—--- ")
for Row in range(1,5):
print (Row, '|', end="' ")
for Column in range(l,5):
print (Board|[Column] [Row],end=" ")
print ()
print ('\n'")
A range(4) if candidate has used 0 for array position instead of 4.

Mark as follows:

Change message so that 4th column heading is shown;
Outer FOR loop changed to iterate 4 times and

Inner FOR loop changed to iterate 4 times;

A 0 to 3instead of 1 to 4 —only if indicated Oth position would be used

in answer to (d)(i).

SCREEN CAPTURE*
This is conditional on sensible answers for (d)(i) and (iv)

displays 4
displays 4

VB.NET/

If XCoor Or

en ValidMove

ate < 1 Or YCoordinate > en ValidMove =

Pascal
If (XCoordinat
:= False;

1) Or (XCoordinate > 4) Then ValidMove

EXAM:-FAPERS PRACTICE

Java

if (xCoordinate < 1 || xCoordinate > 4) validMove = false;
//check the y Coordinate is valid

if (yCoordinate < 1 || yCoordinate > 4) validMove = false;

//check the cell is empty

Python
def CheckValidMove (XCoordinate, YCoordinate, Board):
ValidMove = True
if (XCoordinate <1) or (XCoordinate > 4):
ValidMove = False
if (YCoordinate <1) or (YCoordinate > 4):
ValidMove = False
if (ValidMove == True) and
(Board[XCoordinate] [YCoordinate] != ' '):
ValidMove = False
return ValidMove

Mark as follows:
Change upper boundary to 4 for both X and Y coordinates;

Page 65 of 109

(vii)

A Change lower boundary to O for both X and Y coordinates instead of
upper boundary change — only if indicated Ot position would be used in
answer to (d)(i);

VB.NET /VB6
For Row = 1 To 4
If Board (2, Row) = Board(3, Row) And (Board(2, Row) =
Board(1l, Row) Or Board(2, Row) = Board(4, Row)) and Board(2,
Row) <> " " Then xOrOHasWon = True
Next
Pascal
For Row := 1 To 4
Do
If (Board[2, Row] = Board[3, Row]) And ((Board[2,
Row] = Board[l, Row]) Or (Board[2, Row] = Board[4, Row]))
And (Board[2, Row] <> ' ")
Then xOrOHasWon := True;
Java
for (row = 1; row <= 4; rowt+) {
if (board[1l] [row] == board[2] [row] &&
board[2] [row] == board[3] [row] &&

A}

y //
if ard[2] [row] S0aLrc &&
oard[3] [row = Dboard &&
= —— —
Yy /7
} // end

Python
if (Board([2] = Board[3] [Row]) and (Board[2] [Row]
= = Board[1l][R or (Board[Z][Row] = = Board[4] [Row])

and (Board[2] [Row] != " !

EXAM PAPERS PRACTICE

(viii)

Mark as follows:

Change FOR loop so it iterates 4 times;

Board(4, Row); compared with Board(3, Row)/Board(2, Row);
Solution works for all 8 legal winning positions on the rows;

A Two loops (both go from 1 to 4) — both loops need to be included in
the

code shown by the candidate to get full marks

A Additional IF statements, as long as logic is correct

Max 3 4 IF statements instead of a FOR loop — one IF statement for
each

row in the grid

Max 2 if only works for four symbols in a row

Max 2 if solution detects a winning solution when it shouldn’t

A Answers coordinates using 0 instead of 4 — only if indicated Ot
position would be used in answer to (d)(i).

****SCREEN CAPTURE****
This is conditional on sensible answers for (d)(i), (iv) and (vii).

Page 66 of 109

(iX)

Symbol shown in (2,4);

Winning message shown and three symbols in a horizontal line including
a symbol in position (2,4); R if solution for 45 is for four symbols in a line,
not three

The two possible positions for full marks (could be O instead of X):

Al K| X

A If candidate has used array position 0 instead of 4, accept a winning
position on either the bottom or top line of the board.

Declare Board as a 3-dimensional array; Board(4,4,4) / /Board (6,4,4);
OR

Declare 6 (one for each surface); 4x4 arrays;

OR
Declare 4;

NE. 3D
A. Answe
that will b

sing array structure
ws 64/96 cells to be

ray) (Python only)

36

EXAM.-RARERS PRACTICE

(b)

(ii)

“The new word?” + setter input 'EAGLE' ;

input of correct guess 'EAGLE’ ; (A 'eagle’ if code in (b) has evidence for use
of function Ucase, .ToUpper, etc.)

correct logic demonstrated with “CORRECT” ;

NB VB6 — all three stages must be evidenced

+ SCREEN CAPTURE ****

setter input 'BEAR’

“Your guess ?” + any incorrect guess ;

correct logic demonstrated with “INCORRECT” ;
NB VB6 — all three stages must be evidenced

Visual Basic

Dim NewWord As String

Dim UserWordGuess As String
Console.Write ("The new word?")
NewWord = Console.ReadLine

Console.Write ("Your guess?")

Page 67 of 109

UserWordGuess = Console.ReadLine
If UserWordGuess = NewWord

Then Console.WriteLine ("CORRECT")
Else Console.WriteLine ("INCORRECT")

End If
Pascal
Var
NewWord : String;
UserWordGuess : String;
Begin

Write (‘The new word?');

Readln (NewWord) ;

Write (‘'Your guess?');

Readln (UserWordGuess) ;

If UserWordGuess = NewWord
Then Writeln (‘CORRECT')
Else Writeln (‘INCORRECT') ;

Readln;
End.

Mark as follow
evidence of two iables declare@™
data types appr
correct two iden ordGuess ;
(A case variatio

correct user pro

correctly formed IF follo y condition;
THEN clause followed by the logically correct output (A 'imprecise’) ;

EXAM. PAPERS. PRACTICE
NB" T wo separate”IF em Cc aximu
JAVA
class Questiond {
Console console = new Console();
String newWord = "";
String userWordGuess;
public Question4 () {

newWord=console.readLine ("The new word?");
userWordGuess=console.readLine ("Your guess?");

if (userWordGuess.equals (newWord)) {
console.println ("CORRECT") ;
} else {

console.println ("INCORRECT") ;
} // end if / else
} // end construct or

public static void main(String[] args) {

Page 68 of 109

new Questiond () ;
System.exit (0);

} // end Main

} // end Question4

Max 7
Python
NewWord = raw_ input ("The new word?")
UserWordGuess = raw_input ("Your Guess?")
if UserWordGuess == NewWord:
print "CORRECT"
else:
print "INCORRECT"
raw input () # keep window on screen
B Max 7
[27]
Q21.
(@) section of code can be referred to by name ;
aids readability ;
aids testing ;
code is easier t
the same block the program;
reusable within
they encourage
reduces the co n body of the program ;
they are ‘buildin
Max 3
(b) () General: re stated as part of an
assignment stateme, Variable shown in a declaration statement
PhraseOK ; wPhrase Javaonly Phrase) ; Position ;
Guessedletter MissingLetter ;
Pyéhon h
EXAM"PAPERS PRACTICE-
(i) NewPhrase ; PhraseHasBeenSet ; PhraseGuessed ; ;
GuessStatusArray ; LettersGuessedArray ;
NextGuessedLetter ; Index ; Choice (not Python)
VB and VB6 only — TndividuallLettersArray
Java only —Console
Max 1
(i) Len / Length/ Strlen;
PHP — Trim, , Intval
C#— int.Parse
Python — Range
Java - ReadLine - ReadChar - CharAt
1
(iv) GuessStatusArray ; LettersGuessedArray ;
VB.Net and VB6 only: IndividuallettersArray ;
Max 1

(v) Position ; Index ; (A PhraseOK / Missingletter / Choice)

Page 69 of 109

Javaonly — Found - i
Max 1

(vi) DisplayMenu ; DisplayCurrentStatus ;

(c) () DisplayCurrentStatus ; AllLettersGuessedCorrectly ;
SetUpGuessStatusArray ;

Java only - GetNewPhrase ;
Java/ Python only — HasLetterBeenUsed ;
C, C#,java—main

(i) Check carefully with (c) (i)

AllLettersGuessedCorrectly NewPhrase
(Not Python) GuessStatusArray
IndividualLettersArray(VB6 only)

SetUpGuessStatusArray NewPhrase (+GuessStatusArray

Java only)
atusArray (not PHP / C#)

allLettersArray(VB.Net
nly)

DisplayC tus hntusArray
ength
GetNewPh va G o o ength

main (C, C#, javao args

LettersGuessedArray, myGuess

EXA

(Python Letter only)

(d) takes the original word / phrase (A by implication);
checks its length using characters;
“a length of less than 10 is not permitted” / equivalent statement with the exact

logic;

e PhraseOK = True / PhraseOK = False / PhraseOK / or
explained ;

(i) program will continually prompt the setter for a new phrase ;

there is a continuous loop ;
Max 1

® (i) asection of code needs to be repeated // A by implication e.g. “done for
each character in the string” ;

Page 70 of 109

(9)

(h)

(i) the number of iterations is known // the loop is to iterate a (R fixed)
known no. of times ;

(i) The number of characters (R Letters) / length of the phrase ;

Key positions are: 2; 5; 6; 10;

Index |12 |3|4|5|6|7(8|9| 10| 11

Each correct index position ; (Max 4)
Some ‘indicator’ value e.g. True or equivalent used for all correct positions ;
A could be the actual letters stored (all in correct positions)

No (change) // an attempt will be made to overwrite the existing ‘F' entry at
position 6 in the array ;

11

First four cells used ;
and contain the correct | :

EXAM 'PAPERS PRACTICE .

