

Page 1 of 109

1.1 Programming part 2 Mark schemes.

Page 2 of 109

Mark schemes

Q1.
(a) TCard //

TRecentScore //

TDeck (Pascal only) //

TRecentScores (Pascal only);

R If any additional code
R If spelt incorrectly
I Case

1

(b) CInt (VB.Net / VB6 only) //

Val (Pascal only) //

StrToInt (Delphi only) //

parseInt (Java only) //

Integer.parseInt (Java only) //

int (Python only);

R If any additional code
R If spelt incorrectly
I Case

1

(c) Deck//RecentScores;

R If any additional code
R If spelt incorrectly
I Case

1

(d) Temporary;
1

(e) Most recent holder;
1

(f) Stepper;
1

(g) When the name in the variable PlayerX is not in the array RecentScores;

A Answer that does not use identifiers but clearly suggests that the name is
not in the array

1

(h) WHILE Found = False AND Position

A Alternative loop conditions that would provide correct functionality
eg Position 10
 Console.Write(“Not a valid choice, please enter another

number: ”)

 NumberToGuess = Console.ReadLine()

 End While

 Guess = 0

 NumberOfGuesses = 0

 While Guess <> NumberToGuess And NumberOfGuesses < 5

 Console.Write(“Player Two have a guess: ”)

 Guess = Console.ReadLine()

 NumberOfGuesses = NumberOfGuesses + 1

 End While

 If Guess = NumberToGuess Then

 Console.Write(“Player Two wins”)

Page 3 of 109

 Else

 Console.Write(“Player One wins”)

 End If

 Console.ReadLine()

 End Sub

End Module

VB6
Private Sub Form_Load()

 Dim NumberToGuess As Integer

 Dim NumberOfGuesses As Integer

 Dim Guess As Integer

 NumberToGuess = ReadLine(“Player One enter your

chosen number: ”)

 While NumberToGuess < 1 Or NumberToGuess > 10

 NumberToGuess = ReadLine(“Not a valid choice,

please enter another number: ”)

 Wend

 Guess = 0

 NumberOfGuesses = 0

 While Guess < > NumberToGuess And NumberOfGuesses <

5

 Guess = ReadLine(“Player Two have a guess: ”)

 NumberOfGuesses = NumberOfGuesses + 1

 Wend

 If Guess = NumberToGuess Then

 WriteLineWithMsg (“Player Two wins”)

 Else

 WriteLineWithMsg (“Player One wins”)

 End If

End Sub

Alternative answers could use some of the following instead of
WriteLineWithMsg / ReadLine:
Text1.Text = Text1.Text & ...

WriteLine

WriteWithMsg

Msgbox

InputBox

WriteNoLine

Python 3
print(‘Player One enter your chosen number: ’)

NumberToGuess = int(input())

while (NumberToGuess < 1) or (NumberToGuess > 10) :

 print(‘Not a valid choice, please enter another

number: ’)

 NumberToGuess = int(input())

Guess = 0

NumberOfGuesses = 0

while (Guess != NumberToGuess) and (NumberOfGuesses <

5) :

 print(‘Player Two have a guess: ’)

 Guess = int(input())

 NumberOfGuesses = NumberOfGuesses + 1

Page 4 of 109

if Guess == NumberToGuess :

 print(‘Player Two wins’)

else :

 print(‘Player One wins’)

Alternative print / input combinations:

NumberToGuess = int(input('Player One enter your

chosen number: ’))

Guess = int(input(‘Player Two have a guess: '))

Python 2
print ‘Player One enter your chosen number: '

NumberToGuess = int(raw_input())

while (NumberToGuess 10) :

 print ‘Not a valid choice, please enter another

number: ’

 NumberToGuess = int(raw_input())

Guess = 0

NumberOfGuesses = 0

while (Guess != NumberToGuess) and (NumberOfGuesses <

5) :

 print ‘Player Two have a guess: ’

 Guess = int(raw_input())

 NumberOfGuesses = NumberOfGuesses + 1

if Guess == NumberToGuess :

 print ‘Player Two wins’

else :

 print ‘Player One wins’

Alternative print / input combinations:

NumberToGuess = int(raw_input(‘Player One enter your

chosen number: ’))

Guess = int(raw_input(‘Player Two have a guess: ’))

JAVA
int numberToGuess;

int numberOfGuesses;

int guess;

numberToGuess = console.readInteger(“Player One enter

your

chosen number: ”);

while(numberToGuess < 1 || numberToGuess > 10){

 numberToGuess = console.readInteger(“Not a valid

choice,

please enter another number: ”);

}

guess = 0;

numberOfGuesses = 0;

while (guess != numberToGuess && numberOfGuesses < 5){

 guess = console.readInteger(“Player Two have a guess:

Page 5 of 109

”);

 numberOfGuesses++;

}

if(guess == numberToGuess){

 console.println(“Player Two wins”);

}else{

 console.println(“Player One wins”);

}

13

(b) ****SCREEN CAPTURE****
Must match code from (a), including prompts on screen capture matching
those in code. Code for (a) must be sensible.

Mark as follows:
'Player One enter your chosen number: ' + user input of 0
'Not a valid choice, please enter another number: ' Message shown;
user input of 11
'Not a valid choice, please enter another number: ' Message shown;
user input of 5
'Player Two have a guess: ' + user input of 5;
'Player Two wins' message shown; R If no evidence of user input
A alternative output messages if match code for (a)

4

(c) ****SCREEN CAPTURE****

Must match code from (a), including prompts on screen capture matching
those in code. Code for 19 must be sensible.

Mark as follows:

'Player One enter your chosen number: ' + user input of 6;

'Player Two have a guess: ' + user input of 1

'Player Two have a guess: ' + user input of 3

'Player Two have a guess: ' + user input of 5

'Player Two have a guess: ' + user input of 7

'Player Two have a guess: ' + user input of 10;

'Player One wins' message shown; R If no evidence of user input
A alternative output messages if match code for (a)

3

(d) If a FOR loop was used then Player Two will always have 5 guesses //

a WHILE loop will mean that the loop will terminate when Player Twoguesses

correctly // the number of times to iterate is not known before the loop starts;
1

[21]

Q4.

(a) AmountToShift // StartPosition // EndPosition //

SizeOfRailFence // N // Count // Key // ASCIICode //

NewASCIICode

// Count2 // Count1 // NoOfColumns // NoOfRows //

NoOfCiphertextCharacters //

NoOfCiphertextCharactersProcessed // i // j //

PositionOfNextCharacter // LastFullRowNo //

Page 6 of 109

AmountToReduceNoOfColumnsTimesjBy //

BeginningofNextRowIndex // CurrentPosition;

R if any additional code
R if spelt incorrectly
I case & spaces

1

(b) EveryNthCharacterSteganography;

R if any additional code (including routine interface)
R if spelt incorrectly
I case & spaces

1

(c) Pascal
Ord // Length;

VB.Net
Asc // Length;

VB6
Asc // Len;

Python
ord // len // int;

Java
int // length;

R if any additional code
R if spelt incorrectly
I case & spaces

1

(d) Pascal
Ciphertext := '' //
Plaintext := '' //
ChangedText := '' //
TextFromFile := '' //
HiddenMessage := '';
I semicolons

VB.Net / VB6
Ciphertext = "" //

Plaintext = "" //

ChangedText = "" //

TextFromFile = "" //

HiddenMessage = "";

Python

Ciphertext = '' //

Plaintext = '' //

ChangedText = '' //

TextFromFile = '' //

HiddenMessage = ''

Java
ciphertext = "" //

Page 7 of 109

plaintext = "" //

changedText = "" //

textFromFile = "" //

hiddenMessage = ""

I semicolons

R if any additional code
R if spelt incorrectly
I case & spaces

1

(e) Because if decrypt has been selected; then the plaintext alphabet needs to be
shifted in the opposite direction;

2

(f) Mark as follows:

Identify the problem that will occur;

Explanation of how MOD 26 solves the problem;

Max 1 if no example used in explanation

Example answer

Without MOD 26 then the shift will only be applied correctly to letters early in

the alphabet e.g. if the AmountToShift is 1 then the letter Z will be given a

NewASCIICode of 91 (ASCII code for Z is 90) and this does not represent a

letter; Using MOD 26 ensures that the ciphertext alphabet wraps round to the

beginning of the alphabet (in this example NewASCIICode would become 65

the ASCII Code for A);
2

(g) ApplyShiftToASCIICodeForCharacter;

R if spelt incorrectly
I case & spaces

1

(h) NewASCIICode;

A ApplyShiftToASCIICodeForCharacter (Pascal / VB.Net / VB6

only);
R if spelt incorrectly
I case & spaces

1

(i) GetTypeOfCharacter //

Ord (Pascal / Python only) //

Asc (VB only) //

int (Java only);

R if spelt incorrectly
I case & spaces

1

(j) Pascal / VB6
For 1 To Length(OriginalText);

VB.Net
For 0 To (OriginalText.Length - 1);

Python 2 / 3
for in range (0, len(OriginalText)):;

Page 8 of 109

Java
for (count = 0; count

count++);

A Alternative correct logic
A Any clear description that conveys correct logic

1

[12]

Q5.
(a) One mark per correct response.

Construct Example Valid?

identifier Player2name No;

parameter x, y:bool Yes;

procedure-def
procedure

square(s:real)
No;

procedure-def
procedure

rect(w:int,h:int)
No;

A alternative clear indicators of Yes / No such as Y / N, True / False and Tick /
Cross.

4

(b) (i) The <type> rule has an extra type char;

The <procedure-def> rule does not allow a procedure without

parameters // cannot be just an identifier;

A answers comparing the figures the other way around, i.e.
• The type rule does not allow a char
• The procedure does not have to have parameters / can be just an

identifier
2

(ii) Required as there can be a list of parameters // required as there can be
more than one parameter;
BNF does not support iteration // BNF can only achieve iteration through
recursion // would need infinite number of rules otherwise // recursion
allows for more than one parameter;
Max 1
A Input for parameter
NE Rule needs to loop

1

[7]

Q6.

Page 9 of 109

A 10 instead of 0 in the Answer column for the final row of the table

[3]

Q7.
(a) 011 0010;

R If not 7 bits
1

(b) 1011 0000

Mark as follows:
Correct data bits;
Correct parity bit for the candidate’s data bits;

R If not 8 bits
2

(c) Error correction (not just error detection) (for single errors);
Can detect when two errors have occurred in data transmission;
Reduces the need for the retransmission of data;
Decreases the likelihood of an undetected error // improved error detection;
Can locate an error (not just detect that an error has occurred);

Max 1

[4]

Q8.
(a) Correct variable declarations for Bit, Answer and Column;

I additional variable declarations
Column initialised correctly before the start of the loop;

Answer initialised correctly before the start of the loop;

While/Repeat loop, with syntax allowed by the programming language used,

after the variable initialisations; and correct condition for the termination of the
loop;
R For loop

A any While/Repeat loop with logic corresponding to that in flowchart

(for a loop with a condition at the start accept >=1 or >0 but reject <>0)
Correct prompt "Enter bit value:" ;

followed by Bit assigned value entered by user;

followed by Answer given new value;

R if incorrect value would be calculated [followed by value of Column divided

by 2;
A multiplying by 0.5
Correct prompt and the assignment statements altering Bit, Answer and

Column are all within the loop;

After the loop – output message followed by value of Answer;

I Case of variable names, player names and output messages

Page 10 of 109

A Minor typos in variable names and output messages
I spacing in prompts
A answers where formatting of decimal values is included e.g.
Writeln(‘Decimal value is: ’, Answer : 3)

A initialisation of variables at declaration stage

A no brackets around column * bit

Pascal
Program Question;

 Var

 Answer : Integer;

 Column : Integer;

 Bit : Integer;

 Begin

Answer := 0;

Column := 8;

Repeat

Writeln('Enter bit value: ');

Readln(Bit);

Answer := Answer + (Column * Bit);

Column := Column DIV 2;

Until Column < 1;

Writeln('Decimal value is: ', Answer);

Readln;

 End.

VB.NET
Sub Main()

Dim Answer As Integer

Dim Column As Integer

Dim Bit As Integer

Answer = 0

Column = 8

Do

Console.Write("Enter bit value: ")

Bit = Console.ReadLine

Answer = Answer + (Column * Bit)

Column = Column / 2

Loop Until Column < 1

Console.Write("Decimal value is: " & Answer)

Console.ReadLine()

End Sub

Alternative Answer
Column = Column \ 2

VB6
Private Sub Form_Load()

Dim Answer As Integer

Dim Column As Integer

Dim Bit As Integer

Answer = 0

Column = 8

Do

Bit = InputBox("Enter bit value: ")

Answer = Answer + (Column * Bit)

Column = Column / 2

Loop Until Column < 1

MsgBox ("Decimal value is: " & Answer)

End Sub

Alternative Answer
Column = Column \ 2

Page 11 of 109

Java
public class Question {

AQAConsole console=new AQAConsole();

public Question(){

int column;

int answer;

int bit;

answer=0;

column=8;

do{

console.print("Enter bit value: ");

bit=console.readInteger("");

answer=answer+(column*bit);

column=column/2;

}while(column>=1);

console.print("Decimal value is: ");

console.println(answer);

 }

 public static void main(String[] arrays){

 new Question();

 }

}

Python 2.6
Answer = 0

Bit = 0

Column = 8

while Column >= 1:

print "Enter bit value: "

Accept: Bit = int(raw_input("Enter bit value: "))

Bit = input()

Answer = Answer + (Column * Bit)

Column = Column // 2

print "Decimal value is: ", Answer

or + str(Answer)

Python 3.1
Answer = 0

Bit = 0

Column = 8

while Column >= 1:

print("Enter bit value: ")

Accept: Bit = int(input("Enter bit value: "))

Bit = int(input())

Answer = Answer + (Column * Bit)

Column = Column // 2

print("Decimal value is: " + str(Answer))

or print("Decimal value is: {0}".format(Answer))

A. Answer and Bit not declared at start as long as they are spelt correctly and
when they are given an initial value that value is of the correct data type

11

(b) ****SCREEN CAPTURE****
Must match code from 16, including prompts on screen capture matching

those in code

Mark as follows:
"Enter bit value:" + first user input of 1
‘Enter bit value: ’ + second user input of 1
‘Enter bit value: ’ + third user input of 0
‘Enter bit value: ’ + fourth user input of 1

Page 12 of 109

Value of 13 outputted;
3

(c) 15;
1

(d) 16 // twice as many // double;
1

(e) Design;
A Planning

1

(f) Implementation;
1

[18]

Q9.
(a) ResetCavern; (all languages)

// GetNewRandomPosition (Pascal only)

// WriteWithMsg (VB6 only)

// WriteLineWithMsg (VB6 only)

// WriteLine (VB6 only)

// WriteNoLine (VB6 only)

// ReadLine (VB6 only);

// SetUpTrapPostions (Python / Java only);

R if any additional code (including routine interface)

R if spelt incorrectly
I case

1

(b) DisplayMenu // DisplayMoveOptions // DisplayWonGameMessage //

DisplayTrapMessage // DisplayLostGameMessage // WriteWithMsg (VB6

only) // WriteLineWithMsg (VB6 only) // WriteLine (VB6 only) //

WriteNoLine(VB6 only);

A DisplayCavern;

R if any additional code (including routine interface)
R if spelt incorrectly
I case

1

(c) Count1 // Count2 // Count;

R if any additional code
R if spelt incorrectly
I case

1

(d) Cavern // TrapPositions;

R if any additional code (including routine interface)
R if spelt incorrectly

A LoadedGameData.TrapPositions

A CurrentGameData.TrapPositions

I case
1

(e) When the value of the cell in the Cavern array // When the value of the cell to

place the item in;

Indicated by the Position variable;

Contains a space // does not contain another item;

Page 13 of 109

R is empty

Max 2 if no variable names used in description
3

(f) The number of times to repeat is known;
A fixed

1

(g) Makes the program code easier to understand;
Makes it easier to update the program;
Makes it easier to change the number of traps (in the game);

Max 1

(h) In text files all data is stored as strings / ASCII values / lines/characters // Text
files use only byte values that display sensibly on a VDU // stores only values
that can be opened and read in a text editor;

Binary files store data using different data types; A by example A Binary files
can only be correctly interpreted by application that created them

2

(i) Easier reuse of routines in other programs;
Routine can be included in a library;
Helps to make the program code more understandable;
Ensures that the routine is self-contained // routine is independent of the rest
of the program;
(Global variables use memory while a program is running) but local variables
use memory for only part of the time a program is running;
reduces possibility of undesirable side effects;
Using global variables makes a program harder to debug;

Max 2

(j) (If it was not then) MonsterAwake is set to the Boolean value returned by the

second call to CheckIfSameCell;

this would overwrite any True value returned by the first call to
CheckIfSameCell;

//
Otherwise the monster would never wake up when the player triggers the first
trap;;
//
Otherwise the monster would only wake up when the player triggers the

second trap;;
2

[15]

Q10.
(a) (i) Appropriate option added;

Pascal
Procedure DisplayMoveOptions;

 Begin

Writeln;

Writeln('Enter N to move NORTH');

Writeln('Enter E to move EAST');

Writeln('Enter S to move SOUTH');

Writeln('Enter W to move WEST');

Writeln('Enter D to move SOUTHEAST');

Page 14 of 109

Writeln('Enter M to return to the Main Menu');

Writeln;

End;

VB.NET
Sub DisplayMoveOptions()

Console.WriteLine()

Console.WriteLine("Enter N to move NORTH")

Console.WriteLine("Enter E to move EAST")

Console.WriteLine("Enter S to move SOUTH")

Console.WriteLine("Enter W to move WEST")

Console.WriteLine("Enter D to move SOUTHEAST")

 Console.WriteLine("Enter M to return to the Main Menu")

 Console.WriteLine()

End Sub

VB6
Private Sub DisplayMoveOptions()

WriteLine ("")

WriteLine ("Enter N to move NORTH")

WriteLine ("Enter E to move EAST")

WriteLine ("Enter S to move SOUTH")

WriteLine ("Enter W to move WEST")

WriteLine ("Enter D to move SOUTHEAST")

WriteLine ("Enter M to return to the Main Menu")

WriteLine ("")

End Sub

A Text1.Text = Text1.Text & "Enter D to move SOUTHEAST "

Java
void displayMoveOptions() {

console.println();

console.println("Enter N to move NORTH");

console.println("Enter E to move EAST");

console.println("Enter S to move SOUTH");

console.println("Enter W to move WEST");

console.println("Enter D to move SOUTHEAST");

 console.println("Enter M to return to the Main Menu");

 console.println();

}

Python 2
def DisplayMoveOptions():

print ''

print 'Enter N to move NORTH'

print 'Enter E to move EAST'

print 'Enter S to move SOUTH'

print 'Enter W to move WEST'

print 'Enter D to move SOUTHEAST'

print 'Enter M to return to the Main Menu'

print ''

Python 3
def DisplayMoveOptions():

print ()

print ('Enter N to move NORTH')

print ('Enter E to move EAST')

print ('Enter S to move SOUTH')

print ('Enter W to move WEST')

print ('Enter D to move SOUTHEAST')

print ('Enter M to return to the Main Menu')

print ()

Page 15 of 109

A Any sensible prompt
A Prompt added anywhere in subroutine
R If prompt asks for character other than D

1

(ii) Additional case statement for option D added correctly and all of the
rest of the code added inside the correct option of the case statement;
A any character instead of D (except N, S, W, E) – only if matches

prompt from (a)(i)
NoOfCellsSouth incremented within the correct option of

the case statement;

NoOfCellsEast incremented within the correct option of

the case statement;

Pascal
Case Direction Of

 'N' : PlayerPosition.NoOfCellsSouth :=

PlayerPosition.NoOfCellsSouth - 1;