Q22.
©)

(i) No change followed by “the same letter is never stored more than once” /
“the letter has already been entered” ;

A different possible interpretation ...
Changes followed by “Second ‘B’ character is stored at position 5” ;

[29]

Visual Basic

Sub DisplayMenu ()
Console.Writeline
Console.WritelLine
Console.WriteLine("")

Console.WriteLine("2. USER - Next letter guess")
Console.WriteLine("")

Console.WriteLine ("3. USER - Make a complete word / phrase guess")
Console.WriteLine ("")

" "w)

"l. SETTER - Makes new word / phrase")

o~ o~ o~ —~

Page 71 of 109

Console.WriteLine("5. End")
End Sub

Pascal
Procedure DisplayMenu;
Begin
Writeln (' ')
Writeln;
Writeln('l. SETTER - Makes new word / phrase');
Writeln;
Writeln('2. USER - Next letter guess');
Writeln('"');
Writeln('3. USER - Make a complete word / phrase
guess') ;
Writeln;
Writeln('5. End');
Writeln;
End;

Java
private void displayMenu() {

console.println (" "y
co
co

word/phrase"
co
co
co
co

word/phrase
co

kes new

letter guess");

a complete

EXAM. PAPERS PRACTICE

(b)

ANY

print
print
print “1. SETTER - Makes new word/phrase”

print “”

print “2. USER - Next letter guess”

print “”

print “3. USER - Make a complete word/phrase guess”
print “”

print “5. End”

print “”

W74

Mark as follows:

additional choice for option 3 shown (A minor typos) ;

inside procedure DisplayMenu ;

VB6 — code added to listbox control IstMenu ; inside Form_Load event ;

Visual Basic
Sub InputUsersCompletePhraseGuess ()
Console.WriteLine ("Procedure

Page 72 of 109

InputUsersCompletePhraseGuess has
been called")
Console.ReadLine ()

End Sub

Pascal
Procedure InputUsersCompletePhraseGuess;
begin
Writeln ('Procedure InputUsersCompletePhraseGuess
has been called
")

end;

Java
private void inputUsersCompletePhraseGuess () {
console.println ("Procedure
inputUsersCompletePhraseGuess has been called");
} // end inputUsersCompletePhraseGuess

Python
def InputUsersCompletePhraseGuess() :
print “Procedure InputUsersCompletePhraseGuess has been
called”
raw_inp
allow missi

indow open.
(NB no explicit
Award mark for

Mark as follow
New procedure
Contains the re

VB6 = MsgBox “ Appr iate text ..”

EXAM PAPERS PRACTICE

(c) Visual Basic
If Choice = 3 Then Call InputUsersCompletePhraseGuess ()

Pascal
If Choice = 3
Then
Begin
InputUsersCompletePhraseGuess
End;

Java
if (choice == 3) {
inputUsersCompletePhraseGuess () ;
} // end if

Python

elif Response == ‘3’:
InputUsersCompletePhraseGuess ()

Page 73 of 109

Inverted commas needed to indicate string value as returned by
raw_input () function

Mark as follows:
Call to procedure InputUsersCompletePhraseGuess ;
IF statement for choice 3 ;

(d) **** SCREEN CAPTURE *****
Menu choice 3 selected ;
‘Correct’ output message displayed - Must match text in code for (b) ;

(e) Visual Basic
Sub CountPhrasesFromFile ()
' uses global variable NumberOfPhrasesInFile
Dim TempPhrase As String

FileOpen(l, "MyPhrases.txt", OpenMode.Input)
NumberOfPhrasesInFile = 0
Do

TempPhrase = LinelInput (1)

rOfPhrasesInFile

amReader method.

answer with WHILE loop

Procedure CountPhr sFromFile;
{ uses global vari e NumberOfPhrasesInFile }
EXAM PAPERS PRACTICE
mpPhrase : 8t ;
Begin

Reset (MyPhrasesPipe) ;
NumberOfPhrasesInFile:=0;
While Not Eof (MyPhrasesPipe)
Do
Begin
ReadlLn (MyPhrasesPipe, TempPhrase);
NumberOfPhrasesInFile:=NumberOfPhrasesInFile+1;
End;
Close (MyPhrasesPipe) ;
End;

Alternative implementations:

Procedure CountPhrasesInFile (Var NumberOfPhrasesInFile
Integer);

Function CountPhrasesInFile (Var NumberOfPhrasesInFile
Integer)

Integer;

Page 74 of 109

Java

private void countPhrasesFromFile () {
String fileNameIn = "MyPhrases.txt";
String newLine;
numberOfPhrasesInFile = 0;
try {
BufferedReader phrasesFile = new

BufferedReader (new FileReader (fileNameln)):;

while ((newLine = phrasesFile.readLine()) != null) {
numberOfPhrasesInFile = numberOfPhrasesInFile +

} // end while
phrasesFile.close();

} catch (IOException e) {
System.out.println(e.toString());
System.exit (0);

} // end try/catch

console.println ("Number of phrases: " +

numberOfPhrasesInFile) ;

} // end countPhrasesFromFile

Python
def CountPh el
global erOfPhrase
f = ope
AllPhras
Phrases)
f.close (
or

def CountPhrasesFr
global Number

EXAM-PAPERS. PRACTICE

NumberOfPhrasesInFile = NumberOfPhrasesInFile + 1
f.close ()

ile2 () :
rasesInFile

Accept NumberOfPhrasesInFile += 1

Mark as follows:

open file correctly formed ;

correctly formed loop (post or pre condition);
terminates with ‘EOF’ ;

each phrase read from file ;

temporary variable used to store the next line of text ;
file closed ;

“NumberOfPhrasesInFile” initialized ;
“NumberOfPhrasesInFile” incremented ;

return of the phrase count / assigned to global variable ;

Alternative solutions which include all or some of the following:
—declaring a dynamic array; A by implication if supported in language

opening file / specifying the file;

Page 75 of 109

read entire text file into string;
split string into array;

closing file;

read size of array;
return of the phrase count / assigned to global variable;
N.B. More than one mark may be awarded if command combines multiple
functions e.g. ReadA11Lines which opens (1) and closes (1) file, reads

entire text file (1) and splits into an array (1) is worth 4 marks

— Solutions which (do not require the loop structure and) compute thenumber
of phrases from object methods.
The table below is an indicative (but not exhaustive) list so you need to
checkany other feasible answers you see, particularly if the screen shot
appears to work.

Max 7
Table 1 shows some of the methods for the supported languages which will be used
for an alternativesolution.
Table 1
List of commands / methods
Language to split | Function to
0 an return array
length
Visual 1] UBound [1]
Basic 6
.NET . Split [1] UBound [1]
languages: phrases inietring] except if this GetUpperBound
VB ReadAllText [3-1open, | markalready [1]
XAM RAPERS PRACTICE
Java ReadAllLines [4 - 1 open,
1 close, 1 read all phrases,
1 split into array]
PHP File[4-1open,1lclose,1 | Explode, Split | Count[1]
read all phrases, 1 splitinto | (with some close
array] variations e.g.
File Get Contents[3-1| Split Split[l]
open, 1 close, 1 read all except if this mark
phrases into string] already given for
File)
Java Scanner with delimiter ‘\\z Split [1] Length [1]
[
[1 —read all phrases into
string]
Python Read [1 —read all phrases Split [1] Shape/Len [1]
into string]
ReadLines [2 —read all

Page 76 of 109

phrases and split into list]

* Note that some of the commands in the second column are worth more than one mark
as theyperform multiple tasks e.g. File Get Contents in PHP opens and
closes the file and reads all the phrases into a stﬁng so is worth 3 marks, as shown in [
]. To answer (e) the candidate would then need to use Split / Explode to break
this string up into an array then Countto see how many elements there are in the
array — i.e. how many phrases were loaded.