 'S' : PlayerPosition.NoOfCellsSouth :=

PlayerPosition.NoOfCellsSouth + 1;

 'W' : PlayerPosition.NoOfCellsEast :=

PlayerPosition.NoOfCellsEast - 1;

 'E' : PlayerPosition.NoOfCellsEast :=

PlayerPosition.NoOfCellsEast + 1;

 'D' : Begin

 PlayerPosition.NoOfCellsSouth :=

PlayerPosition.NoOfCellsSouth + 1;

 PlayerPosition.NoOfCellsEast :=

PlayerPosition.NoOfCellsEast + 1;

 End;

End;

VB.NET
Case "E"

 PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

Case "D"

 PlayerPosition.NoOfCellsSouth =

PlayerPosition.NoOfCellsSouth + 1

 PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

VB6
Case "E"

 PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

Case "D"

 PlayerPosition.NoOfCellsSouth =

PlayerPosition.NoOfCellsSouth + 1

 PlayerPosition.NoOfCellsEast =

PlayerPosition.NoOfCellsEast + 1

Java
switch (direction) {

case 'N':

playerPosition.noOfCellsSouth--;

break;

case 'S':

playerPosition.noOfCellsSouth++;

break;

case 'W':

playerPosition.noOfCellsEast--;

Page 16 of 109

break;

case 'E':

playerPosition.noOfCellsEast++;

break;

case 'D':

playerPosition.noOfCellsSouth++;

playerPosition.noOfCellsEast++;

break;

}

Python
elif Direction == 'E':

 PlayerPosition.NoOfCellsEast += 1

elif Direction == 'D':

 PlayerPosition.NoOfCellsSouth += 1

 PlayerPosition.NoOfCellsEast += 1

3

(iii) Additional condition added to IF statement ;

A answers using an additional IF statement

R if value of ‘D’ will result in False being returned by function

R if function will always return True

Pascal
ValidMove := True;

If Not (Direction In ['N','S','W','E','D','M'])

 Then ValidMove := False;

CheckValidMove := ValidMove;

VB.NET
ValidMove = True

If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "M" Or Direction = "D") Then

 ValidMove = False

End If

CheckValidMove = ValidMove

VB6
ValidMove = True

If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "M" Or Direction = "D") Then

 ValidMove = False

End If

CheckValidMove = ValidMove

Java
validMove = true;

if (!(direction = = 'N' || direction = = 'S' || direction = =

'W'|| direction = = 'E' || direction = = 'D' || direction = =

'M')) {

 validMove = false;

}

return validMove;

Python
def CheckValidMove(PlayerPosition,Direction):

 ValidMove = True

 if not (Direction in ['N','S','W','E','D','M']):

 ValidMove = False

 return ValidMove

1

Page 17 of 109

(iv) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (i), (ii) and (iii)

Screen capture(s) showing modified menu shown to user and option ‘D’
selected;
Screen capture(s) showing both original position of player in the cavern
and the new position of the player in the cavern;

2

(b) (i) Selection structure with correct condition;
Inside the selection structure there is code that will display the correct
message on the screen;

I Capitalisation and minor typos in message
R different message
Selection structure is in the correct place in the code;

Pascal
Repeat

DisplayMoveOptions;

MoveDirection := GetMove;

 ValidMove := CheckValidMove(PlayerPosition,

MoveDirection);

 If Not ValidMove

 Then Writeln('That is not a valid move, please try

again');

Until ValidMove;

Alternative answer
If ValidMove = False...

VB.NET
Do

DisplayMoveOptions()

MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition, MoveDirection)

 If Not ValidMove Then

 Console.WriteLine("That is not a valid move, please try

again")

 End If

Loop Until ValidMove

VB6
Do

Call DisplayMoveOptions()

MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition, MoveDirection)

 If Not ValidMove Then

 WriteLine("That is not a valid move, please try again")

 End If

Loop Until ValidMove

A Text1.Text = Text1.Text & "That is not a valid move, please
try again "

A WriteLineWithMsg

Java
do {

displayMoveOptions();

moveDirection = getMove();

 validMove = checkValidMove(playerPosition,

moveDirection);

Page 18 of 109

 if (!validMove) {

 console.println("That is not a valid move, please try

again");

 }

} while (!validMove);

Alternative answer
if (validMove == false)

Python
while not ValidMove:

DisplayMoveOptions()

MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition, MoveDirection)

 if not ValidMove:

Python 2:

 print 'That is not a valid move, please try again'

 # Python 3:

 print('That is not a valid move, please try again')

Alternative answer
if ValidMove = False...

3

(ii) If statement with a correct condition;
Correct logic and 2nd condition for If statement;

Value of False returned correctly by the function if illegal north move is

made;

R if a value of False will always be returned by the function

R if all north moves will return false
R if all moves when PlayerPosition.NoOfCellsSouth is in row 1 will

return false

Value of True returned correctly by the function if legal north move is

made;

A Answers which combine all the checks for a valid move into one If

statement
I missing option 'D' in code

Pascal
ValidMove := True;

If Not (Direction In ['N','S','W','E','D','M'])

 Then ValidMove := False;

If (PlayerPosition.NoOfCellsSouth = 1) And (Direction = 'N')

 Then ValidMove := False;

CheckValidMove := ValidMove;

Alternative answer
If ValidMove And (Direction = 'N')

 Then ValidMove := ValidMove And

 (PlayerPosition <> 1);

VB.NET
If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "D" Or Direction = "M") Then

 ValidMove = False

End If

If PlayerPosition.NoOfCellsSouth = 1 And Direction = "N" Then

 ValidMove = False

Page 19 of 109

End If

CheckValidMove = ValidMove

Alternative answer
If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "M") Then

 ValidMove = False

End If

If ValidMove And (Direction = "N") Then

 ValidMove = (ValidMove And (PlayerPosition.NoOfCellsSouth

<> 1))

End If

VB6
If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "D" Or Direction = "M") Then

 ValidMove = False

End If

If PlayerPosition.NoOfCellsSouth = 1 And Direction = "N" Then

 ValidMove = False

End If

CheckValidMove = ValidMove

Alternative answer
If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "M") Then

 ValidMove = False

End If

If ValidMove And (Direction = "N") Then

 ValidMove = (ValidMove And (PlayerPosition.NoOfCellsSouth

<> 1))

End If

Java
validMove = true;

if (!(direction = = 'N' || direction = = 'S' || direction = =

'W'|| direction = = 'E' || direction = = 'D' || direction = =

'M')) {

 validMove = false;

}

if (validMove && direction = = 'N') {

 validMove = validMove &&

 (playerPosition.noOfCellsSouth != 1);

 }

return validMove;

Alternative answer
if (playerPosition.noOfCellsSouth = = 1 && direction = = 'N')

{

validMove = false;

}

Python
def CheckValidMove(PlayerPosition,Direction):

 ValidMove = True

 if not (Direction in ['N','S','W','E','D','M']):

 ValidMove = False

 if (PlayerPosition.NoOfCellsSouth = = 1) and (Direction =

= 'N'):

 ValidMove = False

 return ValidMove

Page 20 of 109

Alternative answer
if not (Direction in ['N','S','W','E','D','M']):

 ValidMove = False

if ValidMove and (Direction = = 'N'):

 ValidMove = (ValidMove and (PlayerPosition. NoOfCellsSouth

!= 1))

4

(iii) ****SCREEN CAPTURE(S)****

This is conditional on sensible code for (b)(i) and correct code for (b)(ii).

Screen capture(s) showing correct cavern state with a player at the
northern end of the cavern (top line), 'N' being entered at prompt,
followed by correct error message being displayed;

1

(c) (i) NoOfMoves is assigned the value 0 – before the first repetition structure

in PlayGame;

I. Case of variable names
A. Minor typos in variable name
A assignment statement(s) in other subroutine(s) if correct functionality
would be obtained
NoOfMoves incremented in any sensible place in the code inside the first

selection structure in PlayGame subroutine;

One correct message displayed with NoOfMoves;

Second correct message displayed with NoOfMoves;

Correct logic – both of the messages will be displayed only under the
correct circumstances;

A. minor typos in messages I. capitalisation & spacing in messages
A. message displayed on more than one line
A. more than one line of code used to display a message
A. NoOfMoves declared as global

I. NoOfMoves declaration not shown in PROGRAM SOURCE CODE

Pascal
Eaten:= False;

FlaskFound := False;

DisplayCavern(Cavern, MonsterAwake);

NoOfMoves := 0;

Repeat

 ...

 If MoveDirection <> 'M'

 Then

 Begin

 MakeMove(Cavern, MoveDirection, PlayerPosition);

 NoOfMoves := NoOfMoves + 1;

 DisplayCavern(Cavern, MonsterAwake);

 ...

 If FlaskFound

 Then

 Begin

 DisplayWonGameMessage;

 Writeln('The number of moves you took to

find the flask was ',NoOfMoves);

 End;

 ...

 If Eaten

 Then

Page 21 of 109

 Begin

 DisplayLostGameMessage;

 Writeln('The number of moves you

survived in the cavern for was ', NoOfMoves);

 End;

Alternative answer
Until Eaten Or FlaskFound Or (MoveDirection = 'M');

If Eaten

 Then Writeln('The number of moves that you survived in the

cavern for was ', NoOfMoves);

If FlaskFound

 Then Writeln('The number of moves you took to find the flask

was ', NoOfMoves);

Alternative answer
If FlaskFound

 Then DisplayWonGameMessage(NoOfMoves);

...

If Eaten

 Then DisplayLostGameMessage(NoOfMoves);

together with modified DisplayWonGameMessage to include additional

output message (I missing parameter if NoOfMoves declared as global)
Procedure DisplayWonGameMessage(NoOfMoves : Integer);

 Begin

 Writeln('Well done! You have found the flask containing

the Styxian potion.');

 Writeln('You have won the game of MONSTER!');

 Writeln('The number of moves you took to find the flask

was ',NoOfMoves);

 Writeln;

 End

and modified DisplayLostGameMessage to include additional output

message (I missing parameter if NoOfMoves declared as global)
Procedure DisplayLostGameMessage(NoOfMoves : Integer);

 Begin

 Writeln('ARGHHHHHH! The monster has eaten you. GAME

OVER.');

 Writeln('Maybe you will have better luck next time you

play MONSTER!');

 Writeln('The number of moves you survived in the cavern

for was ', NoOfMoves);

 Writeln;

 End;

VB.NET
Dim ValidMove As Boolean

Eaten = False

FlaskFound = False

DisplayCavern(Cavern, MonsterAwake)

NoOfMoves = 0

Do

...

If MoveDirection <> "M" Then

MakeMove(Cavern, MoveDirection, PlayerPosition)

NoOfMoves = NoOfMoves + 1

DisplayCavern(Cavern, MonsterAwake)

...

If FlaskFound Then

 DisplayWonGameMessage()

Page 22 of 109

 Console.WriteLine("The number of moves you took to find the

flask was " & NoOfMoves)

End If

...

If Eaten Then

 DisplayLostGameMessage()

 Console.WriteLine("The number of moves that you survived in

the cavern for was " & NoOfMoves)

End If

...

Alternative answer
Loop Until Eaten Or FlaskFound Or MoveDirection = "M"

If Eaten Then

 Console.WriteLine("The number of moves that you survived in

the cavern for was " & NoOfMoves)

End If

If FlaskFound Then

 Console.WriteLine("The number of moves you took to find the

flask was " & NoOfMoves)

End If

Alternative answer
If FlaskFound Then

 DisplayWonGameMessage(NoOfMoves)

End If

...

If Eaten Then

 DisplayLostGameMessage(NoOfMoves)

End If

together with modified DisplayWonGameMessage to include additional

output message (I missing parameter if NoOfMoves declared as global)
Sub DisplayWonGameMessage(ByVal NoOfMoves As Integer)

 Console.WriteLine("Well done! You have found the flask

containing the Styxian potion.")

 Console.WriteLine("You have won the game of MONSTER!")

 Console.Writeline("The number of moves you took to find the

flask was " & NoOfMoves)

 Console.WriteLine()

End Sub

and modified DisplayLostGameMessage to include additional output

message (I missing parameter if NoOfMoves declared as global)
Sub DisplayLostGameMessage(ByVal NoOfMoves As Integer)

 Console.WriteLine("ARGHHHHHH! The monster has

eaten you. GAME OVER.")

 Console.WriteLine("Maybe you will have better luck next

time you play MONSTER!")

 Console.WriteLine("The number of moves you survived in the

cavern for was " & NoOfMoves);

 Console.WriteLine()

End Sub

VB6
Dim ValidMove As Boolean

Eaten = False

FlaskFound = False

Call DisplayCavern(Cavern, MonsterAwake)

NoOfMoves = 0

Do

...

Page 23 of 109

If MoveDirection <> "M" Then

 Call MakeMove(Cavern, MoveDirection, PlayerPosition)

 NoOfMoves = NoOfMoves + 1

 Call DisplayCavern(Cavern, MonsterAwake)

...

If FlaskFound Then

 Call DisplayWonGameMessage()

 WriteLine("The number of moves you took to find the flask

was " & NoOfMoves)

End If

...

If Eaten Then

 Call DisplayLostGameMessage()

 WriteLine("The number of moves that you survived in the

cavern for was " & NoOfMoves)

End If

...

Alternative answer
Loop Until Eaten Or FlaskFound Or MoveDirection = "M"

If Eaten Then

 WriteLine("The number of moves that you survived in the

cavern for was " & NoOfMoves)

End If

If FlaskFound Then

 WriteLine("The number of moves you took to find the flask

was " & NoOfMoves)

End If

Alternative answer
If FlaskFound Then

 DisplayWonGameMessage(NoOfMoves)

End If

...

If Eaten Then

 DisplayLostGameMessage(NoOfMoves)

End If

together with modified DisplayWonGameMessage to include additional

output message (I missing parameter if NoOfMoves declared as global)
Sub DisplayWonGameMessage(ByVal NoOfMoves As Integer)

 WriteLine("Well done! You have found the flask containing

the Styxian potion.")

 WriteLine("You have won the game of MONSTER!")

 Writeline("The number of moves you took to find the flask

was " & NoOfMoves);

 WriteLine("")

End Sub

and modified DisplayLostGameMessage to include additional output

message (I missing parameter if NoOfMoves declared as global)
Sub DisplayLostGameMessage(ByVal NoOfMoves As Integer)

 WriteLine("ARGHHHHHH! The monster has eaten you. GAME

OVER.")

 WriteLine("Maybe you will have better luck next time you

play MONSTER!")

 WriteLine("The number of moves you survived in the cavern

for was " & NoOfMoves);

 WriteLine("")

End Sub

A. Text1.Text = Text1.Text & "The number of moves that you
survived in the cavern for was "

Page 24 of 109

A. Text1.Text = Text1.Text & "The number of moves you took to
find the flask was "

A. WriteLineWithMsg

Java
eaten = false;

flaskFound = false;

displayCavern(cavern, monsterAwake);

noOfMoves = 0;

do {

 ...

 if (moveDirection != 'M') {

 makeMove(cavern, moveDirection, playerPosition);

 noOfMoves++;

 displayCavern(cavern, monsterAwake);

 flaskFound = checkIfSameCell(playerPosition,

flaskPosition);

 if (flaskFound) {

 displayWonGameMessage();

 console.println("The number of moves you took to

find the flask was " + noOfMoves);

 }

 ...

 if (eaten) {

 displayLostGameMessage();

 console.println("The number of moves you survived in

the " + "cavern for was " + noOfMoves);

 }

Alternative answer
} while (!(eaten || flaskFound || moveDirection == 'M'));

if (flaskFound) {

 console.println("The number of moves you took to find the

flask was " + noOfMoves);

}

if (eaten) {

 console.println("The number of moves you survived in the "

+ "cavern for was " + noOfMoves);

}

Alternative answer
eaten = false;

flaskFound = false;

displayCavern(cavern, monsterAwake);

noOfMoves = 0;

do {

 ...

 if (moveDirection != 'M') {

 makeMove(cavern, moveDirection, playerPosition);

 noOfMoves++;

 displayCavern(cavern, monsterAwake);

 ...

together with modified displayLostGameMessage and

displayWonGameMessage to include additional output message (I

missing parameter if NoOfMoves declared as global)
void displayWonGameMessage(int noOfMoves){

console.println("ARGHHHHHH! The monster has eaten you. GAME

OVER.");

 console.println("Maybe you will have better luck next time

you play MONSTER!");

 console.println("The number of moves you survived in the

Page 25 of 109

cavern was " + noOfMoves);

 console.println();

}

void displayWonGameMessage(int noOfMoves){

 console.println("Well done! You have found the flask

containing the Styxian potion.");

 console.println("You have won the game of MONSTER!");

 console.println("The number of moves you took to find the

flask was " + noOfMoves);

}

Python
Eaten = False

FlaskFound = False

MoveDirection = ''

DisplayCavern(Cavern, MonsterAwake)

NoOfMoves = 0

while not (Eaten or FlaskFound or (MoveDirection == 'M')):

ValidMove = False

while not ValidMove:

DisplayMoveOptions()

MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition,

MoveDirection)

 if not ValidMove:

 print 'That is not a valid move, please try again'

 if MoveDirection != 'M':

 MakeMove(Cavern, MoveDirection, PlayerPosition)

 NoOfMoves += 1

 DisplayCavern(Cavern, MonsterAwake)

...

 if FlaskFound:

 DisplayWonGameMessage()

 # Python 2:
 print 'The number of moves you took to find the flask

was', NoOfMoves

 # Alternative answer:
 print 'The number of moves you took to find the flask was

' + str(NoOfMoves)

 # Python 3:
 print('The number of moves you took to find the flask was

' + str(NoOfMoves)

 # Alternative answer:
 print('The number of moves you took to find the flask was

{0}'.format(NoOfMoves)) #Py3

...

if Eaten:

 DisplayLostGameMessage()

 # Python 2:
 print 'The number of moves that you survived in the cavern

for was', NoOfMoves

 # Alternative answer:
 print 'The number of moves that you survived in the cavern

for was ' + str(NoOfMoves)

 # Python 3:
 print('The number of moves that you survived in the cavern

for was ' + str(NoOfMoves))

 # Alternative answer:
 print('The number of moves that you survived in the cavern

for was {0}'.format(NoOfMoves))

Alternative Answer

Page 26 of 109

Python 2
if Eaten:

 print 'The number of moves that you survived in the cavern

for was', NoOfMoves

else:

 print 'The number of moves you took to find the flask was',

NoOfMoves

Python 3
if Eaten:

 print('The number of moves that you survived in the cavern

for was' + str(NoOfMoves))

else:

 print('The number of moves you took to find the flask was'

+ str(NoOfMoves))

A .format(NoOfMoves)

Alternative answer
if FlaskFound:

 DisplayWonGameMessage(NoOfMoves)

...

if Eaten:

 DisplayLostGameMessage(NoOfMoves)

together with modified displayLostGameMessage and

displayWonGameMessage to include additional output message (I

missing parameter if NoOfMoves declared as global)

Python 2
def DisplayWonGameMessage(NoOfMoves):

 print 'Well Done! You have found the flask containing the

Styxian potion.'

 print 'You have won the game of MONSTER!'

 print 'The number of moves you took to find the flask was

‘, NoOfMoves

def DisplayLostGameMessage(NoOfMoves):

 print 'ARGHHHHHH! The monster has eaten you. GAME OVER.'

 print 'Maybe you will have better luck the next time you play

MONSTER!'

 print 'The number of moves that you survived in the cavern

for was', NoOfMoves

Python 3
def DisplayWonGameMessage(NoOfMoves):

 print('Well Done! You have found the flask containing the

Styxian potion.')

 print('You have won the game of MONSTER!')

 print('The number of moves you took to find the flask was'

+ str(NoOfMoves))

def DisplayLostGameMessage(NoOfMoves):

 print('ARGHHHHHH! The monster has eaten you. GAME OVER.')

 print('Maybe you will have better luck the next time you play

MONSTER!')

print('The number of moves that you survived in the cavern for

was'+ str(NoOfMoves))

5

(ii) ****SCREEN CAPTURE(S)****

This is conditional on sensible code for (c)(i).

Screen capture(s) showing correct cavern state:

Page 27 of 109

followed by message "The number of moves you took to find the

flask was 3";

A Different message – if it matches code in (c)(i) and displays final value
of NoOfMoves correctly

R If message "The number of moves that you survived …" is also

shown
1

(iii) ****SCREEN CAPTURE(S)****

This is conditional on sensible code for (c)(i)

Screen capture(s) showing correct cavern state:

followed by message "The number of moves that you survived in the

cavern for was 2";

A Different message – if it matches code in (c)(i) and displays final value

of NoOfMoves correctly

R If message "The number of moves you took…" is also shown
1

(d) (i) CalculateDistance subroutine created – with begin and

end of subroutine;
PlayerPosition and MonsterPosition passed as parameters to the

CalculateDistance subroutine;

I additional unnecessary parameters
R global variables
A four integer values instead of two CellReference values

R passing by value for parameters of type CellReference

(VB6 only)

Integer value returned by subroutine either as parameter passed by

Page 28 of 109

reference or by function return value; R global variable A real value

Calculates difference between the NoOfCellsEast for the monster and

the player; R if the result can be a negative distance

Calculates difference between the NoOfCellsSouth for the monster and

the player; R if the result can be a negative distance

Calculates the total distance between the monster and the player;

A Incorrect values for differences in NoOfCellsEast and

NoOfCellsSouth being added together

Distance calculated is actually returned by the subroutine; A use of
global variable

I Case of identifiers
A Minor typos in identifiers
I Order of parameters in routine interface

Pascal
Function CalculateDistance(PlayerPosition, MonsterPosition :

TCellReference) : Integer;

 Var

 Distance : Integer;

 Begin

 If PlayerPosition.NoOfCellsEast >

MonsterPosition.NoOfCellsEast

 Then Distance := PlayerPosition.NoOfCellsEast –

MonsterPosition.NoOfCellsEast

 Else Distance := MonsterPosition.NoOfCellsEast –

PlayerPosition.NoOfCellsEast;

 If PlayerPosition.NoOfCellsSouth >

MonsterPosition.NoOfCellsSouth

 Then Distance := Distance +

PlayerPosition.NoOfCellsSouth –

MonsterPosition.NoOfCellsSouth

 Else Distance := Distance +

MonsterPosition.NoOfCellsSouth –

PlayerPosition.NoOfCellsSouth;

 CalculateDistance := Distance;

End;

Alternative answer
Distance := Abs(PlayerPosition.NoOfCellsEast –

MonsterPosition.NoOfCellsEast) +

Abs(PlayerPosition.NoOfCellsSouth –

MonsterPosition.NoOfCellsSouth));

Alternative answer
Distance := Trunc(Sqrt(Sqr(PlayerPosition.NoOfCellsEast –

MonsterPosition.NoOfCellsEast)) +

Sqrt(Sqr(PlayerPosition.NoOfCellsSouth –

MonsterPosition.NoOfCellsSouth)));

Alternative answer
Distance := Round(Sqrt(Sqr(PlayerPosition.NoOfCellsEast –

MonsterPosition.NoOfCellsEast)) +

Sqrt(Sqr(PlayerPosition.NoOfCellsSouth –

MonsterPosition.NoOfCellsSouth)));

Alternative answer

Page 29 of 109

Distance2 : Integer;

...

Distance := PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast;

If Distance < 0

 Then

 Distance := Distance * -1;

Distance2 := PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth;

If Distance2 < 0

 Then

 Distance2 := Distance2 * -1;

Distance := Distance + Distance2;

VB.NET
Function CalculateDistance(ByVal PlayerPosition As

CellReference, ByVal MonsterPosition As CellReference) As

Integer

 Dim Distance As Integer

 If PlayerPosition.NoOfCellsEast >

MonsterPosition.NoOfCellsEast Then

 Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

 Else

 Distance = MonsterPosition.NoOfCellsEast -

PlayerPosition.NoOfCellsEast

 End If

 If PlayerPosition.NoOfCellsSouth >

MonsterPosition.NoOfCellsSouth Then

 Distance = Distance + PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

 Else

 Distance = Distance + MonsterPosition.NoOfCellsSouth -

PlayerPosition.NoOfCellsSouth

 End If

 CalculateDistance = Distance

End Function

Alternative answer
Distance = System.Math.Abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +

System.Math.Abs(PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)

A this alternative answer if System.Math included

A give benefit of doubt for this answer if no evidence of System.Math

included

Alternative answer
Distance = (((PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) ^ 2) ^ 0.5) +

(((PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth) ^ 2) ^ 0.5)

Alternative answer
Dim Distance2 As Integer

...

Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

If Distance < 0 Then

 Distance = Distance * -1

End If

Page 30 of 109

Distance2 = PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

If Distance2 < 0 Then

 Distance2 = Distance2 * -1

End If

Distance = Distance + Distance2

VB6
Private Function CalculateDistance(ByRef PlayerPosition As

CellReference, ByRef MonsterPosition As CellReference) As

Integer

 Dim Distance As Integer

 If PlayerPosition.NoOfCellsEast >

MonsterPosition.NoOfCellsEast Then

 Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

 Else

 Distance = MonsterPosition.NoOfCellsEast -

PlayerPosition.NoOfCellsEast

 End If

 If PlayerPosition.NoOfCellsSouth >

MonsterPosition.NoOfCellsSouth Then

 Distance = Distance + PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

 Else

 Distance = Distance + MonsterPosition.NoOfCellsSouth -

PlayerPosition.NoOfCellsSouth

 End If

 CalculateDistance = Distance

End Function

Alternative answer
Distance = (((PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) ^ 2) ^ 0.5) +

(((PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth) ^ 2) ^ 0.5)

Alternative answer
Distance = Abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +

Abs(PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)

Alternative answer
Dim Distance2 As Integer

...

Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

If Distance < 0 Then

 Distance = Distance * -1

End If

Distance2 = PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

If Distance2 < 0 Then

 Distance2 = Distance2 * -1

End If

Distance = Distance + Distance2

Java
int calculateDistance(CellReference playerPosition,

CellReference monsterPosition) {

 int distance;

if(playerPosition.noOfCellsEast>monsterPosition.noOfCellsEa

Page 31 of 109

st){

 distance=playerPosition.noOfCellsEast-monsterPosition.no

OfCellsEast;

 } else{

 distance=monsterPosition.noOfCellsEast-playerPosition.no

OfCellsEast;

 }

if(playerPosition.noOfCellsSouth>monsterPosition.noOfCellsS

outh){

distance=distance+playerPosition.noOfCellsSouth-monsterPosi

tion.noOfCellsSouth;

 }else{

distance=distance+monsterPosition.noOfCellsSouth-playerPosi

tion.noOfCellsSouth;

 }

 return distance;

}

Alternative Answer
int calculateDistance(CellReference playerPosition,

CellReference monsterPosition) {

 int distance;

 distance = Math.abs(playerPosition.noOfCellsSouth -

monsterPosition.noOfCellsSouth);

 distance += Math.abs(playerPosition.noOfCellsEast -

monsterPosition.noOfCellsEast);

 return distance;

}

Alternative Answer
distance=(int)Math.sqrt(Math.pow((double)(playerPosition.no

OfCellsSouth - monsterPosition.noOfCellsSouth), 2))

+(int)Math.sqrt(Math.pow((double)(playerPosition.noOfCellsE

ast - monsterPosition.noOfCellsEast), 2));

Alternative Answer
distance=(int)Math.round(Math.sqrt(Math.pow((double)(player

Position.noOfCellsSouth - monsterPosition.noOfCellsSouth),

2))

+Math.sqrt(Math.pow((double)(playerPosition.noOfCellsEast -

monsterPosition.noOfCellsEast), 2)));

Alternative answer
int distance2;

...

distance = playerPosition.noOfCellsEast -

monsterPosition.noOfCellsEast;

if (distance < 0) {

 distance = distance * -1;

}

distance2 = playerPosition.noOfCellsSouth -

monsterPosition.noOfCellsSouth;

if (distance2 < 0) {

 distance2 = distance2 * -1;

}

distance = distance + distance2;

Python
def CalculateDistance(PlayerPosition, MonsterPosition):

 if PlayerPosition.NoOfCellsEast >

MonsterPosition.NoOfCellsEast:

 Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

 else:

 Distance = MonsterPositionNoOfCellsEast -

Page 32 of 109

PlayerPosition.NoOfCellsEast

 if PlayerPosition.NoOfCellsSouth >

MonsterPosition.NoOfCellsSouth:

 Distance = Distance + PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

 else:

 Distance = Distance + MonsterPositionNoOfCellsSouth -

PlayerPosition.NoOfCellsSouth

 return Distance

Alternative Answer
Distance = abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +

abs(PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)

Alternative Answer
return abs(PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast) +

abs(PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)

Alternative Answer
import math

Distance =

math.trunc(math.sqrt(pow((PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast),2)) +

math.sqrt(pow((PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth),2)))

Alternative Answer
import math

Distance = round(math.sqrt((PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast)**2) +

math.sqrt((PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth)**2))

Alternative Answer
Distance = PlayerPosition.NoOfCellsEast -

MonsterPosition.NoOfCellsEast

if Distance < 0:

 Distance = Distance * -1

Distance2 = PlayerPosition.NoOfCellsSouth -

MonsterPosition.NoOfCellsSouth

if Distance2 < 0:

 Distance2 = Distance2 * -1

Distance = Distance + Distance2

7

(ii) Call to CalculateDistance subroutine;

R if parameter list does not match answer to (d)(i)
Displays "Distance between monster and player:
" in correct place;

A. any place in code after call to DisplayMoveOptions and before call

to MakeMove

A. minor typos in prompt
I capitalisation

Displays the calculated distance;
R. if no evidence of any calculation for the distance
R. if distance is displayed before call to CalculateDistance subroutine

Page 33 of 109

R. if distance returned by CalculateDistance stored in a global

variable
R. if distance calculated in part (d)(i) would not actually be displayed e.g.
program would not compile/run
A. use of temporary variable to store the value returned by
CalculateDistance with contents of temporary variable then displayed

using output message

I Case of identifiers and output messages
A. Minor typos in output messages
I spacing in output messages

Pascal
DisplayMoveOptions;

Writeln('Distance between monster and player: ',

CalculateDistance(PlayerPosition, MonsterPosition));

VB.NET
DisplayMoveOptions()

Console.WriteLine("Distance between monster and player: " &

CalculateDistance(PlayerPosition, MonsterPosition))

VB6
DisplayMoveOptions()

WriteLine("Distance between monster and player: " &

CalculateDistance(PlayerPosition, MonsterPosition))

A Text1.Text = Text1.Text & "Distance between monster and
player: " & CalculateDistance(PlayerPosition,

MonsterPosition)

A WriteLineWithMsg

Java
 displayMoveOptions();

 console.println("Distance between monster and player: " +

calculateDistance(playerPosition, monsterPosition));

Python 2
DisplayMoveOptions()

print 'Distance to monster:',

CalculateDistance(PlayerPosition, MonsterPosition)

Alternative answer
DisplayMoveOptions()

print 'Distance to monster:' +

str(CalculateDistance(PlayerPosition, MonsterPosition))

Python 3
DisplayMoveOptions()

print('Distance to monster:' +

str(CalculateDistance(PlayerPosition, MonsterPosition))

3

(iii) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (d)(i) and/or (d)(ii)

Player shown in the cell 3 south and 5 east of the northwest corner
AND
"Distance between monster and player: 3"

shown;

Page 34 of 109

I monster symbol (M) displayed in the cavern

1

(iv) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (d)(i) and/or (d)(ii)

Player shown in the cell 2 south and 5 east of the northwest corner
AND
"Distance between monster and player: 2"

shown;

I monster symbol (M) displayed in the cavern

1

(v) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (d)(i) and/or (ii)
Player shown in the cell 2 south and 3 east of the northwest corner

AND
"Distance between monster and player: 2"

shown;

I monster symbol (M) displayed in the cavern

1

35

Q11.

Page 35 of 109

(a) Connected // There is a path between each pair of vertices;
Undirected // No direction is associated with each edge;
Has no cycles // No (simple) circuits // No closed chains // No closed paths in
which all the edges are different and all the intermediate vertices are different
// No route from a vertex back to itself that doesn’t use an edge more than
once or visit an intermediate vertex more than once;
A no loops
Alternative definitions:
A simple cycle is formed if any edge is added to graph;

Any two vertices can be connected by a unique simple path;
Max 1

(b) No route from entrance to exit / through maze;
Maze contains a loop/circuit ;
A more than one route through maze;
Part of the maze is inaccessible / enclosed;
R Responses that clearly relate to a graph rather than the maze

Max 1

(c)

(allow some symbol in the central diagonal to indicate unused)

or

(with the shaded portion in either half – some indication must be made that
half of the matrix is not being used. This could just be leaving it blank, unless
the candidate has also represented absence of an edge by leaving cells blank)

1 mark for drawing a 7x7 matrix, labelled with indices on both axis and filled
only with 0s and 1s, or some other symbol to indicate presence/absence of
edge. e.g. T/F. Absence can be represented by an empty cell.
1 mark for correct values entered into matrix, as shown above;

2

(d) (i) Routine defined in terms of itself // Routine that calls itself;
A alternative names for routine e.g. procedure, algorithm
NE repeats itself

1

Page 36 of 109

(ii) Stores return addresses;
Stores parameters;
Stores local variables; NE temporary variables
Stores contents of registers;
A To keep track of calls to subroutines/methods etc.

Max 1

Procedures / invocations / calls must be returned to in reverse order (of
being called);
As it is a LIFO structure;

A FILO
As more than one / many return addresses / sets of values may need to
be stored (at same time) // As the routine calls itself and for each
call/invocation a new return address / new values must be stored;

Max 1
2

(e)

1 mark for having the correct values changes in each region highlighted by a

Page 37 of 109

rectangle and no incorrect changes in the region. Ignore the contents of any
cells that are not changed.

A alternative indicators that clearly mean True and False.
A it is not necessary to repeat values that are already set (shown lighter in
table)

5

[12]

Q12.
(a) VB.Net

Sub Main()

 Dim Names(4) As String

 Dim Current As Integer

 Dim Max As Integer

 Dim Found As Boolean

 Dim PlayerName As String

 Names(1) = "Ben"

 Names(2) = "Thor"

 Names(3) = "Zoe"

 Names(4) = "Kate"

 ;Max = 4

 Current = 1

 Found = False

 Console.WriteLine("What player are you looking for?")

 PlayerName = Console.ReadLine

 While Found = False And Current <= Max

 If Names(Current) = PlayerName Then

 Found = True

 Else

 Current = Current + 1

 End If

 End While

 If Found = True Then

 Console.WriteLine("Yes, they have a top score")

 Else

 Console.WriteLine("No, they do not have a top score")

 End If

 Console.ReadLine()

End Sub

VB6
Private Sub Form_Load()

 Dim Names(4) As String A. Names(1 To 4)

 Dim Current As Integer

 Dim Max As Integer

 Dim Found As Boolean

 Dim PlayerName As String

 Names(1) = "Ben"

 Names(2) = "Thor"

 Names(3) = "Zoe"

 Names(4) = "Kate"

 Max = 4

 Current = 1

 Found = False

 PlayerName = InputBox("What player are you looking for?")

 While Found = False And Current <= Max

 If Names(Current) = PlayerName Then

 Found = True

Page 38 of 109

 Else

 Current = Current + 1

 End If

 End While

 If Found = True Then

 MsgBox("Yes, they have a top score")

 Else

 MsgBox("No, they do not have a top score")

 End If

 End

End Sub

Pascal
Program Question;

Var

 Names : Array[1..4] Of String;

 Current : Integer;

 Max : Integer;

 Found : Boolean;

 PlayerName : String;

Begin

 Names[1] := 'Ben';

 Names[2] := 'Thor';

 Names[3] := 'Zoe';

 Names[4] := 'Kate';

 Max := 4;

 Current := 1;

 Found := False;

 Writeln('What player are you looking for?');

 Readln(PlayerName);

 While (Found = False) And (Current <= Max)

 Do

 Begin

 If Names[Current] = PlayerName

 Then Found := True

 Else Current := Current + 1;

 End;

 If Found = True

 Then Writeln('Yes, they have a top score')

 Else Writeln('No, they do not have a top score');

 Readln;

End.

Java
public class Question {

 AQAConsole console = new AQAConsole();

 public Question() {

 String[] names = new String[5];

 int max;

 int current;

 boolean found;

 String playerName;

 names[1] = "Ben";

 names[2] = "Thor";

 names[3] = "Zoe";

 names[4] = "Kate";

//possible alternative, which declares and
//instantiates in one.
//String[] names={"","Ben","Thor","Zoe","Kate"};

Page 39 of 109

 current = 1;

 max = 4;

 found = false;

 playerName = console.readLine("What player are you

looking for? ");

 while ((found == false) && (current <= max)) {

 if (names[current].equals(playerName)){

 found = true;

 } else {

 current++;

 } // end if/else

 } // end while

 if (found == true) {

 console.println("Yes, they have a top score");

 } else {

 console.println("No, they do not have a top score");

 } // end if/else

 }// end CONSTRUCTOR

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 new Question();

 }

}

Python 2.6
Names = ["", "", "", "", ""]

Names[1] = "Ben"

Names[2] = "Thor"

Names[3] = "Zoe"

Names[4] = "Kate"

Or:

Names["", "Ben","Thor", "Zoe","Kate"]

Or:

Names = [""]

Names.append("Ben")

Names.append("Thor")

Names.append("Zoe")

Names.append("Kate")

Max = 4

Current = 1

Found = False

PlayerName = raw_input("What player are you looking

for?")

while (Found == False) and (Current <= Max):

 if Names[Current] == PlayerName:

 Found = True

 else:

 Current += 1

if Found == True: # accept if Found:

 print "Yes, they do have a top score"

else:

 print "No, they do not have a top score"

A Answers where Max is set to 5 and loop condition of Current <
Max

A Answers where Max is set to 4 and loop condition of Current <
Max + 1

Page 40 of 109

Python 3
Names = ["", "", "", "", ""]

Names[1] = "Ben"

Names[2] = "Thor"

Names[3] = "Zoe"

Names[4] = "Kate"

Or:

Names["", "Ben","Thor", "Zoe","Kate"]

Or:

Names = [""]

Names.append("Ben")

Names.append("Thor")

Names.append("Zoe")

Names.append("Kate")

Max = 4

Current = 1

Found = False

PlayerName = input("What player are you looking

for?")

while (Found == False) and (Current <= Max):

 if Names[Current] == PlayerName:

 Found = True

 else:

 Current += 1

if Found == True: # accept if Found:

 print("Yes, they do have a top score")

else:

 print("No, they do not have a top score")

A Answers where Max is set to 5 and loop condition of Current <
Max

A Answers where Max is set to 4 and loop condition of Current <

Mark as follows:

Correct variable declarations for Max, Current, Found,

PlayerName and correct declaration for the Names array;

Four correct values assigned to the correct positions in the Names array;
Max, Current, Found initialised correctly;

Correct prompt followed by PlayerName assigned value entered by user;

WHILE loop formed correctly and correct conditions for the termination of the

loop;
First IF followed by correct condition and IF statement is inside the loop;

THEN followed by correct assignment statement within a correctly

formed IF statement;

ELSE followed by correct assignment statement within a correctly formed IF

statement;
Second IF followed by correct condition and IF is after the loop;

THEN followed by correct output within a correctly formed IF statement;

ELSE followed by correct output within a correctly formed IF statement;

I Case of variable names, player names and output messages
A Minor typos in variable names and output messages
A Max declared as a constant instead of a variable
A Alternative conditions with equivalent logic for the loop

A Array positions 0–3 used instead of 1–4 if consistent usage throughout
program

Page 41 of 109

11

(b) * * * * SCREEN CAPTURE* * * *
Must match code from (a), including prompts on screen capture matching
those in code. Code for (a) must be sensible.