(i) *** SCREEN CAPTURE *****
This is conditional on some code for (a) (i)

reports the number of phrases in the file - 24 (A 25) ;

® (i) Visual Basic
Sub GenerateRandomPhraseNumber ()
' uses global variables NumberOfPhrasesInFile
and PhraseNumber
Randomize ()
T

NumberO rasesInFile) + 1

End b
Pascal
Procedu GenerateRa um ;
{ uses bal variables NumberOfP sesInFile and
PhraseN 1
Begin

Randomize;

PhraseNumb Trunc (Random (NumberOfPhrasesInFile))

EXAM PAPERS PRACTICE

Alternative Implementations
NB Several alternative implementations possible for both Pascal and
Visual Basic

e.g. Pascal
Procedure GenerateRandomPhraseNumber
(Var

NumberOfPhrasesInFile:Integer);
Function GenerateRandomPhraseNumber : Integer;
Function GenerateRandomPhraseNumber

(Var
NumberOfPhrasesInFile:Integer) :
Integer;

Java
private void generateRandomPhraseNumber () {
// .nextInt (n) produces nos [0..n]
phraseNumber =
generator.nextInt (numberOfPhrasesInFile) + 1;
} // end generateRandomPhraseNumber

Page 77 of 109

Alternative implementation:
private int generateRandomPhraseNumber () {
return
generator.nextInt (numberOfPhrasesInFile) + 1;

}

Python
Needs “import random” declared at start of program

def GenerateRandomPhraseNumber () :
global PhraseNumber, NumberOfPhrasesInFile
PhraseNumber =

random.randrange (NumberOfPhrasesInFile)

Mark as follows:

Correct use of the RANDOM / RND function / class with
“NoOfPhrasesinFile”) ;

correct range generated (from 1 to “NoOfPhrasesInFile”);

final answer is integer // implied by variable declaration / return value
from a function ;

Note: Commentary in the 'C specific' MS

(") *xxkx GCR
displays p

*kkkk SCR
displays p

(@ () Visual Ba

Sub SelectPhra romFile ()
' uses global riable PhraseNumber
Dim Counter As Inte

EXAM :PAPERS.PRACTICE

Counter =
Found = False
FileOpen(l, "MyPhrases.txt", OpenMode.Input)
Do
ThisPhraseFromFile = LineInput (1)
If Counter = PhraseNumber Then
Found = True
Else
Counter = Counter + 1
End If

Loop Until Found = True Or EOF (1)

FileClose (1)
End Sub

OR equivalent using the FileStream object and StreamReader
method.

Pascal
Procedure SelectPhraseFromFile;

Page 78 of 109

{ uses global variable PhraseNumber }
Var
Counter:Integer;
MyPhrasesPipe : TextFile;
ThisPhraseFromFile : String;

Begin
Assign (MyPhrasesPipe, 'MyPhrases.txt');
Reset (MyPhrasesPipe) ;
Counter:=0;
While (Not Eof (MyPhrasesPipe)) And
(Counter<>PhraseNumber)

Do
Begin
Readln (MyPhrasesPipe, ThisPhraseFromFile);
Counter:=Counter+1;
End;

Close (MyPhrasePipe) ;
End;

Mark as follows:
File opened ;

Loop (pos
Counteri
Read nex
Stored in
File close
Return of

rase from file ;
mporary varia

phrase / assig ari

For loop o
For1TO X

Conditional loop o
Counter incremente X

B Iea
EXAMPAPERS T'R) CE
Boolean variable Set to True when located //terminate orrectly

Alternative solution if entire text file read at once:

- declaring a dynamic array; A by implication if supported in language
opening file / specifying the file;

read entire text file into string;

split string into array;

closing file;

access correct cell in array;

return of the phrase / assigned to global variable;

N.B. More than one mark may be awarded if command combines
multiplefunctions e.g. ReadAllLines which opens (1) and closes (1)
file,

reads entire text file (1) and splits into an array (1) is worth 4 marks

- solutions which use object methods

As for Question (e)(ii), look for solutions which compute the phrase in
this way. Refer to Table 1 shown with (e)(i).

Java

private void selectPhraseFromFile () {

Page 79 of 109

String fileNameIn = "MyPhrases.txt";

int counter = 1;
try {
BufferedReader phrasesFile = new
BufferedReader (new FileReader (fileNameln)):;

while ((counter !=
phraseNumber) & ((thisPhraseFromFile =
phrasesFile.readLine()) != null)) {
counter = counter + 1;

} // end while

console.println ("Phrase/phrase selected
is: " 4+ thisPhraseFromFile);

phrasesFile.close () ;

} catch (IOException e) {
System.out.println(e.toString());
System.exit (0);

} // end try/catch

} // end selectPhraseFromFile

Mark as follows:

File opened,;

Loop (FOR, post or pre-condition) used to search for the phrase;
Counter i
Counter u
Counter i

Boolean v i ber for trigger;

File close

Python
def SelectPhr romFile () :

global PhraseNumber, ThisPhraseFromFile

EXAM PAPERS PRACTICE

hisPhraseFromFile rases[PhraseN
print "The Phrase selected is
ThisPhraseFromFile
or
print "The Phrase selected is ... ",
ThisPhraseFromFile
f.close()

I}
(i) *** SCREEN CAPTURE 1 ****
*3x SCREEN CAPTURE 2 ****

Evidence for two different words selected ;

MANCHESTER
10) UNITED
YELLOW
2(1) SUBMARINE

Page 80 of 109

EXA

3(2)

HIP HOP MUSIC

4(3) DETERMINATION
5(4) PABLO PICASSO
THE GRAND
6(5) CANYON
7(6) BRICK LANE
8(7) WIGAN ATHLETIC
9(8) WORLD MUSIC
10(9) THE COLISEUM
11(10) WAR AND PEACE
VIVIENNE
1201) | ygsTwoop
13(12)
14(13) RIZZLY BEA
15(14)
16(15)
17(16)
18(17) THE GUARDIAN
(18
CORONATION
20(19) STREET
GLASTONBURY
21(20) FESTIVAL
22(21) SERENDIPITOUS
23(22) FORTUITOUS
FASHION
24(22) STATEMENT

(h) Visual Basic

Page 81 of 109

PRACTICE

Dim NumberOfPhrasesInFile As Integer
Dim PhraseNumber As Integer
Dim ThisPhraseFromFile As String

Pascal

Var
NumberOfPhrasesInFile : Integer;
PhraseNumber : Integer;
ThisPhraseFromFile : String;

Java

int numberOfPhrasesInFile;
int phraseNumber;

String thisPhraseFromFile;

Python
Declare NumberOfPhrasesInFile / PhraseNumber and initialiseat start of

program to assign data type.

NumberOfPhrasesInFile = 0
PhraseNumber = 0
ThisPhraseFromFile = '/

Mark as follows:

declare NumberOfPhrasesInFile / PhraseNumber /
ThlSPhraseFromFlle or any plausible varlable (Max 1) ;
correct matchin
Python only: D
e.g. PhraseNu

A if complete co is identified

Max 2
[33]

Q23.

(@) A procedure/routine that itself/ is defined in terms of itself;

A Function instead of procedure

EXANM PAPERS PRACTICE

(b) ()

Page 82 of 109

Procedure Call T
P, / 1?\\
14 18
7 / 16
P, 18
P 17 =~
L 14 18
7 16
P 14 “
7 / 16
P, 16
P;
14
SN
7 16
P; 7
P; / 14 \
7 16
P / 1'.-“\\
14 18
7 / 16

EXAM.PAPERS

(i) Reversed Inorder; Tree traversal;

| Sort/ Re-arrange

A procedure/routine that calls itself/ is defined in terms of itself;

A Function instead of procedure
R re-entrant R program R iteration

(i)

Page 83 of 109

PRACTICE

EXAI

(i)

Q25.
@ ()
(i)

Procedure Call T Outpur
P o
8 1
s. ¥ X
= 1 mark 13
18
14 P
. JPETDINE, 14
Py sl ey
P3 8
/ \ 1 mark
5 11
b || I mark
11 1 mark :? comact
' order
8
P; / \ 8
3 11
5
5 1 mark
P; 8
o7 K
1<
8 B
¢ A g
6
Reverse Inorder// Reverse order; (tree) traversal,
2
(User defined) functions // program // object // class // data type //
constant // record// label //control/component/ by example e.g. textbox ;
Max 2

Maximum number of characters ;

No <Space> or other punctuation characters ;

No use of reserved words ;

Must not start with a digit character ;

Case sensitive / permitted case only ;
Cannot define the same identifier name more than once ;

R any reference to filenames

Page 84 of 109

[9]

(b)

()

Q26.
(@)

(b)

Their use matches closely the (modular/structured) design ;
Code can be used ‘repeatedly’ within the same program ;
Code may originate from a program library/module ;

To make program debugging/testing/maintenance easier ;

(i)

(ii)

(ii)

(iii)

(i)

(ii)

10;

String / Text / Char ;
R alpha / alpha-numeric / character

Integer / Date (and Time) ;
A String

Boolean ;
R Yes/No

Book ;

False/F/
0/1

ated as integer - value

Max 1

Max 1

[y

()

()

(ii)

(iii)

T76542 ;1

T;
I. the quote marks (i) and (ii)

NextAvailableCode Book LocationLetter
1 1 T
2 2 T
3 3 (gap not required)
4 4 ‘M’

Page 85 of 109

(6]

[1]
[2]
[3]
[4]
[5]

Q27.

(in sequence — possible 5 Penalty -1 if t_he first ‘M’ is
repeat of 3 and/or 4 followed by either ‘T’ or ‘X
6
Figure 2
Location NewCode
‘Torrington’ [1] 1
‘Torrington’ [2] 2
3]
‘Morristown’ [4] 3
[5]
Figure 3 Figure 4

(@ Last (tem)in,i

R LIFO/ FILO

(b) ()

EXAM

(ii)

600

601 Vv

603 ‘R’
604 Y
605

All items in the correct locations

599

600 ‘AN
601 Vv
602 ‘E’;

Page 86 of 109

RS PRACTICE

last (item) out ;

[15]

603

604

605

Correct three items // ft from an incorrect (i) including 605 as the first
location used ;
A ‘R’ and ‘Y’ entries indicated in some way as ‘deleted’

(iii)
600 ‘N
601 v
602 =
603 ‘s’
604
605

Correct lis
including

a correct ft (ii)

() () Queue;
A First In

(i) Iems are removed/popped from the stack (one at a time) (and items are

EXAMPAPERS PRACTICE

(i) Items leave the queue on a ‘first in-first out’ basis ; A from the front of
the queue

[N

(iv) Y, 'R, E, 'V, ‘A onthe queue ;
Y’, ‘R’, ‘E’, ‘V, ‘A’ on the final stack ;
A using 701 for the first queue location

[9]

Q28.

(@ Aprocedure that is defined in terms of itself;
A A procedure that calls itself
R re-entrant

(b) Store return addresses;
Store parameters;
Store local variables/ return values;

Page 87 of 109

()

(d)

(e)
(f)

(9)

Q29.
(@)

Max 1

Number Entry Output

11 1

11 2;

11 3;

11 4; 4:

Alinear search//
To find/output the position/index of Number in ltems;

Number is not an entry in ltems// Stack overflows;

Test for reachin m

Binary Search;

An iterative solu :
Max 1

[10]

Any three from

Procedures which have an interface / using parameters tg pass val ;
EXAM-ZAPERS . PRACTICE
Idal variaBlesy¥ise Dl es!

(b)

Meaningful identifier/variable/constant/ procedure / function / program /
parameter names;

Consistent use of case for identifiers ;

Use of selection / loops / iteration ;

Avoid the use of GoTo structures ;

Effective use of white space / indentation;

R spacing/ space out the

Code

Use of named constants ;

Use of user-defined data types ;

Use of pseudo-code / top down approach / Jackson methodology / process
Decomposition ;

R the use of comments/documentation

R declaration of variables

(i)

Surname String / Text ; A. String[n]

Page 88 of 109

Q30.
@)

NoOfYearsService Integer /Byte / Int / Short;

PayRate Single / Real / Float / Currency;
BasicRate Single/Real/Float / Currency;
AdditionalRate Single / Real / Float / Currency;

(ii)

Sensible name + correct data type for single mark

BUT Penalise once occurrence of names containing space/other illegal

character(s) which would have scored

3.1 If NoOfYearsService > 5 ;

A >=in the statement R=>
A mathematical notation
NoOfYearsService :=5;

A=o0r:=or «

in the calculation

Calculates the total reje €S for the week / calculates the total of array

EXA

(b)

week)

(i)

(ii)

(iii)

ejects
e

RejectTotal := RejectTotal + DailyRejects[DayNo] ;
A ; may be omitted

A minor spelling errors

A omission of the subscript

RejectTotal: Integer //

DayNo : Integer //

DailyRejects : Array[l ..7] of integer;
[. Dim ...

Loop counter / control the loop / Loop control variable / inference of a
loop counter ;

Index/subscript for the array DailyRejects / reference the array
elements ;

R days of the week

Page 89 of 109

Max 3

i PAPERS. PRACTICE

Max 1

Max 1

[9]

()

(d)

(e)

(iv) Array of integers // array

If RejectTotal > 7 ;

Then WriteLn (‘Investigate’)

Else WriteLn (‘Inside weekly tolerance’) ;
A reversed logic for both parts

Library program ...

Tried and tested routines should reduce the debugging time;
Evelopment time may be reduced ; A less code to write
Code can be dynamically loaded only when needed ;
Library files can be shared between different applications ;
A previously written/saved program code can be reused/

A program routines were previously saved/compiled ;

A program code is available and used from third party providers ;
Max 2

0] 3/[3]/ SupervisorTotal[3] ;= etc ;

(ii)

Weeklo ThisNumber Output [1] [2] [3]

-) 0
\-H / \‘"*. //tm estigate \ ;'Ilr 1"'.II Ill.f' 0 \II". :I.'f "-II

Investigate /

|'

1 8
s a9 | ,r Investigate -. f | [11 f |
3 1 ' |
4 8
o

A e W R N AV

EXAM PAPERS PRACTICE "«

Q31.
(@

(b)

(c)

(d)

Salesperson 7,
April /month 4;
The number of storecards ‘taken out’;

Max 2

StoreCards + sensible subscripts [1..10, 1..6] / (1 to 10, 1 to 6) / [0..10, 0..6] /
(0 to 10, Oto 6) / (10,6) / [10] 6];
StoreCards + Integer / Byte;

2
StoreCards (8, 1);
=13/:=13/« 13;
Must be an assignment statement

2

Key in / Input the employee number; the program calculates the total number
of store cards for a single person // print/outputs/displays the total for a single
person; over six months;

Page 90 of 109

Max 2

e () Single / real / float;
R Floating point / Double

() Boolean /Yes-No / True-False; R Y/N/ T/F

(i) Integer/ byte;

[11]
Q32.
@ () Functions always return some value when called;
Procedures may return a value;
Functions appear in expressions;
Procedures do not appear in expressions;
Procedures name alone makes up the statement / call <name>
Max 2
(i) Anything named which is plausible;
Examples i . CO j / string handling;
R softwar
A Dynamig@Einked Library
2
() () True/Yes
1
(i) False/No/
1
(i) Error,
1
EXAM-EAPERS PRACTICE
re bel? obj€ct efass;
Max 2
(d) Advantage of an Interpreter:
. Should allow faster/easier program development // faster/easier testing /
debugging / finding errors;
. Correcting mistakes is less time consuming;
Max 1
Advantage of a compiler:
. The executable code/object code/program will run faster;
. Once the executable file has been produced no further action;
. Software distribution requires no further software to be available to the
user,;
. Prevents tampering of the code by users other than the developer;
Max 1
2
[11]

Page 91 of 109

Q33.

@ () . poorly structured code;
. uses GoTo statements;
. the flow of control jumps out of a loop;
. nothing reported to the user when no matching name found;
. abbreviated variable for ‘position’ variable;
. ReadLn is better than Read;
. Program only iterates once / considers only the first array element;
. (if duplicates) only the first matching surname is found;
. (loop terminates at 20) does not allow for additional array /name
entries;

A poor layout - excessive indentation used;
I. variable declaration // reference to the syntax

Max 2

(i) All statements must have correct identifier name correct data type
(String / Text // Integer / Byte / Word / Int / Shortint / Short as
appropriate)

In addition, either array must have brackets to indicate an ‘array’ 19/20
to indicate a range;

(b) Intialisation of ¢
P=1/P:=0/ P := 110 20// IsFound := False

Looping
LOOP UNTIL //
beginning/end o

NTIL and used at the

Some loop cond
(P =20/21) OR = TRUE / IsFound;

IF with use of the array
IF NoOfClaims [P];

EXAM-2APERS PRACTICE

Loop counter incremented
P=P+1

Final output
Correct logic followed with OUTPUT ‘Yes’
A multiple times

Final output

Correct logic followed with OUTPUT ‘No’
R Multiple times

R ‘Prose’ scores 0

Q34.