Mark as follows:
'What player are you looking for' + user input of ‘ Thor’ ;
'Yes, they have a top scor' message shown;

I spacing
R If code for (a) would not produce this test run

2

(c) * * * * SCREEN CAPTURE* * * *
Must match code from (a), including prompts on screen capture matching
those in code. Code for (a) must be sensible.

Mark as follows:
'What player are you looking for?' + user input of ‘Imran’ ;
'No, they do not have a top score' message shown;
I spacing

R If code for (a) would not produce this test run
2

[15]

Q13.
(a) VB.Net/VB6

Const MaxSize = 4

I capitalisation

Pascal
Const MaxSize = 4

I missing semicolon, capitalisation
NE MaxSize
A MaxSize = 4

Java
final int MAX_SIZE = 4;

I missing semicolon, capitalisation
NE MAX_SIZE

Python 2.6 and 3
MAX_SIZE = 4

1

(b) Improves readability of code // Easier to update the programming code if the
value changes (A by implication) // reduce the likelihood of errors;

1

(c) PlayerOneName // PlayerTwoName;

R if any additional code

R if spelt incorrectly
I case & spaces
A Max_SIZE (Python only)

A Currentfile (R for VB6/VB.Net)
1

(d) LowestCurrentTopScore ;
A PositionOfLowestCurrentTopScore;

Page 42 of 109

R if any additional code
R if spelt incorrectly
I case & spaces

1

(e) b;
1

(f) True;
1

(g) False;
1

(h) UpdateTopScores;

R if spelt incorrectly
I case & spaces

1

(i) VirtualDiceGame;

R if spelt incorrectly

I case & spaces
1

(j) AppealDieResult;
RollAppealDie;

R if spelt incorrectly
R RollAppealDie (Python only)
I case & spaces

1

(k) Until PlayerOut // Until PlayerOut = True // until player is out;

A any unambiguous description of the loop termination condition
1

(l) Because the scope; of the two variables is different; //
Because they are both local variables; in different subroutines;
A Because where they are accessible is different;

2

(m) 3;
1

(n) It compares the score of the current record/position (in the TopScores array);

with the lowest score found so far // with LowestCurrentTopScore;
if it is less than it then it changes the lowest score found so far; R swaps
and makes the position of the lowest top score equal to count / equal to the
current position in the array;

4

[18]

Q14.
(a) (i) VB.Net

If VirtualDiceGame Then

 AppealDieResult = Int(Rnd() * 5) + 1

Else

 Console.WriteLine("Please roll the appeal die and then

enter your result.")

 Console.WriteLine()

 Console.WriteLine("Enter 1 if the result is NOT OUT")

 Console.WriteLine("Enter 2 if the result is CAUGHT")

 Console.WriteLine("Enter 3 if the result is LBW")

 Console.WriteLine("Enter 4 if the result is BOWLED")

 Console.WriteLine("Enter 5 if the result is RUN OUT")

Page 43 of 109

 Console.WriteLine()

 Console.Write("Result: ")

 AppealDieResult = Console.ReadLine

 Console.WriteLine()

End If

VB6
If VirtualDiceGame Then

 AppealDieResult = Int(Rnd() * 5) + 1

Else

 WriteLine ("Please roll the appeal die and then enter your

result.")

 WriteLine ("")

 WriteLine ("Enter 1 if the result is NOT OUT")

 WriteLine ("Enter 2 if the result is CAUGHT")

 WriteLine ("Enter 3 if the result is LBW")

 WriteLine ("Enter 4 if the result is BOWLED")

 WriteLine ("Enter 5 if the result is RUN OUT")

 WriteLine ("")

 AppealDieResult = ReadLine("Result:")

 WriteLine ("")

End If

A Text1.Text = Text1.Text & “Enter 5 if the result is RUN OUT“
A WriteLineWithMsg

Pascal
If VirtualDiceGame

 Then AppealDieResult := Random(5) + 1

 Else

 Begin

 Writeln('Please roll the appeal die and then enter

your result.');

 Writeln;

 Writeln('Enter 1 if the result is NOT OUT');

 Writeln('Enter 2 if the result is CAUGHT');

 Writeln('Enter 3 if the result is LBW');

 Writeln('Enter 4 if the result is BOWLED');

 Writeln('Enter 5 if the result is RUN OUT');

 Writeln;

 Write('Result: ');

 Readln(AppealDieResult);

 Writeln;

 End;

Java
if (virtualDiceGame) {

 appealDieResult = objRandom.nextInt(5) + 1;

} else {

 console.println("Please roll the appeal die and

then enter your result.");

 console.println();

 console.println("Enter 1 if the result is NOT

OUT");

 console.println("Enter 2 if the result is

CAUGHT");

 console.println("Enter 3 if the result is LBW");

 console.println("Enter 4 if the result is

BOWLED");

 console.println("Enter 5 if the result is RUN

OUT");

 console.println();

 appealDieResult = console.readInteger("Result:

Page 44 of 109

");

 console.println();

}

Python 2.6
def RollAppealDie(VirtualDiceGame):

 if VirtualDiceGame:

 AppealDieResult = random.randint(1,5)

 else:

 print "Please roll the appeal die and then enter your

result."

 print ""

 print "Enter 1 if the result is NOT OUT"

 print "Enter 2 if the result is CAUGHT"

 print "Enter 3 if the result is LBW"

 print "Enter 4 if the result is BOWLED"

 print "Enter 5 if the result is RUN OUT"

 print ""

 AppealDieResult = input("Result: ")

 print ""

 return AppealDieResult

Python 3
def RollAppealDie(VirtualDiceGame):

 if VirtualDiceGame:

 AppealDieResult = random.randint(1,5)

 else:

 print("Please roll the appeal die and then enter your

result.")

 print()

 print("Enter 1 if the result is NOT OUT")

 print("Enter 2 if the result is CAUGHT")

 print("Enter 3 if the result is LBW")

 print("Enter 4 if the result is BOWLED")

 print("Enter 5 if the result is RUN OUT")

 print()

 AppealDieResult = int(input("Result: "))

 print()

 return AppealDieResult

Mark as follows:
Generates random number between 1 and 5;
Appropriate prompt added if real dice being used;
I minor typos and capitalisation in prompt
A alternative sensible prompt

2

(ii) VB.Net
Select Case AppealDieResult

 Case 1

 Console.WriteLine("Not out!")

 Case 2

 Console.WriteLine("Caught!")

 Case 3

 Console.WriteLine("LBW!")

 Case 4

 Console.WriteLine("Bowled!")

 Case 5

 Console.WriteLine("Run Out!")

End Select

VB6

Page 45 of 109

Select Case AppealDieResult

 Case 1

 WriteLineWithMsg ("Not out!")

 Case 2

 WriteLineWithMsg ("Caught!")

 Case 3

 WriteLineWithMsg ("LBW!")

 Case 4

 WriteLineWithMsg ("Bowled!")

 Case 5

 WriteLineWithMsg ("Run out!")

End Select

A WriteLine / WriteWithMsg / Msgbox instead of WriteLineWithMsg
A Text1.Text = Text1.Text & “Run out!”

Pascal
Case AppealDieResult Of

 1 : Writeln('Not out!');

 2 : Writeln('Caught!');

 3 : Writeln('LBW!');

 4 : Writeln('Bowled!');

 5 : Writeln('Run out!');

 End;

Java
switch (appealDieResult) {

 case 1:

 console.println("Not out!");

 break;

 case 2:

 console.println("Caught!");

 break;

 case 3:

 console.println("LBW!");

 break;

 case 4:

 console.println("Bowled!");

 break;

 case 5:

 console.println("Run out!");

 break; /////////////optional

}

Python 2.6
def DisplayAppealDieResult(AppealDieResult):

 if AppealDieResult == 1:

 print "Not out!"

 elif AppealDieResult == 2:

 print "Caught!"

 elif AppealDieResult == 3:

 print "LBW!"

 elif AppealDieResult == 4:

 print "Bowled!"

 elif AppealDieResult == 5:

 print "Run out!"

Python 3
def DisplayAppealDieResult(AppealDieResult):

 if AppealDieResult == 1:

 print("Not out!")

 elif AppealDieResult == 2:

 print("Caught!")

Page 46 of 109

 elif AppealDieResult == 3:

 print("LBW!")

 elif AppealDieResult == 4:

 print("Bowled!")

 elif AppealDieResult == 5:

 print("Run out!")

Mark as follows:
5th case option added;
Appropriate output message in 5th case option;
I minor typos and capitalisation in output message 2

2

(iii) * * * * SCREEN CAPTURE(S)* * * *
This is conditional on sensible code for (a)(i) and (a)(ii)

Screen capture showing run out (option 5) message shown to user;
User enters “5” and correct output message showing ‘RUN OUT!’;
A Alternative output message if matches code for (a)(i) / (a)(ii)

2

(b) (i) VB.Net
If PlayerOneScore > PlayerTwoScore Then

Console.WriteLine(PlayerOneName & " wins!")

If PlayerTwoScore > PlayerOneScore Then

Console.WriteLine(PlayerTwoName & " wins!")

If PlayerOneScore = PlayerTwoScore Then

Console.WriteLine("A draw!")

VB6
If PlayerOneScore > PlayerTwoScore Then

WriteLineWithMsg (PlayerOneName & " wins!")

If PlayerTwoScore > PlayerOneScore Then

WriteLineWithMsg (PlayerTwoName & " wins!")

If PlayerOneScore = PlayerTwoScore Then

WriteLineWithMsg ("A draw!")

A Using MsgBox/WriteLine/WriteWithMsg for output instead of
WriteLineWithMsg
A Text.Text1 = Text.Text1 & "A draw!"

Pascal
If (PlayerOneScore > PlayerTwoScore)

 Then Writeln(PlayerOneName, ' wins!');

If (PlayerTwoScore > PlayerOneScore)

 Then Writeln(PlayerTwoName, ' wins!');

If (PlayerOneScore = PlayerTwoScore)

 Then Writeln('A draw!');

Java
if (playerOneScore > playerTwoScore) {

 console.println(playerOneName + " wins!");

} // end if

if (playerTwoScore > playerOneScore) {

 console.println(playerTwoName + " wins!");

} // end if

if (playerTwoScore == playerOneScore) {

 console.println("A draw!");

}

Python 2.6

Page 47 of 109

if PlayerOneScore > PlayerTwoScore:

 print PlayerOneName, " wins!"

if PlayerTwoScore > PlayerOneScore:

 print PlayerTwoName, " wins!"

if PlayerOneScore = = PlayerTwoScore:

 print "A draw!"

Python 3
if PlayerOneScore > PlayerTwoScore:

 print PlayerOneName, "wins!"

if PlayerTwoScore > PlayerOneScore:

 print PlayerTwoName, "wins!"

if PlayerOneScore = = PlayerTwoScore:

 print "A draw!"

Mark as follows:

IF statement;
with correct condition;
suitable output message shown under, and only under, correct
circumstances;

3

(ii) ****SCREEN CAPTURE(S)****

Mark as follows:
Test showing both player scores are 0;
Correct message shown; This is conditional on sensible code for (b)(ii)

2

(c) (i) VB.Net
Console.Write("Result: ")

BowlDieResult = Console.ReadLine()

Console.WriteLine()

While BowlDieResult < 1 Or BowlDieResult > 6

 Console.Writeline("Please enter a value between 1

and 6 only")

 BowlDieResult = Console.ReadLine

End While

Alternative Answer – VB.Net
Do

 Console.Write("Result: ")

 BowlDieResult = Console.ReadLine

 If BowlDieResult < 1 Or BowlDieResult > 6 Then

 Console.WriteLine("Please enter a number between 1 and

6 only")

 End If

Loop Until BowlDieResult >= 1 And BowlDieResult <=6

VB6
BowlDieResult = ReadLine("Result:")

While BowlDieResult < 1 Or BowlDieResult > 6

 BowlDieResult = ReadLine("Please enter a value

between 1 and 6 only")

End While

A InputBox instead of ReadLine

Alternative Answer – VB6
Do

 BowlDieResult = ReadLine("Result:")

 If BowlDieResult < 1 Or BowlDieResult > 6 Then

 BowlDieResult = WriteLine("Please enter a value between

Page 48 of 109

1 and 6 only")

 End If

Loop Until BowlDieResult >= 1 And BowlDieResult <=6

Pascal
Repeat

 Write('Result: ');

 Readln(BowlDieResult);

 If (BowlDieResult < 1) Or (BowlDieResult > 6)

 Then Writeln('Please enter a value between 1 and 6

only');

 Until (BowlDieResult >= 1) And (BowlDieResult <=6);

Alternative Answer - Pascal
Write('Result: ');

Readln(BowlDieResult);

Writeln;

While (BowlDieResult < 1) Or (BowlDieResult > 6)

 Do

 Begin

 Writeln('Please enter a value between 1 and 6 only');

 Readln(BowlDieResult);

 End;

Java
do {

 bowlDieResult = console.readInteger("Result: ");

 if ((bowlDieResult < 1 || bowlDieResult > 6))

 {

 console.println("Please enter a value between 1 and 6

only");

 }

} while (bowlDieResult < 1 || bowlDieResult > 6);

Python 2.6
while BowlDieResult not in [1,2,3,4,5,6]:

while BowlDieResult not in range(1,7):

while BowlDieResult < 1 or BowlDieResult >6:

while not (1 <= BowlDieResult <= 6):

 BowlDieResult = input("Please enter a value

between 1 and 6 only: ")

Python 3
while BowlDieResult not in [1,2,3,4,5,6]:

while BowlDieResult not in range(1,7):

while BowlDieResult < 1 or BowlDieResult >6:

while not (1 <= BowlDieResult <= 6):

 BowlDieResult = int(input("Please enter a value

between 1 and 6 only: "))

Mark as follows:
Suitable iteration structure used in appropriate place in the Skeleton
Program with one correct condition;
Use of OR logical operator and have second condition correct for
iterative structure;
A Alternative logic using AND and NOT logical operators
Correct error message and get choice from user – both inside the
loop;
Error message is displayed if, and only if, invalid data entered by
user;
I. minor typos and capitalisation in output message

4

Page 49 of 109

(ii) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (c)(i)

Mark as follows:
Test showing a value of 0 entered and the correct output message;
Test showing a value of 2 entered and the correct output message;
Test showing a value of 7 entered and the correct output message;

I Order of tests

A Alternative error message if matches code for (c)(i)
3

(d) (i) VB.Net
Console.WriteLine("4. Display top scores")

Console.WriteLine("5. Save top scores")

Console.WriteLine("9. Quit")

VB6
WriteLine ("4. Display top scores")

WriteLine ("5. Save top scores")

WriteLine ("9. Quit")

Pascal
Writeln('4. Display top scores');

Writeln('5. Save top scores');

Writeln('9. Quit');

Java
console.println("4. Display top scores");

console.println("5. Save top scores");

console.println("9. Quit");

Python 2.6
def DisplayMenu():

print "Dice Cricket"

print ""

print "1. Play game version with virtual dice"

print "2. Play game version with real dice"

print "3. Load top scores"

print "4. Display top scores"

print "5. Save top scores"

print "9. Quit"

Python 3
print("4. Display top scores")

print("5. Save top scores")

print("9. Quit")

A minor typos in output message
1

(ii) VB.Net / VB6
If OptionChosen < 1 Or (OptionChosen > 5 And

OptionChosen <> 9) Then

Pascal
If (OptionChosen < 1) Or ((OptionChosen > 5) And

(OptionChosen <> 9))

 Then

Java
if ((optionChosen < 1) || ((optionChosen > 5) &&

Page 50 of 109

(optionChosen != 9))) {

Python 2.6
def GetMenuChoice():

 OptionChosen = input("Please enter your choice:")

 if (OptionChosen < 1 or (OptionChosen > 5 and

OptionChosen != 9)):

 Print ""

 print "That was not one of the allowed options.

Please try again: "

 return OptionChosen

Python 3
def GetMenuChoice():

 OptionChosen = int(input("Please enter your

choice: "))

 if (OptionChosen < 1 or (OptionChosen > 5 and
OptionChosen != 9)):

 print()

 print("That was not one of the allowed options. Please

try again: ")

 return OptionChosen

Mark as follows:
OptionChosen > 5 // OptionChosen >= 6;

1

 (iii) VB.Net
Sub SaveTopScores(ByVal TopScores() As TTopScore)

 Dim Count As Integer

 Dim LineToAddToFile As String

 FileOpen(1, "HiScores.txt", OpenMode.Output)

 For Count = 1 To MaxSize

 LineToAddToFile = TopScores(Count).Name & "," &

TopScores(Count).Score

 PrintLine(1, LineToAddToFile)

 Next

 FileClose(1)

End Sub

VB6
Private Sub SaveTopScores(ByRef TopScores() As

TTopScore)

Dim Count As Integer

Open "HiScores.txt" For Output As #1

For Count = 1 To MaxSize

 Print #1, TopScores(Count).Name & "," &

Str(TopScores(Count).Score)

Next

Close #1

End Sub

Pascal
Procedure SaveTopScores(TopScores : TTopScores);

Var

 Count : Integer;

 LineToAddToFile : String;

 CurrentFile : TextFile;

Begin

 Assign(CurrentFile, 'HiScores.txt');

 ReWrite(CurrentFile);

 For Count := 1 To MaxSize

 Do

Page 51 of 109

 Begin

 LineToAddToFile :=

IntToStr(TopScores[Count].Score)

 LineToAddToFile := TopScores[Count].Name + ',' +

LineToAddToFile;

 Writeln(CurrentFile, LineToAddToFile);

 End;

 Close(CurrentFile);

End;

A Str(TopScores[Count].Score, LineToAddToFile);

instead of
LineToAddToFile := IntToStr(TopScores[Count].Score)

Java
void saveTopScores(TopScore[] topScores) {

 AQAWriteTextFile currentFile = new

AQAWriteTextFile();

 currentFile.openFile("hitest.txt");

 int count;

 for (count = 1; count <= MAX_SIZE; count++) {

 String lineToAddToFile = topScores[count].name + ", ";

 lineToAddToFile = lineToAddToFile +

String.valueOf(topScores[count].score);

 currentFile.writeToTextFile(lineToAddToFile);

 } // end for count

 currentFile.closeFile();

}

Python 2.6
def SaveTopScores(TopScores):

 OutFile = open("HiScores.txt","w")

 Count = 1

 for Count in range(1, MAX_SIZE+1):

 LineToAddToFile = TopScores[Count].Name + "," +

str(TopScores[Count].Score) + "\n":

 OutFile.write(LineToAddToFile)

 OutFile.close()

or more likely

def SaveTopScores(TopScores):

Outfile = open(“HiScores.txt”,”w”)

For score in (TopScores[1], TopScores[2],

TopScores[3], TopScores[4]):

 Line = score.Name + “,”+

str(score.Score) + “\n”

Outfile.write(line)

 Outfile.close()

Python 3
def SaveTopScores(TopScores):

 CurrentFile = open("HiScores.txt","w")

 Count = 1

 for Count in range(1, MAX_SIZE+1):

 LineToAddToFile = TopScores[Count].Name + "," +

str(TopScores[Count].Score) + "\n"