@ () Empty entries waste space // Maximum/fixed/static size
A stack may overflow

Page 92 of 109

[9]

(i) Space used by pointers // more complex to program;

() () The size of the stack /amount of data is known/limited/predictable
Memory saved since no pointers (if not given in a (ii))
R easier to program

(i) The size of the stack is unknown//
The stack is volatile/ number of items fluctuates widely;

[4]

Q35.

(@) Aprocedure/routine that calls itself/ is defined in terms of itself;
A Function instead of procedure
R re-entrant
R program
R iteration

(b) ()

EXAM PAPERS PRACTICE

Page 93 of 109

(ii)

Procedure Call T Output
P . / 15 \
11 19
/7 N\
4 12
P, A
- 11
/7 '\
4 12
:'l 1 mk
P 4
4 1 mk
H
P 1 11
=
) 7\ .

1 mark
correct
order

1 mark
comect
boxes

In order; (tree) traversal

Page 94 of 109

[9]

Examiner reports

Q1.

Answers to Section C were often of poor quality and very few students achieved good
marks on this question. A number of students are still including additional code when
asked for the name of an identifier (parts (a)-(c)). This means that they are not getting the
marks for these questions as they have not made it clear which entity is the identifier
(sometimes there is more than one identifier in lines of code that they have copied from
the Skeleton Program).

Most students were able to identify that NoOfCardsTurnedOver was a stepper role
variable but fewer were able to correctly identify the roles of Choice and SwapSpace.
Many answers made it clear that the problem with the algorithm had been identified for
part (g) but fewer were able to describe the changes that needed to be made to correct
the problem. For part (i), search was the most frequently seen answer which was not
worth a mark.

Q2.

(@) This was a fairly straightforward programming question with most students getting
good marks. So id n i carefully and created a
selection structu dly get a value from the user
until a valid valugWas entered. A number of answ ere seen where a recursive
solution was att ted but the n S actually returned to the calling
routine.

r of students est specified in the question,

own name as test data.

A significant nu
often entering th

marks on this question. Less able students
een the < and > operators and a number of students
he two cards — forgetting to compare for rank equality.

(b) Most students got reason
sometimes got confused
only compared the suits

able students had clearly thought through the problem and come up with their own
method for solving it under exam conditions.

Most students were able to adapt the code so that it would allow a joker to be
played, though a number did not attempt to write code that would limit the number of
jokers that could be played.

(d) It was disappointing that a large number of students did not include any attempt at
answering the question. There was a mark available just for creating a
correctly-named subroutine (even if the subroutine did not do anything or use any
parameters) and a mark for displaying a message (even if the message did not
include the calculated probability). Students should be encouraged to include partial
solutions to questions they have not been able to answer wholly successfully.

As was the case for the last few years, less able students often struggled to create a
new subroutine even though there are numerous examples of subroutines in the
Skeleton Program. Again, a number of students developed a solution that would
correctly calculate the probability but just included code inside the subroutine that
displayed this value rather than setting up a mechanism to return the calculated
number to the calling routine.

Page 95 of 109

Q3.

Most students did well on this question, with well over half getting 20 or 21 marks out of
21.

Students need to be aware that an algorithm is not the same as a program and that simply
copying the algorithm into their development environment will not result in a working
program in any of the COMP1 programming languages. The pseudo-code / flowchart
needs to be adapted to match the syntax of the programming language they are using. As
in previous years, a humber of students simply copied parts of the algorithm into their
program code, for example, trying to use a keyword of OUTPUT or students using VB.Net
adding the word DO to their WHILE loops. These appeared to be less able students who
generally struggled on the Section D programming as well. The vast majority of students
were able to convert the algorithm successfully into working program code. Minor
differences between the messages / prompts in the given algorithm from those used in the
student's program were not penalised but a number of students dropped marks by using
substantially different messages / prompts in their program.

Q4.

Answers to Section C were often of poor quality and very few students achieved good
marks on this questio st it jng additional code when
asked for the name of ns that they are not getting
the marks for these q which entity is the identifier
(sometimes there is that they have copied from
the Skeleton program asked to give the name of
an identifier students te the identifier from the
Skeleton program, rat

than one ide

Part (d) was well-ans ct example. Parts (e) and (f)
asked for students to explain p f the Skeleton program code with very few getting
good marks on these question swers were often given that were too vague or about

completely different parts of the Skeleton program. Some students described what Mod

EXAM:BAPERS PRACTICE

Qs.

Candidates demonstrated a pleasing understanding of the use of syntax diagrams and
Backus Naur Form to specify language syntax.

For (a), the overwhelming majority of candidates scored at least three of the four available
marks. Candidates had most trouble identifying that the third example procedure
square (s:real) was notvalid, perhaps because they just assumed that real was a
valid type rather than checking it against the diagrams.

For (b)(i), the majority of candidates recognised that the BNF definitions incorrectly
included a new “char” data type and almost half also identified that the BNF definitions did
not allow for a procedure to have no parameters.

Part (b)(ii) was well answered with most candidates achieving a mark for recognising that

there could be any number of parameters. Pleasingly, some also went on to explain that
recursion had to be used because BNF does not support iteration. The most commonly

Page 96 of 109

seen incorrect response was to simply define what recursion was instead of addressing
the specific question.

Q6.

The majority of students got full marks for this question.

Q7.

This question was generally well-answered. For part (a), some students did not use the
number of bits specified in the question and some used even parity instead of odd parity.
Part (b) was the first COMP1 question about Hamming code. Many students were able to
give an advantage of Hamming code although occasionally answers were too vague, eg,
"It can detect errors" and there were some students who clearly had no understanding of
the topic and were just guessing eg, "It uses less memory."

Q8.

For the first time a flowchart was used to represent an algorithm in a COMP1 exam. There
was no increase in difficulty resulting from this and the standard of answers was the same
as seen in the previous year.

Some students did no
program to convert bi
had not answered the

developed their own
t getting many marks as they

Students using VB6 t
languages available f
for the testing (screen
the result of the test),
programming skills.

on than those using the other
roviding the correct evidence
ered for the test as well as
0 seemed to have weaker

MP1. This
tures needed

Students need to be aware th algorithm is not the same as a program and that simply
copying the algorithm into theif"development environment will not result in a working

rQgragn ig any of t OMP 0 i gu maide NseUd@s o)
EXAM-LARERS: HGE -
Vi yedrs, a nurflbef®dt stu s copied pdrt t ri n

program code eg trying to use a keyword of OUTPUT. These appeared to be less able
students who generally struggled on the Section D programming as well. The vast
majority of students were able to convert the algorithm successfully into working program
code and the marks obtained on this question were virtually identical to those achieved on
Section B on the 2011 COMP1 exam.

Qo.

Answers to this section were often of poor quality and very few students achieved good
marks on this question.

A number of students are still including additional code when asked for the name of an
identifier. This means that they are not getting the marks for these questions as they have
not made it clear which entity is the identifier (sometimes there is more than one identifier
in lines of code that they have copied from the Skeleton Program). To reduce the chance
of errors, when asked to give the name of an identifier students should be encouraged to
copy and paste the identifier from the Skeleton Program, rather than typing the identifier
into the EAD.

Very few students showed any understanding of binary files, even though these were

Page 97 of 109

used in the Skeleton Program. Part (a) was answered better than most other parts of
Section C with most students able to give at least one reason why the use of global
variables should be avoided. The majority of students were also able to state an
advantage of using a named constant.

Q10.
(@)

(b)

()

This was a fairly straightforward programming question with most students getting
close to full marks. Some students did not check their code carefully and subtracted
one from NoOfCellsSouth or NoOfCellsEast (instead of adding one).

Care needs to be taken with screen captures of testing as for part (d) a number of
students showed the after state of the cavern and the selection of option (iv), but did
not show the original state of the cavern and thus the screen capture(s) provided did
not include sufficient evidence for the mark to be awarded.

A common mistake made by weaker students in all Pascal, VB and Java was to try
to combine into one instruction (using a AND Boolean operator) an
instruction to increment the NoOfCellsSouth and an instruction to
increment the NoOfCellsEast - suggesting that they did not know
how to write a case statement that contains more than one
instruction.

A number of st
prepared thorou
for the selection
in the northern he ca hwards.

A number of an ed co er moving out of bounds in
each of the four sible direction vented illegal moves in a
southeast direct it was not what the question
rs in their answers by trying
to add (incorrect) code to e illlegal moves.

guestion would be asked and
o write the correct conditions
ould either prevent all moves

rly
for it. Weaker students struggl
ctures and o

Most students obtained ks on this question. A number of students did not follow

the question specification and changed the messages to be displayed to the user or
EXAM BPAPERS DRACTICE
jon'stru ed t a valid n@nt@er i

(d)

would mean that the NoOfMoves variable would be incremented even when a valid
move had not been entered). Students should be aware that if a question specifies a
particular message to display then this is the message that their program must
display — minor typos were ignored, but when a message was different by a whole
word or more the mark was not awarded.

This was the most challenging of the programming questions and was a good
discriminator between students. It was pleasing to see some interesting answers to
this question where able students had clearly thought through the problem and
come up with their own method for solving it under exam conditions. One unusual
correct answer seen from a few students was to pass a copy of the Cavern array to
the CalculateDistance subroutine and use a loop inside the routine to count how
many calls were made to the MakeMonsterMove subroutine until the monster and
player were in the same cell.

The most commonly used method to calculate the distance was to subtract the
monster's east value from the player’s east value followed by a selection structure to
deal with the scenario of a negative difference, then to do the same for the
difference between the two south values and finally to add the two differences
together. A number of students lost marks by dealing with negative values after

Page 98 of 109

adding the east difference and south difference together — this would only calculate
the correct distance between the monster and player under some circumstances.

It was disappointing that a significant number of students did not include any attempt
at answering the question. There was a mark available just for creating a
correctly-named subroutine (even if the subroutine did not do anything or use any
parameters). Students should be encouraged to include partial solutions to
guestions they have not been able to answer wholly successfully.

Less able students often struggled to create a new subroutine even though there are
numerous examples of subroutines in the Skeleton Program. A number of students,
particularly those using VB, developed a solution that would correctly calculate the
distance between the monster and the player but did not set up a mechanism to
return the distance to the calling routine. This was often because they had used a
procedure, rather than a function (although a few students did use passing by
reference correctly as a return mechanism).

Q11.

Part (a): Two thirds of students were able to identify one property that a graph must have
to be a tree. A small number confused a tree with a rooted tree and made assertions such
as that a tree must have a root, which is incorrect.

Part (b): This questio
represent a maze as
maze that would stop
identified that there c
the maze could be in
direction. Some stude
discussing a feature o
maze.

f the method being used to
ctly identified a feature of the
only seen correct response
bilities included that part of

t only be traversable in one
they re-answered part (a),

, rather than a feature of a

aph. The majority of students ¢

failed to achie
graph that would stop it being a

Part (c): Students were asked tgipresent the graph of the maze as an adjacency matrix.
Three quarters of students sc both marks for this question part. Responses where
symbols other than Os and 1s were used in the matrix were accepted, as long as they

EXAM-PAPERS PRACTICE

Part (d)(i): The vast majority of students were able to identify that a recursive routine
would call itself. A small number asserted that a recursive routine would repeat itself,
which was not considered to be enough for a mark as this could equally have been a
description of iteration.

Part (d)(ii): Most students scored some marks for this question part, but less than a fifth
achieved both. The most widely understood point was that the data would need to be
removed from the stack in the reverse of the order that it was put onto it so that the
recursion could be unwound. Less well understood was the types of data that would be
stored, such as return addresses and local variables.

Part (e): Most students achieved some marks on this question part and around a quarter
achieved all five for a fully complete trace. The most commonly made mistake was to
update, incorrectly, the Completely Explored array as the recursive calls were made, as
opposed to when the recursion unwound.

Q12.

This task was a more challenging question than those on the 2009 and 2010 COMP1
guestion papers. However, it was based on a standard algorithm (linear search) that is on

Page 99 of 109

the specification. Despite the Preliminary Material clearly stating that candidates should
be familiar with declaring and using arrays (and there being examples of arrays in the
Skeleton Program), a significant number of candidates were unable to write a syntactically
correct array declaration in their programming language. A number of candidates provided
screen captures that had not been produced by the programming code they had given in
their answer for part (b); this meant that they did not get any marks for their screen
captures. Candidates should understand that they could get marks for test runs which
show only part of their program working correctly, but they will not get any marks for
“correct” test evidence that was not produced by their programming code.

Most candidates were still able to score good marks on this question despite the
increased difficulty of this task.

Q13.

Most candidates were not well prepared for this section and did not do as well on these
guestions about the Skeleton Program as they did on the questions where they were
asked to modify the Skeleton Program. In particular, little understanding of structure
charts or decision tables was shown by a significant number of candidates.

It was pleasing to note that most candidates only gave the name of an identifier when
asked to do so — those who copied and pasted sections of code from the Skeleton
Program did not get t es i ad not demonstrated that they
understood what an i ers that contained multiple
identifiers). Some can tes did not get the mark for givililan example of a constant
declaration as they pr ed only the n sta andidates should ensure
that when asked for t nide id ly the identifier in their
answer and when ask ampl statement that the entire
program statement is nin their ans

For part (n) many can re rather than the selection

EXAM-BAPERS-PRACTICE.

for both real and virtual dice versions of the game, a number of candidates did not
alter the Skeleton Program to generate a random number between 1 and 5.

(b) For question (b) candidates were asked to adapt the DisplayResult subroutine so
that an appropriate message would be displayed if the result of a game was a draw.
Many candidates got good marks on this question. The most common mistake was
to add an else clause to one of the existing IF statements rather than adding an
additional IF statement — this would result in the message about a drawn game
being displayed if one of the player’'s had won the game as well as when a game
was drawn. Some candidates adapted the Skeleton Program correctly, but then did
not provide evidence for the test asked for in the question — a test showing both
players getting a score of 0 was needed. Some candidates provided test evidence
when the players have obtained a score of 1 or more.

(c) While there were a lot of good answers to this question, candidates generally found
question (c) more difficult than questions (a) and (b). Candidates often used the
incorrect logic. Common mistakes included using the wrong logical connective for
the two conditions (i.e. AND instead of OR / OR instead of AND) and using the
wrong logical operator with a numeric value e.g. ">=6" instead of ">6" or ">=7". It
was clear that a significant proportion of candidates following the AS Computing

Page 100 of 109

Q15.

course struggle to understand the logic of selection/repetition structures which have
multiple conditions. A number of candidates did not read the question sufficiently
carefully and did not include a repetition structure inside the RollBowlDie routine —
only using a selection statement.

(d) Many candidates had clearly anticipated that they would be asked to write a routine
to save the top scores to a file and did very well on this question with able
candidates often obtaining full marks. Some candidates seemed to have tried to
memorise the code for this task and then were unable to reproduce it under exam
conditions (or simply copied and pasted the SaveTopScores subroutine and then
tried to modify it) as they did not sufficiently understand the task they had been
practising. For part (iv), a number of candidates did not modify the main program
block to allow the 5th option to be selected.

(e) Awide range of responses were seen to this question. A large number of
candidates were unable to express their ideas clearly and their description of how
their suggested changes could be made was too vague to get full marks. Some
answers would have achieved the desired result of getting the low scores more than
the high scores, but also resulted in adverse, undesired changes to the Skeleton
Program (e.g. a player could no longer get 2 runs and could never get a result of
"out").

rt was poorly answered with m candidates giving vague
hat a simulati n odel. In this context, a model
probl necessary details. Some
apr

Part (a): This questio
responses or explaini
is an abstraction of th
candidates confused

significant number of

being asked, although more
Idates who made a reasonable attempt at an answer
often named two pointers, but offered inadequate explanations of their purpose. For
example, the purpose of the p@er to the end of the list is to enable new items to be
added to the list, not simply to know where the end is.

EXAM. RPARERS . PRACTICE

many invented new types of queues.

Part (b)(i): Again, this
candidates appeared
than half got at least one mark.

stion part was poorly answered

Part (c): This question part was well answered with many candidates giving well thought
out answers such as determining whether the next person entering the cafeteria was a
student or teacher or generating a time taken to serve the person at the front of the
gueue. The most common incorrect answer was the number of people / students /
teachers in a queue. In each case, the number in a queue would be a consequence of
other randomly determined occurrences rather than determined randomly itself.