 CurrentFile.write(LineToAddToFile)

 CurrentFile.close()

Mark as follows:
Correctly named subroutine declared; I capitalisation R other
mistakes in identifier
File opened correctly (for output);
First line to add into file consists of the 1st name; a comma and the

Page 52 of 109

1st score;
First line written to file correctly;
2nd, 3rd and 4th lines would be written to the file correctly;
File closed correctly;

Additional marks for good programming practice=
(Max 3)

TopScores array passed as a parameter;

Use of iterative structure and counter used within iterative structure -
going from 1 to MaxSize (R 4);
Sensible identifier names used for all variables/parameters;

Evidence of sensible commenting of source code;
10

(iv) VB.Net
Loop Until (OptionSelected >= 1 And OptionSelected

<= 5) Or OptionSelected = 9

Console.WriteLine()

If OptionSelected >= 1 And OptionSelected <= 5 Then

 Select Case OptionSelected

 Case 1 : PlayDiceGame(PlayerOneName,

PlayerTwoName, True, TopScores)

 Case 2 : PlayDiceGame(PlayerOneName,

PlayerTwoName, False, TopScores)

 Case 3 : LoadTopScores(TopScores)

 Case 4 : DisplayTopScores(TopScores)

 Case 5 : SaveTopScores(TopScores)

 End Select

VB6
Loop Until (OptionSelected >= 1 And OptionSelected

<= 5) Or OptionSelected = 9

If OptionSelected >= 1 And OptionSelected <= 5 Then

 Select Case OptionSelected

 Case 1: Call PlayDiceGame(PlayerOneName,

PlayerTwoName, True, TopScores)

 Case 2: Call PlayDiceGame(PlayerOneName,

PlayerTwoName, False, TopScores)

 Case 3: LoadTopScores(TopScores)

 Case 4: Call DisplayTopScores(TopScores)

 Case 5: Call SaveTopScores(TopScores)

Pascal
Until OptionSelected In [1..5, 9];

Writeln;

If OptionSelected In [1..5]

 Then

 Case OptionSelected Of

 1 : PlayDiceGame(PlayerOneName,

PlayerTwoName, True, TopScores);

 2 : PlayDiceGame(PlayerOneName,

PlayerTwoName, False, TopScores);

 3 : LoadTopScores(TopScores);

 4 : DisplayTopScores(TopScores);

 5 : SaveTopScores(TopScores);

End;

Java
do {

 displayMenu();

 optionSelected = getMenuChoice();

} while (!((optionSelected >= 1 && optionSelected

Page 53 of 109

<= 5) || optionSelected == 9));

if (optionSelected >= 1 && optionSelected <= 5) {

 switch (optionSelected) {

 case 1:

 playDiceGame(playerOneName, playerTwoName, true,

topScores);

 break;

 case 2:

 playDiceGame(playerOneName, playerTwoName, false,

topScores);

 break;

 case 3:

 loadTopScores(topScores);

 break;

 case 4:

 displayTopScores(topScores);

 break;

 case 5:

 saveTopScores(topScores);

 break; //optional

 } // end case

} // end if

Python 2.6
while OptionSelected != 9:

DisplayMenu()

OptionSelected = GetMenuChoice()

while OptionSelected not in [1,2,3,4,5,9]:

DisplayMenu()

OptionSelected = GetMenuChoice()

print ""

if OptionSelected in [1,2,3,4,5]:

 if OptionSelected == 1:

 PlayDiceGame(PlayerOneName,

PlayerTwoName, True, TopScores)

 elif OptionSelected == 2:

PlayDiceGame(PlayerOneName,

 PlayerTwoName, False, TopScores)

 elif OptionSelected == 3:

 LoadTopScores(TopScores)

 elif OptionSelected == 4:

 DisplayTopScores(TopScores)

 elif OptionSelected == 5:

 SaveTopScores(TopScores)

Python 3
while OptionSelected != 9:

 DisplayMenu()

OptionSelected = GetMenuChoice()

while OptionSelected not in [1,2,3,4,5,9]:

DisplayMenu()

OptionSelected = GetMenuChoice()

print()

if OptionSelected in [1,2,3,4,5]:

 if OptionSelected == 1:

 PlayDiceGame(PlayerOneName, PlayerTwoName, True,

TopScores)

 elif OptionSelected == 2:

 PlayDiceGame(PlayerOneName,

 PlayerTwoName, False, TopScores)

 elif OptionSelected == 3:

 LoadTopScores(TopScores)

 elif OptionSelected == 4:

 DisplayTopScores(TopScores)

Page 54 of 109

 elif OptionSelected == 5:

 SaveTopScores(TopScores)

Mark as follows:
Additional case statement for OptionSelected being 5;

Procedure call;
Passing TopScores as a parameter;

Loop terminating condition and selection condition range both
changed from 1-4 to 1-5;

4

(iv) ****SCREEN CAPTURE****

Adapted menu is displayed; This is conditional on sensible answer for
question (d)(i)

option 5 is selected, and accepted as valid input; This is conditional on
sensible answer for questions (d)(ii) and (d)(iv)

2

(v) ****SCREEN CAPTURE****
This is conditional on sensible answer for (d)(ii), (ii) and (iv)

Contents of file are exactly as follows:

Ricky,12
Sachin,45
Brian,2
Janet,4

A Screen capture showing contents of text file
I Minor typos & capitalisation in Janet’s name
R If Janet’s name in the text file does not match the name used in (d)(iv)

(e) (i) Generate wider range of random numbers; add extra case statements

for low score values / give low score values a bigger range in case
statements than high score values;
//
Create a list/array containing a list of possible bowl die results where
there are more 1s and 5s than 3s and 4s; generate a random number
between 1 and the list size and use the bowl die result in that position in
the list/array;

Mark as follows:
Generate a wider range of random numbers; Explain how the extra
random numbers could be used to have a higher chance of getting a
score of 1 or 0 than a score of 4 or 6;
A Replace case statement with if statements to allow different score

values to have ranges of values associated with them (Pascal Only)
A Other sensible suggestions for modifications to the Skeleton Program
that would result in the desired behaviour change.
MAX 1 if suggested changes would adversely effect other aspects of the
game represented in the Skeleton Program e.g. does result in more
lower scores than higher scores but would prevent a player from getting
a result of out.

2

Page 55 of 109

Q15.
(a) An abstraction / leaving out non-essential details // A mathematical

representation of reality;
1

(b) 1 mark for naming or describing two pointers from this list:

• Front/start/head pointer
• Next node pointer
• Previous node pointer
• Rear/end/tail pointer

R Next free space pointer

1 mark for stating the purpose of one of the pointers that have been named:

• (Front/start/head pointer) to indicate where to remove items from // who

should be served next // who is currently being served;
NE to points to start of list

• (Next node pointer) to link items in list together // to show order of list //
so items can be inserted into middle of list // to traverse list;

• (Previous node pointer) to link items in list together // to show order of
list // so items can be inserted into middle of list // to traverse list
backwards;

• (Read / end / tail pointer) to indicate where to add new items to // so new
people can be added to queue
NE to point to end of list
A Contextualised answers which refer to queue instead of list or adding
people to a queue.
R Answers which clearly relate to the use of a fixed-size array.

2

(ii) Priority (queue);
1

(c) Allow any reasonable example that would require randomness e.g. time next
person joins queue, inter-person arrival time, time to be served, choice of
meal, type (student / teacher) of next person to arrive;
R number of students / teachers / people in queue

1

[5]

Q16.
Meaningful/appropriate/suitable identifiers //
A example;
Indentation // effective use of white space;
Subroutines / Procedures and functions/methods/modules; with interfaces // using
parameters to pass values;
Subroutines / Procedures and functions/methods/modules should execute a single

task;
Appropriate use of structured statements // use of (selection and
repetition)/repetition;
Avoid use of goto statements;
Consistent use of case/style for identifier names;
Use of named constants;
Use of user-defined data types;
Use of libraries;

Page 56 of 109

House-style naming conventions // following conventions;
A by explained example
A Use of local variables
R Commenting
R "easier to understand"

Max 3

[3]

Q17.

(a) (i) Board // PlayerOneName // PlayerTwoName // PlayerOneScore //
PlayerTwoScore // XCoord // YCoord // ValidMove // NoOfMoves

// GameHasBeenWon // GameHasBeenDrawn // CurrentSymbol //

StartSymbol // PlayerOneSymbol // PlayerTwoSymbol // Answer

Java only: console;
1

(ii) Row // Column // RandomNo // ValidMove // XOrOHasWon //
WhoStarts;

VB6 only: BoardAsString;

Java and Python: X // Y;

Java and C#: ObjRandom;
1

(iii) A global variable is accessible/useable from anywhere in the program;
A local variable is only accessible / useable in the program block /
procedure / function / subroutine / method in which it is declared;
//

Local variables only exist/use memory whilst the procedure / function /
subroutine / method is executing; global variables exist / use memory
the whole time the program is executing;

2

(iv) When the user enters ‘X' ; or ‘O’; // When PlayerOneSymbol contains

‘X’; or ‘O’;
2

(v) Because players could be making moves referring to non-empty cells;
as no check is made for this (in the CheckValidMove subroutine); //

Because some illegal moves are allowed;;

Mark as follows:
a move that is not legal being attempted (A by example); and is allowed
(A by implication);

2

(vi) NoOfMoves // Row // Column;
1

(vii) PlayerOneName // PlayerTwoName // WhoStarts //
PlayerTwoSymbol // RandomNo;

Python only: X // Y;[
1

(viii) CheckValidMove;
1

(ix) VB.NET
RandomNo = Rnd()*100 // WhoStarts = "X" // WhoStarts = “O”//

GetWhoStarts = WhoStarts;

VB6

Page 57 of 109

RandomNo = Rnd() *100 + 1 // WhoStarts = “X” // WhoStarts = “O”

// GetWhoStarts = WhoStarts;

Pascal
RandomNo := Random(100) // WhoStarts := ‘O ’ // [WhoStarts :=

‘X’ // GetWhoStarts := WhoStarts;

Java
Random objRandom = new Random() //

randomNo = objRandom.nextInt(100) // whoStarts = 'X' //

whoStarts = 'O'

Python
RandomNo = random.randint(0, 100) //

WhoStarts = 'X' // WhoStarts = 'O';

R if extra code included
1

(x) It looks at the remainder obtained by dividing RandomNo by 2;

A any explanation that clearly explains both sides of comparison
A if the random number /RandomNo is even;

If the value is 0/even it sets WhoStarts to 'X';

if the value is not 0/odd it sets WhoStarts to ‘O‘;

Award only 1 mark of the 2 available marks labelled with asterisks(*) if
candidate has identified conditions but described outcomes in terms of
who will start game instead of assignment of value into WhoStarts.

Candidate must cover both the Then and Else parts to get this 1 mark if
specific variable name not used.

3

(b) (i) Boundary values are those that are just inside, on and just outside the
range of allowed values;

1

(ii) 2; 3; 4;

R. non-integer values
Max 1 if additional values given

3

(iii) ****SCREEN CAPTURE(S)****

Screen capture showing boundary test resulting in correct behaviour;
Must match one of the boundary values given in(b)(ii).

R. If screen capture does not show a correct boundary value given as an

answer to question (b)(ii)
1

[20]

Q18.
(a) (i) VB.NET / VB6

 If YCoordinate < 1 Or YCoordinate > 3 Then ValidMove = False

 If ValidMove = True then

 If Board(XCoordinate, YCoordinate) <> " " Then ValidMove

= False

Page 58 of 109

 End If

A If Board(XCoordinate, YCoordinate) = "X" Or
Board(XCoordinate, YCoordinate) = "O" Then

A If Not(Board(XCoordinate, YCoordinate) = " ") Then

A If ValidMove = True AndAlso Board(XCoordinate,

YCoordinate) <> " " Then ValidMove = False (VB.NET only)

Pascal
If (YCoordinate < 1) Or (YCoordinate > 3) Then

ValidMove:=False;

If ValidMove = True Then

 If Board[XCoordinate, YCoordinate] <> ' ' Then

ValidMove:=False;

Java
boolean checkValidMove(int xCoordinate, int yCoordinate,

char[][] board) {

 boolean validMove = true;

 //check the x Coordinate is valid

 if (xCoordinate < 1 || xCoordinate > 3) validMove = false;

 //check the y Coordinate is valid

 if (yCoordinate < 1 || yCoordinate > 3) validMove = false;

 //check the cell is empty

 if (validMove) {

 if (board[xCoordinate][yCoordinate] != ' ')

validMove = false;

 } // end if

 return validMove;

} // end method checkValidMove

Python
def CheckValidMove(XCoordinate, YCoordinate,Board):

ValidMove = True

Check x coordinate is valid

if (XCoordinate <1) or (XCoordinate > 3):

 ValidMove = False

 if (YCoordinate <1) or (YCoordinate > 3):

 ValidMove = False

 if (ValidMove == True):

 if (Board[XCoordinate][YCoordinate] != ' '):

 ValidMove = False

 return ValidMove

Mark as follows:
IF statement with condition YCoordinate<1, correct logic and second
condition of YCoordinate>3;
Return a value of false if y coordinate is an illegal value; R if value would
not actually be returned;
IF statement checking that move is valid so far;

IF statement comparing value of Board(XCoordinate, YCoordinate) with
" ";
returning a value of false if cell is not empty; R if value would not actually
be returned;
A Equivalent logic
A Alternative answers where Return statements are used after each
validation check instead of assigning a Boolean value to ValidMove

Alternative Answer (Java, Python, VB.NET)
Using only one IF statement and short-circuit evaluation operators, one
mark

Page 59 of 109

for each correct condition plus one mark for correct Boolean operators -
as
long as the check that the Board cell is empty is the last condition (if
Board
cell is not the last condition marks can only be awarded for any correct
conditions that appear before it). Operators for short-circuit evaluation:
VB.NET AndAlso/OrElse instead of And/Or; Python and/or instead of &/|;
Java &&/|| instead of &/|

Alternative Answer (Pascal)

Using only one IF statement with all conditions connected by OR
operators
and the check for non-empty cell being the last condition. If non-empty
cell
test is not the last condition maximum of 4 marks.

Alternative Answer
VB.NET / VB6
If XCoordinate < 1 Or XCoordinate >3 then

 ValidMove = False

 Else

 If YCoordinate < 1 Or YCoordinate > 3

 Then ValidMove = False

 Else

 If Board(XCoordinate, YCoordinate) <> " " Then

ValidMove = False

 End If

 End If

Pascal
If (XCoordinate < 1) Or (XCoordinate > 3)

 Then

 Begin

 ValidMove := False;

 End

 Else

 Begin

 If (YCoordinate < 1) Or (YCoordinate > 3)

 Then

 Begin

 ValidMove := False;

 End

 Else

 Begin

 If Board[XCoordinate, YCoordinate] <> ' '

Then ValidMove := False;

 End

 End;

Mark as follows:
IF statement with condition YCoordinate<1, correct logic and second
condition of YCoordinate>3;
Return a value of false if y coordinate is an illegal value; R if value would
not actually be returned;
Correct use of nested ifs so that checking cell is empty on board only
occurs if xcoordinate and ycoordinate are in the allowed range;
IF statement comparing value of Board(XCoordinate, YCoordinate) with

" ";
returning a value of false if cell is not empty; R if value would not actually
be returned

Page 60 of 109

A Equivalent logic
A Alternative answers where Return statements are used after each
validation check instead of assigning a value to ValidMove

5

(ii) ****SCREEN CAPTURE(S)****
This is conditional on sensible code for (a)(i)

Mark as follows:

Test showing coordinate (2,-3) and error message;
Test showing coordinate (2, 7) and error message;

R other coordinates
A In VB6 a test showing only Y value of the coordinate i.e. -3, 7 and
error message.

2

(iii) ****SCREEN CAPTURE****
This is conditional on sensible code for (a)(i). Mark should not be
awarded if code would not work.
E.g. if Boolean values are assigned to ValidMove and there is no Return

statement after the validation check.
E.g. trying to reference a position in the array that is out of bounds and
would result in an error

Mark as follows:
Screen capture showing board position, coordinates of illegal move and
error message;

1

(b) (i) VB.NET/VB6
If Board(2, 2) = Board(3, 3) And Board(2, 2) =

Board(1, 1) And Board(2, 2) <> " " Then xOrOHasWon = True

 If Board(2, 2) = Board(3, 1) And Board(2, 2) =

Board(1, 3) And Board(2, 2) <> " " Then xOrOHasWon = True

Alternative answer
((Board(2,2)= "X") OR (Board(2,2) ="O"))

instead of <> " "

Alternative answer
 If Board(2, 2) = Board(3, 3) Then

 If Board(2, 2) = Board(1, 1) Then

 If Board(2, 2) <> " " Then

 xOrOHasWon = True

 End If

 End If

 End If

 If Board(2, 2) = Board(3, 1) Then

 If Board(2, 2) = Board(1, 3) Then

 If Board(2, 2) <> " " Then

 xOrOHasWon = True

 End If

 End If

 End If

Pascal
If (Board[2, 2] = Board[3, 3]) And (Board[2, 2] =

Board[1, 1]) And (Board[2, 2] <> ' ') Then xOrOHasWon :=

True;

If (Board[2, 2] = Board[3, 1]) And (Board[2, 2] =

Page 61 of 109

Board[1, 3]) And (Board[2, 2] <> ' ') Then xOrOHasWon :=

True;

Alternative answer
((Board[2,2]= 'X') OR (Board[2,2] ='O'))

instead of <> ' '

Alternative answer
If (Board[2, 2] = Board[3, 3]) Then

 If (Board[2, 2] = Board[1, 1]) Then

 If (Board[2, 2] <> ' ') Then

 xOrOHasWon := True;

If (Board[2, 2] = Board[3, 1]) Then

 If (Board[2, 2] = Board[1, 3]) Then

 If (Board[2, 2] <> ' ') Then

 xOrOHasWon := True;

Java
if (board[1][1] == board[2][2] &&

board[2][2] == board[3][3] &&

board[1][1] != ' ') {

 xOrOHasWon = true;

} // end if diagonal

if (board[3][1] == board[2][2] &&

board[2][2] == board[1][3] &&

board[3][1] != ' ') {

 xOrOHasWon = true;

} // end if other diagonal

return xOrOHasWon;

Python
check diagonals

if (Board[2][2] == Board[3][3]) and (Board[2][2] ==

Board[1][1]) and (Board[2][2] != ' '):

 xOrOHasWon = True # accept return True

if (Board[2][2] == Board[3][1]) and (Board[2][2] ==

Board[1][3]) and (Board[2][2] != ' '):

 xOorOHasWon = True # accept return True

Mark as follows:
Comparison of two cells on one diagonal;
Comparison of other cell on the diagonal with one of the two cells just
checked;
Check that the line is of Xs or Os (not blanks);
Return True if line of three symbols found on the 1st diagonal;
R if value would not actually be returned
All correct conditions for 2nd diagonal;
Return True if line of three symbols found on the 2nd diagonal;
R if value would not actually be returned
I. additional comparisons of cells – as long as they do not result in check
for three symbols in a line not working
Max 4 if diagonal check is inside a loop.

6

(ii) ****SCREEN CAPTURE****
This is conditional on sensible code for (b)(i)

Mark as follows:
Screen capture showing winning message and three symbols in a line in
positions [1,1], [2,2], [3,3] // Screen capture showing winning message
and three symbols in a line in positions [1,3], [2,2], [3,1];

Page 62 of 109

1

(iii) ***SCREEN CAPTURE***
This is conditional on sensible code for (b)(i)

Mark as follows:
Screen capture showing winning message and three symbols in a line in
positions [1,1], [2,2], [3,3] // Screen capture showing winning message

and three symbols in a line in positions [1,3], [2,2], [3,1];
R Same diagonal line as shown in part (i)

1

(c) (i) VB.NET
Else

Console.WriteLine("A draw this time! ")

PlayerOneScore = PlayerOneScore + 0.5

PlayerTwoScore = PlayerTwoScore + 0.5

Endif

VB6
Else

MsgBox ("A draw this time!")

PlayerOneScore = PlayerOneScore + 0.5

PlayerTwoScore = PlayerTwoScore + 0.5

End If

Pascal
Else

 Begin

Writeln('A draw this time!');

PlayerOneScore := PlayerOneScore + 0.5;

PlayerTwoScore := PlayerTwoScore + 0.5;

 End;

Java
} else {

console.println("A draw this time!");

playerOneScore = playerOneScore + 0.5f;

playerTwoScore = playerTwoScore + 0.5f;

} // end if/else

Python 2
 else:

print "A draw this time!"

PlayerOneScore += 0.5 # accept

PlayerOneScore = PlayerOneScore + 0.5

 PlayerTwoScore += 0.5

Python 3
 else:

print("A draw this time!")

PlayerOneScore += 0.5 # accept

PlayerOneScore = PlayerOneScore + 0.5

 PlayerTwoScore += 0.5

Mark as follows:
At least one player’s score changed within the existing IF statement;
A if in THEN part of NoOfMoves=9 statement
Both scores increased by correct amount;

2

Page 63 of 109

(ii) ****SCREEN CAPTURE****

This is conditional on sensible answer for (c)(i).

Drawn board position with 9 symbols (as defined in preliminary material);
Messages saying players have score of 0.5; R other scores

2

(d) (i) VB.NET
Dim Board(4, 4) As Char

VB6
Dim Board(1 to 4, 1 to 4) As String

Pascal
TBoard = Array[1..4,1..4] Of Char;

Java
char board[][] = new char[5][5];

Python
Board = [[0,0,0,0,0],

[0,0,0,0,0],

[0,0,0,0,0],

[0,0,0,0,0],

[0,0,0,0,0],

]

Mark as follows:
Existing declaration of Board modified correctly;
A No change made as position 0 of array will be used (not Pascal / VB6)
–
only accept if explanation is given.
A 0..3 instead of 1..4 (Pascal)
A 0 to 3 instead of 1 to 4 (VB6)

1

(ii) VB.NET / VB6 / Pascal
If NoOfMoves = 16

Java
if (noOfMoves == 16) {

 gameHasBeenDrawn = true;

}

Python
if NoOfMoves == 16:

Mark as follows: Value of 9 changed to 16;
1

(iii) VB.NET / VB6
For Row = 1 To 4

 For Column = 1 To 4

Pascal
For Row := 1 To 4

 Do

 Begin

 For Column := 1 To 4

Page 64 of 109

Java
for (row = 1; row <= 4; row++) {

 for (column = 1; column <= 4; column++) {

Python
def ClearBoard(Board):

 for Row in range(1,5):

 for Column in range(1,5):

 Board[Column][Row] = ' '

A range(4) if candidate has used 0 for array position instead of 4.

Mark as follows:
Outer FOR loop changed to iterate 4 times and

Inner FOR loop changed to iterate 4 times;

A 0 to 3 instead of 1 to 4 – only if indicated 0 th position would be used in
answer to (d)(i).

1

(iv) VB.NET
Console.WriteLine(" | 1 2 3 4 ")

Console.WriteLine("--+-------- ")

For Row = 1 To 4

Console.Write(Row & " | ")

For Column = 1 To 4

VB6
BoardAsString = " | 1 2 3 4 "

 BoardAsString = BoardAsString & vbCrLf & "--+-------" &

vbCrLf

 For Row = 1 To 4

BoardAsString = BoardAsString & Row & " | "

For Column = 1 To 4

Pascal
Writeln(' | 1 2 3 4 ');

Writeln('--+---------');

For Row := 1 To 4

 Do

 Begin

 Write(Row, ' | ');

 For Column := 1 To 4

 Do

 Begin

Java
console.println(" | 1 2 3 4 ");

console.println("--+---------");

for (row = 1; row <= 4; row++) {

console.write(" | ");

for (column = 1; column <= 4; column++) {

Python 2
def DisplayBoard(Board):

print ' | 1 2 3 4 '

print '--+---------'

for Row in range(1,5):

print str(Row) + '| ',

for Column in range(1,5):

 print Board[Column][Row]

 print

 print '\n'

Page 65 of 109

Python 3
def DisplayBoard(Board):

print(' | 1 2 3 4 ')

print('--+---------')

for Row in range(1,5):

print(Row, '|', end=' ')

for Column in range(1,5):

 print(Board[Column][Row],end=" ")

 print()

 print('\n')

A range(4) if candidate has used 0 for array position instead of 4.

Mark as follows:
Change message so that 4th column heading is shown;
Outer FOR loop changed to iterate 4 times and
Inner FOR loop changed to iterate 4 times;

A 0 to 3 instead of 1 to 4 – only if indicated 0th position would be used

in answer to (d)(i).
2

(v) ****SCREEN CAPTURE****
This is conditional on sensible answers for (d)(i) and (iv)

displays 4 rows;
displays 4 columns;

2

(vi) VB.NET / VB6
If XCoordinate < 1 Or XCoordinate > 4 Then ValidMove =

False

If YCoordinate < 1 Or YCoordinate > 4 Then ValidMove =

False

Pascal
If (XCoordinate < 1) Or (XCoordinate > 4) Then ValidMove

:= False;

If (YCoordinate < 1) Or (YCoordinate > 4) Then ValidMove

:= False;

Java
if (xCoordinate < 1 || xCoordinate > 4) validMove = false;

//check the y Coordinate is valid

if (yCoordinate < 1 || yCoordinate > 4) validMove = false;

//check the cell is empty

Python
def CheckValidMove(XCoordinate, YCoordinate, Board):

ValidMove = True

if (XCoordinate <1) or (XCoordinate > 4):

 ValidMove = False

 if (YCoordinate <1) or (YCoordinate > 4):

 ValidMove = False

 if (ValidMove == True) and

(Board[XCoordinate][YCoordinate] != ' '):

 ValidMove = False

 return ValidMove

Mark as follows:
Change upper boundary to 4 for both X and Y coordinates;

Page 66 of 109

A Change lower boundary to 0 for both X and Y coordinates instead of
upper boundary change – only if indicated 0th position would be used in
answer to (d)(i);

1

(vii) VB.NET / VB6
For Row = 1 To 4

 If Board(2, Row) = Board(3, Row) And (Board(2, Row) =

Board(1, Row) Or Board(2, Row) = Board(4, Row)) and Board(2,

Row) <> " " Then xOrOHasWon = True

Next

Pascal
For Row := 1 To 4

 Do

 If (Board[2, Row] = Board[3, Row]) And ((Board[2,

Row] = Board[1, Row]) Or (Board[2, Row] = Board[4, Row]))

And (Board[2, Row] <> ' ')

 Then xOrOHasWon := True;

Java
for (row = 1; row <= 4; row++) {

 if (board[1][row] == board[2][row] &&

board[2][row] == board[3][row] &&

board[2][row] != ' ') {

xOrOHasWon = true;

 } // end if

 if (board[2][row] == board[3][row] &&

board[3][row] == board[4][row] &&

board[row][2] != ' ') {

xOrOHasWon = true;

 } // end if

} // end column

Python
if (Board[2][Row] == Board[3][Row]) and (Board[2][Row]

= = Board[1][Row]) or (Board[2][Row] = = Board[4][Row])

and (Board[2][Row] != ' '):

 xOrOHasWon = True

Mark as follows:
Change FOR loop so it iterates 4 times;

Board(4, Row); compared with Board(3, Row)/Board(2, Row);
Solution works for all 8 legal winning positions on the rows;

A Two loops (both go from 1 to 4) – both loops need to be included in
the
code shown by the candidate to get full marks
A Additional IF statements, as long as logic is correct
Max 3 4 IF statements instead of a FOR loop – one IF statement for
each
row in the grid
Max 2 if only works for four symbols in a row
Max 2 if solution detects a winning solution when it shouldn’t
A Answers coordinates using 0 instead of 4 – only if indicated 0 th

position would be used in answer to (d)(i).
4

(viii) ****SCREEN CAPTURE****
This is conditional on sensible answers for (d)(i), (iv) and (vii).

Page 67 of 109

Symbol shown in (2,4);
Winning message shown and three symbols in a horizontal line including
a symbol in position (2,4); R if solution for 45 is for four symbols in a line,
not three
The two possible positions for full marks (could be O instead of X):

A If candidate has used array position 0 instead of 4, accept a winning
position on either the bottom or top line of the board.

2

(ix) Declare Board as a 3-dimensional array; Board(4,4,4) / /Board (6,4,4);
OR
Declare 6 (one for each surface); 4x4 arrays;
OR
Declare 4; 4x4 arrays;

NE. 3D
A. Answer that imply creating a new data type / using array structure
that will be used with the Board variable; that allows 64/96 cells to be
represented;

Description of further list nesting (similar to 3d array) (Python only)
2

36

Q19.
(a) (i) **** SCREEN CAPTURE ****

“The new word?” + setter input 'EAGLE' ;
input of correct guess 'EAGLE’ ; (A 'eagle’ if code in (b) has evidence for use
of function Ucase, .ToUpper, etc.)
correct logic demonstrated with “CORRECT” ;
NB VB6 – all three stages must be evidenced

3

(ii) **** SCREEN CAPTURE ****
setter input 'BEAR’
“Your guess ?” + any incorrect guess ;
correct logic demonstrated with “INCORRECT” ;
NB VB6 – all three stages must be evidenced

3

(b) Visual Basic
Dim NewWord As String

Dim UserWordGuess As String

Console.Write("The new word?")

NewWord = Console.ReadLine

Console.Write("Your guess?")

Page 68 of 109

UserWordGuess = Console.ReadLine

If UserWordGuess = NewWord

 Then Console.WriteLine("CORRECT")

 Else Console.WriteLine("INCORRECT")

End If

Pascal
Var

 NewWord : String;

 UserWordGuess : String;

Begin

 Write(‘The new word?');

 Readln(NewWord);

 Write(‘Your guess?');

 Readln(UserWordGuess);

 If UserWordGuess = NewWord

 Then Writeln(‘CORRECT')

 Else Writeln(‘INCORRECT');

 Readln;

End.

Mark as follows:
evidence of two variables declared ;
data types appropriate to the language for both variables ;
correct two identifier names used – NewWord ߝ UserWordGuess ;
(A case variations)

correct user prompt "The new word?" (A 'imprecise') ;

correctly formed IF followed by condition;
THEN clause followed by the logically correct output (A 'imprecise') ;
ELSE clause ; followed by the logically correct output (A 'imprecise') ;

NB. Two separate IF statements scores Maximum 2

JAVA

class Question4 {

 Console console = new Console();

 String newWord = "";

 String userWordGuess;

 public Question4(){

 newWord=console.readLine("The new word?");

 userWordGuess=console.readLine("Your guess?");

 if(userWordGuess.equals(newWord)) {

 console.println("CORRECT");

 } else {

 console.println("INCORRECT");

 } // end if / else

 } // end construct or

 public static void main(String[] args) {

Page 69 of 109

 new Question4();

 System.exit(0);

 } // end Main

} // end Question4

Max 7

Python

NewWord = raw_input("The new word?")

UserWordGuess = raw_input("Your Guess?")

if UserWordGuess == NewWord:

 print "CORRECT"

else:

 print "INCORRECT"

raw_input() # keep window on screen

Max 7

[27]

Q21.
(a) section of code can be referred to by name ;

aids readability ;
aids testing ;
code is easier to maintain / debug ;
the same block of code can be used repeatedly within the program ;

reusable within other programs ;
they encourage the use of local variables ;
reduces the complexity / results in less code in the main body of the program ;
they are ‘building blocks’ for structured programming ;

Max 3

(b) (i) General: Do not give credit for variables which are stated as part of an
assignment statement A Variable shown in a declaration statement
PhraseOK ; ThisNewPhrase Java only Phrase) ; Position ;
GuessedLetter ; MissingLetter ;

Python only – Choice
Max 1

(ii) NewPhrase ; PhraseHasBeenSet ; PhraseGuessed ; ;
GuessStatusArray ; LettersGuessedArray ;

NextGuessedLetter ; Index ; Choice (not Python)

VB and VB6 only – IndividualLettersArray

Java only – Console
Max 1

(iii) Len / Length/ StrLen;

PHP – Trim, , IntVal

C# – int.Parse

Python – Range
Java – ReadLine – ReadChar – CharAt

1

(iv) GuessStatusArray ; LettersGuessedArray ;

VB.Net and VB6 only: IndividualLettersArray ;
Max 1

(v) Position ; Index ; (A PhraseOK / Missingletter / Choice)

Page 70 of 109

Java only – Found – i
Max 1

(vi) DisplayMenu ; DisplayCurrentStatus ;
Max 1

(c) (i) DisplayCurrentStatus ; AllLettersGuessedCorrectly ;
SetUpGuessStatusArray ;

Java only - GetNewPhrase ;

Java / Python only – HasLetterBeenUsed ;

C, C#, java – main
1

(ii) Check carefully with (c) (i)

AllLettersGuessedCorrectly

(Not Python)

NewPhrase

GuessStatusArray

IndividualLettersArray(VB6 only)

SetUpGuessStatusArray NewPhrase (+GuessStatusArray

Java only)
GuessStatusArray (not PHP / C#)

IndividualLettersArray(VB.Net

andVB6 only)

DisplayCurrentStatus GuessStatusArray

Phraselength

GetNewPhrase (Java only) minimumLength

main (C, C#, java only) args

hasLetterBeenUsed (Java and

Python only)

LettersGuessedArray, myGuess

(Python Letter only)
1

(d) takes the original word / phrase (A by implication);
checks its length using characters;
“a length of less than 10 is not permitted” / equivalent statement with the exact
logic;

3

(e) (i) PhraseOK = True / PhraseOK = False / PhraseOK / or
explained ;

1

(ii) program will continually prompt the setter for a new phrase ;
there is a continuous loop ;

Max 1

(f) (i) a section of code needs to be repeated // A by implication e.g. “done for
each character in the string” ;

1

Page 71 of 109

(ii) the number of iterations is known // the loop is to iterate a (R fixed)
known no. of times ;

1

(iii) The number of characters (R Letters) / length of the phrase ;
1

(g) Key positions are: 2; 5; 6; 10;

Index 1 2 3 4 5 6 7 8 9 10 11

 + + + +

Each correct index position ; (Max 4)
Some ‘indicator’ value e.g. True or equivalent used for all correct positions ;
A could be the actual letters stored (all in correct positions)

5

(h) No (change) // an attempt will be made to overwrite the existing ‘F' entry at
position 6 in the array ;

1

(i) Key positions are: 1- 2-3-4 ;

Index 1 2 3 4 5 6 7 8 9 10 11

 ‘C' 'G‘ 'B‘
'
H

'

First four cells used ;
and contain the correct letters ;

2

(j) No change // A changes;
1

(ii) No change followed by “the same letter is never stored more than once” /
“the letter has already been entered” ;

A different possible interpretation …

Changes followed by “Second ‘B’ character is stored at position 5” ;
1

[29]

Q22.
(a) Visual Basic

Sub DisplayMenu()

Console.Writeline("_____________________________")

Console.WriteLine("1. SETTER – Makes new word / phrase")

Console.WriteLine("")

Console.WriteLine("2. USER – Next letter guess")

Console.WriteLine("")

Console.WriteLine("3. USER – Make a complete word / phrase guess")

Console.WriteLine("")

Page 72 of 109

Console.WriteLine("5. End")

End Sub

Pascal
Procedure DisplayMenu;

Begin

 Writeln('_____________________________');

 Writeln;

 Writeln('1. SETTER - Makes new word / phrase');

 Writeln;

 Writeln('2. USER - Next letter guess');

 Writeln('');

 Writeln('3. USER – Make a complete word / phrase

guess');

 Writeln;

 Writeln('5. End');

 Writeln;

End;

Java
 private void displayMenu() {

console.println("_____________________________________");

 console.println();

 console.println("1. SETTER - Makes new

word/phrase");

 console.println();

 console.println("2. USER - Next letter guess");

 console.println();

 console.println("3. USER - Make a complete

word/phrase guess");

 console.println();

 console.println("5. End");

 console.println();

 } // end method displayMenu

Python
def DisplayMenu():

 print “__________________________________”

 print “”

 print “1. SETTER – Makes new word/phrase”

 print “”

 print “2. USER – Next letter guess”

 print “”

 print “3. USER – Make a complete word/phrase guess”

 print “”

 print “5. End”

 print “”

Mark as follows:
additional choice for option 3 shown (A minor typos) ;

inside procedure DisplayMenu ;
VB6 – code added to listbox control lstMenu ; inside Form_Load event ;

2

(b) Visual Basic
Sub InputUsersCompletePhraseGuess()

 Console.WriteLine("Procedure

Page 73 of 109

InputUsersCompletePhraseGuess has

 been called")

 Console.ReadLine()

End Sub

Pascal
Procedure InputUsersCompletePhraseGuess;

 begin

 Writeln('Procedure InputUsersCompletePhraseGuess

has been called

');

 end;

Java
 private void inputUsersCompletePhraseGuess() {

 console.println("Procedure

inputUsersCompletePhraseGuess has been called");

 } // end inputUsersCompletePhraseGuess

Python
def InputUsersCompletePhraseGuess():

 print “Procedure InputUsersCompletePhraseGuess has been

called”

 raw_input()

allow missing raw_input() – only keeps window open.

(NB no explicit “end” statement as in Pascal / VB) –

Award mark for correct indentation of print statement.

Mark as follows:
New procedure InputUsersCompletePhraseGuess() defined ;
Contains the required output (A. minor typos);

VB6 = MsgBox “ Appropriate text …”

End of the procedure/function is clear ;

Python only : Award 3rd mark for correct indentation of print statement.
3

(c) Visual Basic
If Choice = 3 Then Call InputUsersCompletePhraseGuess()

Pascal
If Choice = 3

 Then

 Begin

 InputUsersCompletePhraseGuess

 End;

Java
if (choice == 3) {

 inputUsersCompletePhraseGuess();

 } // end if

Python
 elif Response == ‘3’:
 InputUsersCompletePhraseGuess()

Page 74 of 109

Inverted commas needed to indicate string value as returned by
raw_input() function

Mark as follows:
Call to procedure InputUsersCompletePhraseGuess ;

IF statement for choice 3 ;
2

(d) **** SCREEN CAPTURE *****
Menu choice 3 selected ;
‘Correct’ output message displayed - Must match text in code for (b) ;

2

(e) Visual Basic
 Sub CountPhrasesFromFile()
 ' uses global variable NumberOfPhrasesInFile

 Dim TempPhrase As String

 FileOpen(1, "MyPhrases.txt", OpenMode.Input)

 NumberOfPhrasesInFile = 0

 Do

 TempPhrase = LineInput(1)

 NumberOfPhrasesInFile = NumberOfPhrasesInFile

+ 1

 Loop Until EOF(1)

 FileClose(1)

 End Sub

OR equivalent using the FileStream object and StreamReader method.