Q16.

This was a straight-forward question. Most candidates got good marks on it although a
surprising number of candidates gave incorrect answers.

Q17.

(@ Ingeneral, candidates were better prepared for Section C this year and candidates
demonstrated a good understanding of the Skeleton Program.

When asked for the name of an identifier a one word answer is expected. A

Page 101 of 109

(b)

significant number of candidates included an entire line of code that included the
name of a relevant identifier in it. Answers for parts (i), (i), (vi), (vii), (viii) that gave a
correct answer as part of a declaration were accepted this year; answers that
included the identifier as part of some other statement (e.g. within an assignment
statement) were rejected. In future examinations, any answer that includes anything
other than the name of the identifier will not be deemed creditworthy.

Part (iii) was generally well-answered though some candidates gave an answer that
global variables are declared at the start of a program. This is often true, but it is
possible to declare global variables in other places in a program and this was not
sufficient (on its own) for a mark.

Most candidates were able to answer part (iv). The most common error was stating
that the instructions would stop being repeated when an ‘X or ‘Y’ is entered (instead
of ‘X" or ‘O’). Some candidates just copied and pasted code from the Skeleton
Program rather than describe the stopping condition.

Most candidates seemed to be aware of the role of variables. More were able to
identify stepper role variables than fixed-value role variables. The most common

incorrect answers for the fixed-role variables were pPlayerOneSymbol (this is
given a value inside a loop and so its value can change several times)
and StartSymbol (which changes value after each game).

Part (iX) was answered well, but some candidates gave a declaration rather than an
assignment stat s of code rather than just the
assignment stat code for the entire subroutine
which showed t signment statement was.

Good answers f /'O’ would be assigned to the

variable whosta marks, but often referred
to how a valu his was not a description
of the select ne as a whole.

. an
hey did not u
art (x) referre

X' /YO wo
statement,

The definition o ary
not get the mark available ry few candidates stated that boundary data is that
which is at the limit of w allowed, just before the limit and just after the limit.
Some candidates gave answers in which they wrote about boundary data being data

most answers for part (i) did

EXAM-PAPERS, PRACTICE.

Q18.
(@

did not show both the data entered and the behaviour that resulted from their test.

The checks for a valid YCoordinate were done correctly by most candidates. Some
candidates dropped marks by having code that would not return the correct value
from the function (by adding the validation checks after the value was assigned to
the function) or by combining the XCoordinate and YCoordinate checks in one
statement with an AND operator (this would not work unless brackets were added in
the correct places).

The check for overwriting moves was harder and was not done as well as the
YCoordinate check. Code that would not compile was often seen. Many candidates
did not ensure that the overwriting of moves was only checked for if the coordinates
were valid — this would result in checking an out-of-bounds position on an array
which could cause the program to crash when run (e.g. VB.Net) or to return spurious
results by checking a different memory location (e.g. Pascal). A few candidates
(mostly in Java and C#) used exception handling to deal with this problem. While
this was not on the mark scheme it was deemed to be worthy of the mark available,

Page 102 of 109

though it would be better practice to write code where exception handling was not
needed.

Some candidates had either code that would not compile for the overwriting check
or code that would crash when tested with an out-of-bounds coordinate but they had
included screen captures for part (ii). Marks were not awarded for part (ii) in these
cases as the marks were dependent on the code from part (i) — these candidates
had run a different version of their code for their testing from that they had included
for part (i).

(b) Most candidates did very well on this question and had obviously anticipated that
this would be asked and prepared for it accordingly.

Some answers clearly demonstrated that checking for a win on a row/column being
in a loop had not been understood, as they put the check for a line in a diagonal in a
loop that repeated three times unnecessarily e.g.

For Diagonal = 1 To 3
Do
If Board(l,1)= Board(2,2) And Board(2,2) = Board(3,3)
And Board(2,2) " " Then XorOHasWon := True

(c) Most candidates answered this question well. A few dropped marks for part (ii) by
showing a draw a match. Part (i) asked for
the code for the n Program — if this was not
included (i.e. ca ng to the scores) then only
one mark could new selection structure
rather than ame rin the question — again only
one mark was a

ny candidates getting full

nswer for part (i) was to
change the maximum nu of moves to 12, not 16. Part (vii) was more
challenging and many ¢ ates dropped marks here. Many incorrectly gave
(correct) code for 4-in-a-row rather than 3-in-a-row. Another common error was to

dp.sqg@ond t ro W Stped .

EXAM: AR ERS A RAGT G-
a win in a column not a row. Part (viii) was done well by those who had done part
(vii); some candidates did not read the question carefully and did not test for a
winning row in the position asked for. There were a lot of correct answers for part
(ix) although some dropped a mark by stating the change and not describing it as
well. It is important that candidates recognise key words used in questions, like
describe and explain, and understand how these should be answered. The most
common correct answer was actually the one not on the specification about using a
3D array. A significant number of candidates did not describe how the data structure
could be represented and instead wrote about how the displaying of the board would
have to be modified.

(d) Answers to this
marks for parts

Q19.

The format of this paper — where candidates were required at an early stage to program a
task from scratch for a relatively straight forward specification — seemed to work well and
a large number of candidates scored the maximum seven marks for the program source
code. The question assessed the candidate’s ability to implement the given problem
description using the basic constructs of a high level language. However, candidates need
to be made aware that the algorithm given had to be seen as a formal specification where
the wording in any output or user prompts in their program code had to match exactly that

Page 103 of 109

given in the algorithm. The mark scheme reflected this and, as a result, candidates
frequently lost marks for their screen shots because of their lack of attention to detail.

Q21.

Questions (a) to (c) required candidates to identify certain features of the Skeleton
Program and this was generally well answered. Many candidates did not associate the
term ‘pre-defined function’ to mean a built-in function and hence did not score the mark for
guestion (b)(ii).

For question (e)(i) candidates were able to describe the condition which controlled the
loop ‘PhraseOK=True’ and to describe for question (e)(ii) that the consequence would be
a continuous loop. However, the explanation of why the programmer had used a ‘For’ loop
was often poor with candidates unable to give a convincing explanation for this choice
(and not a ‘repeat-until’ structure). Also candidates were unable to use precise language
to describe a ‘known’ number of iterations.

This question was well answered with many candidates scoring the maximum 10 marks.
Better answers for question (g) scored the final mark by describing a Boolean flag or an
integer value of 1 indicating that a particular letter had been guessed. If the candidate
described the letter itself stored as the indicator, then this was deemed creditworthy.

There was possible ambiguity between the wording of the stem for question (j)(i) and the
statement in the Preli never stored more than
once.' As a result an (j)(i) scored the 1 mark and
this followed through i

er of either yes or no for quest
the marking o

Q22.
(@) By this stage of
paper challengi

ere either starting to find the
aper in the two hours.
Attempts at this question r d from not attempted (which were relatively few) to a
completely correct soluti he question — similar to question (c)(ii) — required that
Isely the specification given to gain full marks. It was

the candidate followed
uspected that many candidates’ practice for the examination had. included th
EXAM-EAPERS PRACTICE:
enfask th e =€ ndidat d ed
to answer the question set; not one that they wish had been set! Candidates
seemed to understand fully what was meant by a ‘procedure / function stub’ and

followed the instructions to produce all the evidence required.

(b) The majority of candidates had clearly read the suggestions in the Preliminary
Material and were well prepared for this task. As a general principle, no credit was
given for any screen shot evidence — e.g. question (e)(ii) — which was not supported
by relevant and plausible code. The able candidates had no difficulty answering this
question and often gained very close to the maximum mark. Common shortcomings
were solutions which read the phrases into an array which had been set to a
particular size (24 or 25) and so assumed prior knowledge of the number of phrases
in the file.

For question (f)(i) a common shortcoming was code which generated a random
number between 1 and 24, not 1 and ‘the computed number of phrases in the file’.

Many candidates for question (h) included a complete listing of their final program

code (possibly because this was a requirement on the COMP1 Specimen Paper).
This was not in the rubric of the operational examination question.

Page 104 of 109

Q23.

It was pleasing to see the number of candidates that scored highly on this question. Most
candidates were able to obtain the mark for part (a) and a large number did very well on
part (b). It must be emphasised that candidates were asked to dry run the algorithm and
complete the trace table. A small number of candidates were able to produce the correct
output but did not produce a satisfactory trace. Marks were given for the trace and so it is
essential that candidates fill this in correctly. Although most candidates obtained one mark
for part (b)(ii), few obtained two. Candidates must realise that correct technical
terminology should be used.