Pascal
answer with WHILE loop:
Procedure CountPhrasesFromFile;

{ uses global variable NumberOfPhrasesInFile }

Var

 TempPhrase:String;

Begin

 Reset(MyPhrasesPipe);

 NumberOfPhrasesInFile:=0;

 While Not Eof(MyPhrasesPipe)

 Do

 Begin

 ReadLn(MyPhrasesPipe, TempPhrase);

 NumberOfPhrasesInFile:=NumberOfPhrasesInFile+1;

 End;

 Close(MyPhrasesPipe);

End;

Alternative implementations:
Procedure CountPhrasesInFile(Var NumberOfPhrasesInFile :

Integer);

Function CountPhrasesInFile(Var NumberOfPhrasesInFile :

Integer) :

Integer;

Page 75 of 109

Java
private void countPhrasesFromFile() {

 String fileNameIn = "MyPhrases.txt";

 String newLine;

 numberOfPhrasesInFile = 0;

 try {

 BufferedReader phrasesFile = new

BufferedReader(new FileReader(fileNameIn));

 while ((newLine = phrasesFile.readLine()) != null) {

 numberOfPhrasesInFile = numberOfPhrasesInFile +

1;

 } // end while

 phrasesFile.close();

 } catch (IOException e) {

 System.out.println(e.toString());

 System.exit(0);

 } // end try/catch

 console.println("Number of phrases: " +

numberOfPhrasesInFile);

 } // end countPhrasesFromFile

Python
def CountPhrasesFromFile1():

 global NumberOfPhrasesInFile

 f = open('MyPhrases.txt','r')

 AllPhrases = f.readlines()

 NumberOfPhrasesInFile = len(AllPhrases)

 f.close()

or

def CountPhrasesFromFile2():

 global NumberOfPhrasesInFile

 f = open('MyPhrases.txt','r')

 NumberOfPhrasesInFile = 0

 for phrase in f.readlines():

 NumberOfPhrasesInFile = NumberOfPhrasesInFile + 1

 f.close()

Accept NumberOfPhrasesInFile += 1

Mark as follows:
open file correctly formed ;
correctly formed loop (post or pre condition);
terminates with ‘EOF’ ;
each phrase read from file ;
temporary variable used to store the next line of text ;
file closed ;
“NumberOfPhrasesInFile” initialized ;

“NumberOfPhrasesInFile” incremented ;

return of the phrase count / assigned to global variable ;

Alternative solutions which include all or some of the following:

– declaring a dynamic array; A by implication if supported in language
opening file / specifying the file;

Page 76 of 109

read entire text file into string;
split string into array;
closing file;
read size of array;
return of the phrase count / assigned to global variable;
N.B. More than one mark may be awarded if command combines multiple
functions e.g. ReadAllLines which opens (1) and closes (1) file, reads

entire text file (1) and splits into an array (1) is worth 4 marks

– Solutions which (do not require the loop structure and) compute thenumber
of phrases from object methods.
The table below is an indicative (but not exhaustive) list so you need to
checkany other feasible answers you see, particularly if the screen shot
appears to work.

Max 7

Table 1 shows some of the methods for the supported languages which will be used
for an alternativesolution.

Table 1

List of commands / methods

Language Function to read entire
text file into a string or
array*

Function to split
string into an
array

Function to
return array
length

Visual
Basic 6

ReadAll [1 – read all
phrases into string]

Split [1] UBound [1]

.NET
languages:
VB
C#
Delphi
Java

ReadToEnd [1 - read all

phrases into string]
ReadAllText [3 - 1 open,

1 close, 1 read all phrases
into string]
ReadAllLines [4 - 1 open,

1 close, 1 read all phrases,
1 split into array]

Split [1]

except if this
markalready

given for
ReadAllLines

UBound [1]
GetUpperBound

[1]

PHP File [4 - 1 open, 1 close, 1

read all phrases, 1 split into

array]
File Get Contents [3 - 1

open, 1 close, 1 read all
phrases into string]

Explode, Split

(with some close

variations e.g.
Split Split[1]

except if this mark
already given for
File)

Count[1]

Java Scanner with delimiter ‘\\z

 ߝ
[1 – read all phrases into
string]

Split [1] Length [1]

Python Read [1 – read all phrases

into string]
ReadLines [2 – read all

Split [1] Shape/Len [1]

Page 77 of 109

phrases and split into list]

* Note that some of the commands in the second column are worth more than one mark

as theyperform multiple tasks e.g. File_Get_Contents in PHP opens and

closes the file and reads all the phrases into a string so is worth 3 marks, as shown in [

]. To answer (e) the candidate would then need to use Split / Explode to break

this string up into an array then Countto see how many elements there are in the

array – i.e. how many phrases were loaded.

(ii) **** SCREEN CAPTURE *****
This is conditional on some code for (a) (i)

reports the number of phrases in the file - 24 (A 25) ;
1

(f) (i) Visual Basic
Sub GenerateRandomPhraseNumber()

 ' uses global variables NumberOfPhrasesInFile

 and PhraseNumber

 Randomize()

 ThisPhraseNumber = Int(Rnd() *

NumberOfPhrasesInFile) + 1

 End Sub

Pascal
Procedure GenerateRandomPhraseNumber;

{ uses global variables NumberOfPhrasesInFile and

PhraseNumber }

Begin

 Randomize;

 PhraseNumber:=Trunc(Random(NumberOfPhrasesInFile))

+1;

End;

Alternative Implementations
NB Several alternative implementations possible for both Pascal and
Visual Basic

e.g. Pascal
Procedure GenerateRandomPhraseNumber

 (Var

NumberOfPhrasesInFile:Integer);

Function GenerateRandomPhraseNumber : Integer;

Function GenerateRandomPhraseNumber

 (Var

NumberOfPhrasesInFile:Integer):

Integer;

Java
 private void generateRandomPhraseNumber() {

 // .nextInt(n) produces nos [0..n[

 phraseNumber =

generator.nextInt(numberOfPhrasesInFile) + 1;

 } // end generateRandomPhraseNumber

Page 78 of 109

Alternative implementation:
 private int generateRandomPhraseNumber() {

 return

generator.nextInt(numberOfPhrasesInFile) + 1;

 }

Python
Needs “import random” declared at start of program

def GenerateRandomPhraseNumber():

 global PhraseNumber, NumberOfPhrasesInFile

 PhraseNumber =

random.randrange(NumberOfPhrasesInFile)

Mark as follows:
Correct use of the RANDOM / RND function / class with
“NoOfPhrasesInFile”) ;
correct range generated (from 1 to “NoOfPhrasesInFile”);
final answer is integer // implied by variable declaration / return value
from a function ;

Note: Commentary in the 'C specific' MS
3

(ii) ***** SCREEN CAPTURE 1 *****
displays phrase number ;

***** SCREEN CAPTURE 2 *****
displays phrase number ;

2

(g) (i) Visual Basic

Sub SelectPhraseFromFile()

' uses global variable PhraseNumber

 Dim Counter As Integer

 Dim Found As Boolean

 Dim ThisPhraseFromFile As String

 Counter = 1

 Found = False

 FileOpen(1, "MyPhrases.txt", OpenMode.Input)

 Do

 ThisPhraseFromFile = LineInput(1)

 If Counter = PhraseNumber Then

 Found = True

 Else

 Counter = Counter + 1

 End If

 Loop Until Found = True Or EOF(1)

 FileClose(1)

End Sub

OR equivalent using the FileStream object and StreamReader

method.

Pascal
Procedure SelectPhraseFromFile;

Page 79 of 109

{ uses global variable PhraseNumber }

Var

 Counter:Integer;

 MyPhrasesPipe : TextFile;

 ThisPhraseFromFile : String;

Begin

 Assign(MyPhrasesPipe, 'MyPhrases.txt');

 Reset(MyPhrasesPipe);

 Counter:=0;

 While (Not Eof(MyPhrasesPipe)) And

(Counter<>PhraseNumber)

 Do

 Begin

 Readln(MyPhrasesPipe, ThisPhraseFromFile);

 Counter:=Counter+1;

 End;

 Close(MyPhrasePipe);

End;

Mark as follows:
File opened ;
Loop (post or pre-condition) / FOR-ENDFOR ;
Counter initialized ;

Read next phrase from file ;
Stored in a temporary variable ;
File closed ;
Return of the phrase / assigned to global variable ;

For loop only …
For 1 TO X ;

Conditional loop only …
Counter incremented ;
Boolean variable for trigger / Counter compared with PhraseNumber for
trigger ;
Boolean variable set to True when located // terminated correctly ;

Alternative solution if entire text file read at once:

- declaring a dynamic array; A by implication if supported in language
opening file / specifying the file;
read entire text file into string;
split string into array;
closing file;
access correct cell in array;
return of the phrase / assigned to global variable;
N.B. More than one mark may be awarded if command combines
multiplefunctions e.g. ReadAllLines which opens (1) and closes (1)

file,
reads entire text file (1) and splits into an array (1) is worth 4 marks

- solutions which use object methods
As for Question (e)(ii), look for solutions which compute the phrase in
this way. Refer to Table 1 shown with (e)(i).

Java
 private void selectPhraseFromFile() {

Page 80 of 109

 String fileNameIn = "MyPhrases.txt";

 int counter = 1;

 try {

 BufferedReader phrasesFile = new

BufferedReader(new FileReader(fileNameIn));

 while ((counter !=

phraseNumber)&((thisPhraseFromFile =

phrasesFile.readLine()) != null)) {

 counter = counter + 1;

 } // end while

 console.println("Phrase/phrase selected

is: " + thisPhraseFromFile);

 phrasesFile.close();

 } catch (IOException e) {

 System.out.println(e.toString());

 System.exit(0);

 } // end try/catch

 } // end selectPhraseFromFile

Mark as follows:
File opened;
Loop (FOR, post or pre-condition) used to search for the phrase;
Counter initialised;

Counter used to control position in the file;
Counter incremented;

Test for ‘EOF’;
Boolean variable for trigger / counterphraseNumber for trigger;

Boolean variable set to true when located;
File closed;

Python
def SelectPhraseFromFile():

 global PhraseNumber, ThisPhraseFromFile

 f = open('MyPhrases.txt','r')

 Phrases = f.readlines()

 ThisPhraseFromFile = Phrases[PhraseNumber]

 print "The Phrase selected is ... %s" %

ThisPhraseFromFile

or
 print "The Phrase selected is ... ",

ThisPhraseFromFile

 f.close()

Max 7

(ii) **** SCREEN CAPTURE 1 ****

**** SCREEN CAPTURE 2 ****

Evidence for two different words selected ;

1(0)
MANCHESTER

UNITED

2(1)
YELLOW

SUBMARINE

Page 81 of 109

3(2) HIP HOP MUSIC

4(3) DETERMINATION

5(4) PABLO PICASSO

6(5)
THE GRAND

CANYON

7(6) BRICK LANE

8(7) WIGAN ATHLETIC

9(8) WORLD MUSIC

10(9) THE COLISEUM

11(10) WAR AND PEACE

12(11)
VIVIENNE

WESTWOOD

13(12) EAST ENDERS

14(13) GRIZZLY BEAR

15(14) NEW ZEALAND

16(15) KATE WINSLET

17(16)

THE SUNDAY

TIMES

18(17) THE GUARDIAN

19 (18) HOCKEY STICKS

20(19)
CORONATION

STREET

21(20)
GLASTONBURY

FESTIVAL

22(21) SERENDIPITOUS

23(22) FORTUITOUS

24(22)
FASHION

STATEMENT

2

(h) Visual Basic
 Dim NumberOfPhrasesInFile As Integer

 Dim PhraseNumber As Integer

 Dim ThisPhraseFromFile As String

Page 82 of 109

Pascal
 Var
 NumberOfPhrasesInFile : Integer;

 PhraseNumber : Integer;

 ThisPhraseFromFile : String;

Java
int numberOfPhrasesInFile;

int phraseNumber;

String thisPhraseFromFile;

Python
Declare NumberOfPhrasesInFile / PhraseNumber and initialiseat start of

program to assign data type.

NumberOfPhrasesInFile = 0

PhraseNumber = 0

ThisPhraseFromFile = ‘’

Mark as follows:
declare NumberOfPhrasesInFile / PhraseNumber /

ThisPhraseFromFile or any plausible variable (Max 1) ;

correct matching plausible data type (Max 1) ;
Python only: Data type is implied by assignment
e.g. PhraseNumber = 0

A if complete code listing given and additional variable is identified
Max 2

[33]

Q23.
(a) A procedure/routine that calls itself/ is defined in terms of itself;

A Function instead of procedure
R re-entrant
R program iteration (TO)

1

(b) (i)

Page 83 of 109

Output 18; 17; 16 14 7;

7

(ii) Reversed Inorder; Tree traversal;
I Sort/ Re-arrange

2

[10]

Q24.
(a) A procedure/routine that calls itself/ is defined in terms of itself;

A Function instead of procedure
R re-entrant R program R iteration

1

(b) (i)

Page 84 of 109

6

(ii) Reverse Inorder// Reverse order; (tree) traversal;
2

[9]

Q25.
(a) (i) (User defined) functions // program // object // class // data type //

constant // record// label //control/component/ by example e.g. textbox ;
Max 2

(ii) Maximum number of characters ;

No <Space> or other punctuation characters ;
No use of reserved words ;
Must not start with a digit character ;
Case sensitive / permitted case only ;
Cannot define the same identifier name more than once ;
R any reference to filenames

Page 85 of 109

Max 1

(b) Their use matches closely the (modular/structured) design ;
Code can be used ‘repeatedly’ within the same program ;
Code may originate from a program library/module ;
To make program debugging/testing/maintenance easier ;

Max 1

(c) (i) 10 ;
1

(ii) -1 ;
1

[6]

Q26.

(a) (i) String / Text / Char ;
R alpha / alpha-numeric / character

1

(ii) Integer / Date (and Time) ;
A String

1

(iii) Boolean ;

R Yes/No
1

(b) (i) Book ;
1

(ii) False / F / No // f/t from the (a) (iii) answer e.g. stated as integer - value
0/1

1

(iii) True / T / Yes // f/t from the (a) (iii) answer e.g. stated as integer - value
1/0
(Max 1 for (ii) and (iii) if no indication of meaning when integer used)

1

(c) (i) T76542 ; 1 ;
2

(ii) T ;
I. the quote marks (i) and (ii)

1

(iii)

NextAvailableCode Book LocationLetter

1 1 ‘T’

2 2 ‘T’

3 3 (gap not required)

4 4 ‘M’

Page 86 of 109

(in sequence – possible
repeat of 3 and/or 4

5
Penalty -1 if the first ‘M’ is
followed by either ‘T’ or ‘X’

 6

Figure 2

 Location NewCode

[1] ‘Torrington’ [1] 1

[2] ‘Torrington’ [2] 2

[3] [3]

[4] ‘Morristown’ [4] 3

[5] [5]

Figure 3 Figure 4

6

[15]

Q27.
(a) Last (item) in, is the first (item) out / first (item) in is the last (item) out ;

R LIFO / FILO
1

(b) (i)

600 ‘A’

601 ‘V’

602 ‘E’

603 ‘R’

604 ‘Y’ ;

605

All items in the correct locations
1

(ii)

599

600 ‘A’

601 ‘V’

602 ‘E’ ;

Page 87 of 109

603

604

605

Correct three items // ft from an incorrect (i) including 605 as the first
location used ;
A ‘R’ and ‘Y’ entries indicated in some way as ‘deleted’

1

(iii)

600 ‘A’

601 ‘V’

602 ‘E’

603 ‘S’

604 ‘P’ ;

605

Correct list of five items // ft from an incorrect (i) + a correct ft (ii)
including 605 as the first location used ;

1

(c) (i) Queue ;
A First In – First Out FIFO / LILO

1

(ii) Items are removed/popped from the stack (one at a time) (and items are
then added to the queue);

1

(iii) Items leave the queue on a ‘first in-first out’ basis ; A from the front of
the queue

1

(iv) ‘Y’, ‘R’, ‘E’, ‘V’, ‘A’ on the queue ;

Y’, ‘R’, ‘E’, ‘V’, ‘A’ on the final stack ;
A using 701 for the first queue location

2

[9]

Q28.
(a) A procedure that is defined in terms of itself;

A A procedure that calls itself
R re-entrant

1

(b) Store return addresses;
Store parameters;
Store local variables/ return values;

Page 88 of 109

Max 1

(c)

Number Entry Output

11 1

11 2;

11 3;

11 4; 4;

4

(d) A linear search//
To find/output the position/index of Number in Items;

1

(e) Number is not an entry in Items// Stack overflows;
1

(f) Test for reaching the end of Items;
1

(g) Binary Search;
An iterative solution;

Max 1

[10]

Q29.
(a) Any three from

Procedures which have an interface / using parameters to pass values ;

Use of modules / use of libraries ;
Avoid global variables / use of local variables;
Meaningful identifier/variable/constant/ procedure / function / program /
parameter names;
Consistent use of case for identifiers ;
Use of selection / loops / iteration ;
Avoid the use of GoTo structures ;
Effective use of white space / indentation;
R spacing/ space out the
Code
Use of named constants ;
Use of user-defined data types ;
Use of pseudo-code / top down approach / Jackson methodology / process

Decomposition ;
R the use of comments/documentation
R declaration of variables

3

(b) (i)

Surname String / Text ; A. String[n]

Page 89 of 109

NoOfYearsService Integer /Byte / Int / Short;

PayRate Single / Real / Float / Currency;

BasicRate Single/Real/Float / Currency;

AdditionalRate Single / Real / Float / Currency;

Sensible name + correct data type for single mark

BUT Penalise once occurrence of names containing space/other illegal
character(s) which would have scored

Max 3

(ii) 3.1 If NoOfYearsService > 5 ;
1

 A >= in the statement R =>
 A mathematical notation
 NoOfYearsService := 5 ;

1

 A = or := or ←

3.2 PayRate := 7.88 + NoOfYearsService * 0.65
1

 A £ symbol
 R use of undefined/unassigned variable(s) in the calculation

A in words ‘greater than’, ‘equals’
3

[9]

Q30.
(a) Calculates the total rejects for the week / calculates the total of array

DailyRejects ;
Outputs the total rejects for the week ;

A Output the total only (if already mentions that calculates total rejects for the
week)

2

(b) (i) RejectTotal := RejectTotal + DailyRejects[DayNo] ;
A ; may be omitted
A minor spelling errors
A omission of the subscript

1

(ii) RejectTotal: Integer //
DayNo : Integer //
DailyRejects : Array[1 ..7] of integer;
I. Dim …

Max 1

(iii) Loop counter / control the loop / Loop control variable / inference of a
loop counter ;
Index/subscript for the array DailyRejects / reference the array
elements ;
R days of the week

Max 1

Page 90 of 109

(iv) Array of integers // array
1

(c) If RejectTotal > 7 ;
Then WriteLn (‘Investigate’)
Else WriteLn (‘Inside weekly tolerance’) ;
A reversed logic for both parts

2

(d) Library program …

Tried and tested routines should reduce the debugging time;
Evelopment time may be reduced ; A less code to write
Code can be dynamically loaded only when needed ;
Library files can be shared between different applications ;
A previously written/saved program code can be reused/
A program routines were previously saved/compiled ;
A program code is available and used from third party providers ;

Max 2

(e) (i) 3 / [3] / SupervisorTotal[3] := etc …..;
1

(ii)

6

[17]

Q31.
(a) Salesperson 7;

April /month 4;
The number of storecards ‘taken out’;

Max 2

(b) StoreCards + sensible subscripts [1..10, 1..6] / (1 to 10, 1 to 6) / [0..10, 0..6] /
(0 to 10, 0 to 6) / (10,6) / [10] 6];
StoreCards + Integer / Byte;

2

(c) StoreCards (8, 1);
= 13 / := 13 / ← 13;

Must be an assignment statement
2

(d) Key in / Input the employee number; the program calculates the total number
of store cards for a single person // print/outputs/displays the total for a single
person; over six months;

Page 91 of 109

Max 2

(e) (i) Single / real / float;
R Floating point / Double

1

(i) Boolean /Yes-No / True-False; R Y/N / T/F
1

(iii) Integer/ byte;
1

[11]

Q32.
(a) (i) Functions always return some value when called;

Procedures may return a value;
Functions appear in expressions;
Procedures do not appear in expressions;
Procedures name alone makes up the statement / call <name>

Max 2

(ii) Anything named which is plausible;
Examples could include: computation / formatting / string handling;
R software features / button events / DLL
A Dynamic Linked Library

2

(b) (i) True/Yes/ 1;
1

(ii) False/No/0;
1

(iii) Error;
1

(c) Program / constant / function / procedure / module / unit / user defined type /
record / label / object /class;

Max 2

(d) Advantage of an Interpreter:
• Should allow faster/easier program development // faster/easier testing /

debugging / finding errors;
• Correcting mistakes is less time consuming;

Max 1

Advantage of a compiler:

• The executable code/object code/program will run faster;
• Once the executable file has been produced no further action;
• Software distribution requires no further software to be available to the

user;
• Prevents tampering of the code by users other than the developer;

Max 1
2

[11]

Page 92 of 109

Q33.
(a) (i) • poorly structured code;

• uses GoTo statements;
• the flow of control jumps out of a loop;
• nothing reported to the user when no matching name found;
• abbreviated variable for ‘position’ variable;
• ReadLn is better than Read;
• Program only iterates once / considers only the first array element;
• (if duplicates) only the first matching surname is found;
• (loop terminates at 20) does not allow for additional array /name

entries;
A poor layout - excessive indentation used;
I. variable declaration // reference to the syntax

Max 2

(ii) All statements must have correct identifier name correct data type
(String / Text // Integer / Byte / Word / Int / Shortint / Short as
appropriate)

In addition, either array must have brackets to indicate an ‘array’ 19/20
to indicate a range;

Max 2

(b) Intialisation of counter or Boolean variable
P := 1 / P := 0 / For P := 1 to 20 // IsFound := False;

Looping
LOOP UNTIL // DO WHILE // WHILE DO // REPEAT UNTIL and used at the
beginning/end of a code block as appropriate;

Some loop condition is met
(P = 20/21) OR IsFound = TRUE / P = 20/21 // IsFound = TRUE / IsFound;

IF with use of the array
IF NoOfClaims [P];

Selection condition
>4 / >=5;

Loop counter incremented
P = P+1

Final output
Correct logic followed with OUTPUT ‘Yes’

A multiple times

Final output
Correct logic followed with OUTPUT ‘No’
R Multiple times
R ‘Prose’ scores 0

5

[9]

Q34.