Q24.
Most candidates obtained the mark for part (a). It was also very pleasing to see the
number of candidates who were able to correctly trace the algorithm. Many candidates
obtained good marks on this question. Although many candidates did go wrong with the
trace, very few candidates failed to attempt it.

Q25.

@ () Well ans eing constants and functions.

anted here and proceeded
rograms were constructed

tes then misu
rs which gene

(i) Many can
to give an
with loops

Due to the rang differences wi s, a wide range of answers
were considere ble; i must not contain any
<Space> chara not permitted’. Some
candidates confused wha llowed in a programming language with what is
permitted by the operati stem, proceeding to explain what was not allowed for
filenames. Worse, was the suggested answer that 'names must be more than 6

EXAMS WAPERS PRACTICE”™

No great detail was expected for the mark and most candidates were able to give
an answer which mapped to those on the mark scheme. Use of language was an
issue for some candidates who described ‘chunks of program code’! There were
also answers which clearly were answering ‘last year’s question’ suggesting
procedures may or may not return values, contrasting with functions which always
return a value.

(c) This was similar to questions which have previously been set and was well
answered.

Q26.

In general the dry run was poorly answered and left completely blank on too many scripts.

(@ Many candidates scored the maximum three marks for identifying the data types.
Some candidates lost a mark for suggesting that ‘yes/no’ or a ‘check box’ was an
acceptable data type. This comes from their practical experience with database
design software and a visual programming language, but candidates should
appreciate they are not acceptable names for programming language data types.

Page 105 of 109

(b) This was a different style of question from that previously seen. Candidates seemed
to cope well with being asked to fill in the blanks’ in the algorithm.

(c) (i) Answers were often incorrect, but then inexplicably candidates were able to
use the same function correctly in part (iii).

Q27.

(@) The majority of candidates were able to describe a stack structure as a ‘first in last
out’ or ‘last in first out’ operation.

(b) The weaker answers seen here moved values to a different memory location once
additions and deletions occurred, or used location 605 as the first available and so
qualified for a maximum of two (only) ‘follow through’ marks.

(c) Many candidates were clear about the basic operation which was taking place but
then their communication skills let them down in the descriptions required for (ii) and
(iii). For (ii) the answer looked for was the idea that items leave the stack one after
the other. For (iii) a description was required for the principle of operation of a
queue.

Q28.

Candidates generally
understood although
enough. It was pleasi
part (c). Candidates o
descriptions. Althoug
fewer were able to su
inability to express th
but a substantial num

EXAM BAPERS BRACHCE-

() () Candidates often failed to score three easy marks. The inclusion of <Space>
or other illegal characters used in the identifier names was penalised once
only. The other common error was the suggestion of incorrect data types, the
most common being ‘Number’ and ‘Decimal’. However, this was answered
significantly better than on previous papers.

ly-defined was well

ibe the use of the stack well
aining most of the marks on
) due to inadequate

where the algorithm will fail,
in this was often due to an

s were supplied for part (g)

(i) Despite a question of this type not having been set previously, it was clear
from answers seen that candidates knew what was required. The most
common error was simply not to make the connection between part (b)(i) and
(b)(ii); for example, by introducing new identifiers to answer (ii) which gained
no credit.

Q30.

A general observation was that candidates scored significantly better with tracing the
algorithm than with the first part of the question where they were asked to recognise
various components of the given program.

(@) Almost all candidates got the idea that the program was calculating a weekly total.

Page 106 of 109

(b)

(c)

(d)

(e)

Q31.

This was the first que
answers seen were encouragin

(a)

Very few stated for the second mark that it output the result.

@ A common error was to copy the first assignment statement which appeared,
ignoring the rubric that it should ‘perform a calculation’.

(i) Acommon error was the statements that RejectTotal:=0 was a declaration
statement.

(i) Very few answers scored here. The most common (wrong) answer was that it
represented the day of the week.

This should have been an easy two marks. Common errors were for candidates to
introduce their own output messages, or to use incorrect logic; typically where the
equality condition produced both messages.

A wide variety of answers were considered acceptable including the use of two
separate IF statements.

This is only the second paper on which an explanation of the use of library
programs was required and it is clearly still not well understood. The most common
correct answers were that library programs are pre-written code which has the
potential for reuse or code which is purchased from 3rd party suppliers. Such
answers were however rare and there were far too many vague answers with
statements suc [he programmer”.

An encouragingfSign on this pape June 2006, is much

improved answ WENCEET pecially as this question
contained a pro \Lapnnoarclli ious questions.

rrays had been set and the

Most candidates correctly described that this was the issues figure for salesperson

EXAM FAFERS PRACTICE

(b)

()
(d)

(e)

Only better candidates wrote an acceptable declaration statement which required
the correct identifier StoreCards with the correct subscripts in the correct order.

Few acceptable statements were seen.

Encouragingly, this was well answered, with most candidates able to describe the
purpose of the algorithm. Answers which did little more that re-write statement(s)
from the given algorithm into a narrative form - e.g. “person total set to zero” - which
was little different, did not gain credit. The common error was stating that the
algorithm calculated a total for ‘each’ salesperson.

Somewhat surprisingly — despite similar questions on previous papers - candidates
were often unable to state a correct data type, which would suggest the fundamental
concept in programming that “identifiers will have a stated or implied data type” is
not understood.

For (ii) almost all gave Boolean, with every possible phonetic spelling, and some
gave integer for (iii). Real/Float or other acceptable alternatives for (i) were rare.

Page 107 of 109

Q32.
(@)

(b)

()

(d)

Q33.
©)

Many candidates were able to explain that functions always return a value but few
candidates were able to distinguish this from the way a procedure behaves.

For candidates who had covered this theory in a practical context this was an easy
two marks. Candidates should have been exposed to a subset of the functions
available in their programming language. The final part of the question stem “...or
when using a generic software package” was intended to help the weaker
candidates in triggering some of the functions they would have used; unfortunately,
candidates often gave answers describing features of a generic software package.

This question was generally well answered, although it was noticeable that the
standard of answers varied between centres. Candidates who found the question
easy were undoubtedly those who had practical experience of using functions which
required none, one or two parameters when used.

The most popular answer was to use identifier names for constants, followed by
procedures and functions.

This was well answered with most candidates able to score marks. The key word in
the question stem was “advantage” and so answers required more than just a
description of a compiler and an interpreter.

@ The use as not previ been examined on this paper
and most 110 Su00s le reason why this was poorly
designed able answers. The most
common To statements gives rise to
code whic no output produced when
the Searc is more than one occurrence
of SearchName in t olicyHolder array, the program will output the number
of claims value for irst occurrence of the name only.

EXANEPABERS BRACTICE

(b)

Candidates should be able to write small amounts of program code in a unit that
has the word ‘programming’ in its title. Knowledge of loops other than a For loop
was rare. It was hoped that candidates would have constructed a Repeat — Until or
While loop which terminated when a NoOfClaims value of 5 or more was found.
Candidates who used a For loop were, however, still able to score the maximum 5
marks.

Examiners were not looking for the correct use of exact syntax for the language as
stated by the candidate.

The use of IF statements was better understood, but this often did not extend to
using an array index for the NoOfClaims as part of the IF statement. Very many
candidates used the maths operator incorrectly, e.g. > or more usually =>. Quite a
few candidates reversed the logic testing for <5 and gave appropriate output for
which they gained marks. Most popular languages seen were Pascal and Visual
Basic but the candidates that used C on the whole answered the question very well
indeed.

Page 108 of 109

Q34.

Although a short question, it proved difficult for most candidates. Many missed the point
that both part (a) and part (b) were about the implementation of a stack, and in part (b)
gave answers that were about applications that were suitable for a linked list or an array.
However, we can note one particularly lucid answer to part (a)(i): “This is a static data
structure with a finite pre-declared capacity.”

Q35.

This was another question which most candidates found difficult, if not impossible.
However, some good candidates produced very good answers.

Most candidates were able to answer part (a).

The examiners only rarely awarded full marks for the trace table. A lot of candidates
abandoned the trace once they realised that the numbers were being output in ascending
order. This limited their reward to two or three marks at best since half of the marks

depended on the trace being completed. Many candidates had difficulty logging the
procedure calls even when they made a good attempt at showing the tree in the T column.

Some candidates got the two marks for part (b)(ii) without attempting the trace while
others who showed the right output in (i) called the procedure a search or a bubble sort.

EXAM PAPERS PRACTICE

Page 109 of 109