(a) (i) Empty entries waste space // Maximum/fixed/static size
A stack may overflow

1

Page 93 of 109

(ii) Space used by pointers // more complex to program;
1

(b) (i) The size of the stack /amount of data is known/limited/predictable
Memory saved since no pointers (if not given in a (ii))
R easier to program

1

(ii) The size of the stack is unknown//
The stack is volatile/ number of items fluctuates widely;

1

[4]

Q35.
(a) A procedure/routine that calls itself/ is defined in terms of itself;

A Function instead of procedure

R re-entrant
R program
R iteration

1

(b) (i)

Page 94 of 109

6

(ii) In order; (tree) traversal
2

[9]

Page 95 of 109

Examiner reports

Q1.
Answers to Section C were often of poor quality and very few students achieved good

marks on this question. A number of students are still including additional code when
asked for the name of an identifier (parts (a)-(c)). This means that they are not getting the
marks for these questions as they have not made it clear which entity is the identifier
(sometimes there is more than one identifier in lines of code that they have copied from
the Skeleton Program).

Most students were able to identify that NoOfCardsTurnedOver was a stepper role
variable but fewer were able to correctly identify the roles of Choice and SwapSpace.
Many answers made it clear that the problem with the algorithm had been identified for
part (g) but fewer were able to describe the changes that needed to be made to correct
the problem. For part (i), search was the most frequently seen answer which was not
worth a mark.

Q2.

(a) This was a fairly straightforward programming question with most students getting
good marks. Some students did not read the question carefully and created a
selection structure instead of a loop that would repeatedly get a value from the user
until a valid value was entered. A number of answers were seen where a recursive
solution was attempted but the name entered was not actually returned to the calling
routine.

A significant number of students did not complete the test specified in the question,
often entering their own name as test data.

(b) Most students got reasonable marks on this question. Less able students
sometimes got confused between the < and > operators and a number of students
only compared the suits of the two cards – forgetting to compare for rank equality.

(c) This was a more challenging question and was a good discriminator between

students. It was pleasing to see some interesting answers to this question where
able students had clearly thought through the problem and come up with their own
method for solving it under exam conditions.

Most students were able to adapt the code so that it would allow a joker to be
played, though a number did not attempt to write code that would limit the number of
jokers that could be played.

(d) It was disappointing that a large number of students did not include any attempt at
answering the question. There was a mark available just for creating a
correctly-named subroutine (even if the subroutine did not do anything or use any
parameters) and a mark for displaying a message (even if the message did not
include the calculated probability). Students should be encouraged to include partial
solutions to questions they have not been able to answer wholly successfully.

As was the case for the last few years, less able students often struggled to create a
new subroutine even though there are numerous examples of subroutines in the
Skeleton Program. Again, a number of students developed a solution that would
correctly calculate the probability but just included code inside the subroutine that
displayed this value rather than setting up a mechanism to return the calculated
number to the calling routine.

Page 96 of 109

Q3.
Most students did well on this question, with well over half getting 20 or 21 marks out of

21.

Students need to be aware that an algorithm is not the same as a program and that simply
copying the algorithm into their development environment will not result in a working
program in any of the COMP1 programming languages. The pseudo-code / flowchart
needs to be adapted to match the syntax of the programming language they are using. As
in previous years, a number of students simply copied parts of the algorithm into their
program code, for example, trying to use a keyword of OUTPUT or students using VB.Net
adding the word DO to their WHILE loops. These appeared to be less able students who
generally struggled on the Section D programming as well. The vast majority of students
were able to convert the algorithm successfully into working program code. Minor
differences between the messages / prompts in the given algorithm from those used in the
student's program were not penalised but a number of students dropped marks by using

substantially different messages / prompts in their program.

Q4.
Answers to Section C were often of poor quality and very few students achieved good
marks on this question. A number of students are still including additional code when
asked for the name of an identifier (parts (a) - (c)). This means that they are not getting
the marks for these questions as they have not made it clear which entity is the identifier
(sometimes there is more than one identifier in lines of code that they have copied from
the Skeleton program). To reduce the chance of errors, when asked to give the name of
an identifier students should be encouraged to copy and paste the identifier from the
Skeleton program, rather than typing the identifier into the EAD.

Part (d) was well-answered with most students giving a correct example. Parts (e) and (f)

asked for students to explain parts of the Skeleton program code with very few getting
good marks on these questions. Answers were often given that were too vague or about
completely different parts of the Skeleton program. Some students described what Mod
26 does instead of explaining why it was needed. Students often seemed to be unfamiliar
with structure charts getting few, if any, marks for parts (g) - (j).

Q5.
Candidates demonstrated a pleasing understanding of the use of syntax diagrams and
Backus Naur Form to specify language syntax.

For (a), the overwhelming majority of candidates scored at least three of the four available

marks. Candidates had most trouble identifying that the third example procedure

square (s:real) was not valid, perhaps because they just assumed that real was a

valid type rather than checking it against the diagrams.

For (b)(i), the majority of candidates recognised that the BNF definitions incorrectly
included a new “char“ data type and almost half also identified that the BNF definitions did
not allow for a procedure to have no parameters.

Part (b)(ii) was well answered with most candidates achieving a mark for recognising that
there could be any number of parameters. Pleasingly, some also went on to explain that
recursion had to be used because BNF does not support iteration. The most commonly

Page 97 of 109

seen incorrect response was to simply define what recursion was instead of addressing
the specific question.

Q6.
The majority of students got full marks for this question.

Q7.
This question was generally well-answered. For part (a), some students did not use the
number of bits specified in the question and some used even parity instead of odd parity.
Part (b) was the first COMP1 question about Hamming code. Many students were able to

give an advantage of Hamming code although occasionally answers were too vague, eg,
"It can detect errors" and there were some students who clearly had no understanding of
the topic and were just guessing eg, "It uses less memory."

Q8.
For the first time a flowchart was used to represent an algorithm in a COMP1 exam. There
was no increase in difficulty resulting from this and the standard of answers was the same
as seen in the previous year.

Some students did not follow the algorithm given and instead developed their own
program to convert binary to denary. This resulted in them not getting many marks as they
had not answered the question.

Students using VB6 tended to get lower marks on this question than those using the other

languages available for COMP1. This was partly due to not providing the correct evidence
for the testing (screen captures needed to show the data entered for the test as well as
the result of the test), although many students using VB6 also seemed to have weaker
programming skills.

Students need to be aware that an algorithm is not the same as a program and that simply
copying the algorithm into their development environment will not result in a working
program in any of the COMP1 programming languages – the pseudo–code/flowchart
needs to be adapted to match the syntax of the programming language they are using. As
in previous years, a number of students simply copied parts of the algorithm into their
program code eg trying to use a keyword of OUTPUT. These appeared to be less able
students who generally struggled on the Section D programming as well. The vast
majority of students were able to convert the algorithm successfully into working program
code and the marks obtained on this question were virtually identical to those achieved on

Section B on the 2011 COMP1 exam.

Q9.
Answers to this section were often of poor quality and very few students achieved good
marks on this question.

A number of students are still including additional code when asked for the name of an
identifier. This means that they are not getting the marks for these questions as they have
not made it clear which entity is the identifier (sometimes there is more than one identifier
in lines of code that they have copied from the Skeleton Program). To reduce the chance
of errors, when asked to give the name of an identifier students should be encouraged to
copy and paste the identifier from the Skeleton Program, rather than typing the identifier
into the EAD.

Very few students showed any understanding of binary files, even though these were

Page 98 of 109

used in the Skeleton Program. Part (a) was answered better than most other parts of
Section C with most students able to give at least one reason why the use of global
variables should be avoided. The majority of students were also able to state an
advantage of using a named constant.

Q10.
(a) This was a fairly straightforward programming question with most students getting

close to full marks. Some students did not check their code carefully and subtracted
one from NoOfCellsSouth or NoOfCellsEast (instead of adding one).

Care needs to be taken with screen captures of testing as for part (d) a number of
students showed the after state of the cavern and the selection of option (iv), but did
not show the original state of the cavern and thus the screen capture(s) provided did
not include sufficient evidence for the mark to be awarded.

A common mistake made by weaker students in all Pascal, VB and Java was to try

to combine into one instruction (using a AND Boolean operator) an
instruction to increment the NoOfCellsSouth and an instruction to

increment the NoOfCellsEast – suggesting that they did not know

how to write a case statement that contains more than one

instruction.

(b) A number of students had clearly anticipated that this question would be asked and
prepared thoroughly for it. Weaker students struggled to write the correct conditions
for the selection structures and often wrote code that would either prevent all moves

in the northernmost row of the cavern or all moves northwards.
A number of answers included code to prevent the player moving out of bounds in
each of the four possible directions (and some also prevented illegal moves in a
southeast direction as well). This was not necessary as it was not what the question
asked. Some weaker students ended up with more errors in their answers by trying
to add (incorrect) code to prevent the other possible illegal moves.

(c) Most students obtained marks on this question. A number of students did not follow
the question specification and changed the messages to be displayed to the user or
added one to the NoOfMoves variable in the wrong place (often this was done inside
the repetition structure used to ensure that a valid move had been entered – this
would mean that the NoOfMoves variable would be incremented even when a valid
move had not been entered). Students should be aware that if a question specifies a

particular message to display then this is the message that their program must
display – minor typos were ignored, but when a message was different by a whole
word or more the mark was not awarded.

(d) This was the most challenging of the programming questions and was a good
discriminator between students. It was pleasing to see some interesting answers to
this question where able students had clearly thought through the problem and
come up with their own method for solving it under exam conditions. One unusual
correct answer seen from a few students was to pass a copy of the Cavern array to
the CalculateDistance subroutine and use a loop inside the routine to count how
many calls were made to the MakeMonsterMove subroutine until the monster and
player were in the same cell.

The most commonly used method to calculate the distance was to subtract the

monster's east value from the player’s east value followed by a selection structure to
deal with the scenario of a negative difference, then to do the same for the
difference between the two south values and finally to add the two differences
together. A number of students lost marks by dealing with negative values after

Page 99 of 109

adding the east difference and south difference together – this would only calculate
the correct distance between the monster and player under some circumstances.

It was disappointing that a significant number of students did not include any attempt
at answering the question. There was a mark available just for creating a
correctly-named subroutine (even if the subroutine did not do anything or use any
parameters). Students should be encouraged to include partial solutions to
questions they have not been able to answer wholly successfully.

Less able students often struggled to create a new subroutine even though there are
numerous examples of subroutines in the Skeleton Program. A number of students,

particularly those using VB, developed a solution that would correctly calculate the
distance between the monster and the player but did not set up a mechanism to
return the distance to the calling routine. This was often because they had used a
procedure, rather than a function (although a few students did use passing by
reference correctly as a return mechanism).

Q11.
Part (a): Two thirds of students were able to identify one property that a graph must have
to be a tree. A small number confused a tree with a rooted tree and made assertions such
as that a tree must have a root, which is incorrect.

Part (b): This question part tested students’ understanding of the method being used to
represent a maze as a graph. The majority of students correctly identified a feature of the

maze that would stop its graph being a tree. The most commonly seen correct response
identified that there could be a loop in the maze. Other possibilities included that part of
the maze could be inaccessible or that part of the maze might only be traversable in one
direction. Some students failed to achieve the mark because they re-answered part (a),
discussing a feature of a graph that would stop it being a tree, rather than a feature of a
maze.

Part (c): Students were asked to represent the graph of the maze as an adjacency matrix.
Three quarters of students scored both marks for this question part. Responses where
symbols other than 0s and 1s were used in the matrix were accepted, as long as they
could be viewed as an accurate representation of the graph.

Part (d)(i): The vast majority of students were able to identify that a recursive routine
would call itself. A small number asserted that a recursive routine would repeat itself,
which was not considered to be enough for a mark as this could equally have been a

description of iteration.

Part (d)(ii): Most students scored some marks for this question part, but less than a fifth
achieved both. The most widely understood point was that the data would need to be
removed from the stack in the reverse of the order that it was put onto it so that the
recursion could be unwound. Less well understood was the types of data that would be
stored, such as return addresses and local variables.

Part (e): Most students achieved some marks on this question part and around a quarter
achieved all five for a fully complete trace. The most commonly made mistake was to
update, incorrectly, the Completely Explored array as the recursive calls were made, as
opposed to when the recursion unwound.

Q12.

This task was a more challenging question than those on the 2009 and 2010 COMP1
question papers. However, it was based on a standard algorithm (linear search) that is on

Page 100 of 109

the specification. Despite the Preliminary Material clearly stating that candidates should
be familiar with declaring and using arrays (and there being examples of arrays in the
Skeleton Program), a significant number of candidates were unable to write a syntactically
correct array declaration in their programming language. A number of candidates provided
screen captures that had not been produced by the programming code they had given in
their answer for part (b); this meant that they did not get any marks for their screen
captures. Candidates should understand that they could get marks for test runs which
show only part of their program working correctly, but they will not get any marks for
“correct” test evidence that was not produced by their programming code.

Most candidates were still able to score good marks on this question despite the
increased difficulty of this task.

Q13.
Most candidates were not well prepared for this section and did not do as well on these
questions about the Skeleton Program as they did on the questions where they were
asked to modify the Skeleton Program. In particular, little understanding of structure
charts or decision tables was shown by a significant number of candidates.

It was pleasing to note that most candidates only gave the name of an identifier when
asked to do so – those who copied and pasted sections of code from the Skeleton
Program did not get the marks for these questions as they had not demonstrated that they
understood what an identifier is (some candidates gave answers that contained multiple

identifiers). Some candidates did not get the mark for giving an example of a constant
declaration as they provided only the name of the constant. Candidates should ensure
that when asked for the name of an identifier they provide only the identifier in their
answer and when asked for an example of a type of program statement that the entire
program statement is given in their answer.

For part (n) many candidates described the repetition structure rather than the selection
structure inside the repetition structure.

Q14.
(a) Most candidates attempted this question and were able to get the majority of the

marks. Despite the question asking that the new option of “RUN OUT” be available
for both real and virtual dice versions of the game, a number of candidates did not
alter the Skeleton Program to generate a random number between 1 and 5.

(b) For question (b) candidates were asked to adapt the DisplayResult subroutine so
that an appropriate message would be displayed if the result of a game was a draw.
Many candidates got good marks on this question. The most common mistake was
to add an else clause to one of the existing IF statements rather than adding an
additional IF statement – this would result in the message about a drawn game
being displayed if one of the player’s had won the game as well as when a game
was drawn. Some candidates adapted the Skeleton Program correctly, but then did
not provide evidence for the test asked for in the question – a test showing both
players getting a score of 0 was needed. Some candidates provided test evidence
when the players have obtained a score of 1 or more.

(c) While there were a lot of good answers to this question, candidates generally found
question (c) more difficult than questions (a) and (b). Candidates often used the

incorrect logic. Common mistakes included using the wrong logical connective for
the two conditions (i.e. AND instead of OR / OR instead of AND) and using the
wrong logical operator with a numeric value e.g. ">=6" instead of ">6" or ">=7". It
was clear that a significant proportion of candidates following the AS Computing

Page 101 of 109

course struggle to understand the logic of selection/repetition structures which have
multiple conditions. A number of candidates did not read the question sufficiently
carefully and did not include a repetition structure inside the RollBowlDie routine –
only using a selection statement.

(d) Many candidates had clearly anticipated that they would be asked to write a routine
to save the top scores to a file and did very well on this question with able
candidates often obtaining full marks. Some candidates seemed to have tried to
memorise the code for this task and then were unable to reproduce it under exam
conditions (or simply copied and pasted the SaveTopScores subroutine and then

tried to modify it) as they did not sufficiently understand the task they had been
practising. For part (iv), a number of candidates did not modify the main program
block to allow the 5th option to be selected.

(e) A wide range of responses were seen to this question. A large number of
candidates were unable to express their ideas clearly and their description of how
their suggested changes could be made was too vague to get full marks. Some
answers would have achieved the desired result of getting the low scores more than
the high scores, but also resulted in adverse, undesired changes to the Skeleton
Program (e.g. a player could no longer get 2 runs and could never get a result of
"out").

Q15.

Part (a): This question part was poorly answered with many candidates giving vague
responses or explaining what a simulation is rather than a model. In this context, a model
is an abstraction of the real-world problem that leaves out unnecessary details. Some
candidates confused a model with a prototype.

Part (b)(i): Again, this question part was poorly answered. A significant number of
candidates appeared to have no understanding of what was being asked, although more
than half got at least one mark. Candidates who made a reasonable attempt at an answer
often named two pointers, but then offered inadequate explanations of their purpose. For
example, the purpose of the pointer to the end of the list is to enable new items to be
added to the list, not simply to know where the end is.

Part (b)(ii): Some candidates correctly identified that a priority queue was required, but
many invented new types of queues.

Part (c): This question part was well answered with many candidates giving well thought

out answers such as determining whether the next person entering the cafeteria was a
student or teacher or generating a time taken to serve the person at the front of the
queue. The most common incorrect answer was the number of people / students /
teachers in a queue. In each case, the number in a queue would be a consequence of
other randomly determined occurrences rather than determined randomly itself.

Q16.
This was a straight-forward question. Most candidates got good marks on it although a
surprising number of candidates gave incorrect answers.

Q17.
(a) In general, candidates were better prepared for Section C this year and candidates

demonstrated a good understanding of the Skeleton Program.

When asked for the name of an identifier a one word answer is expected. A

Page 102 of 109

significant number of candidates included an entire line of code that included the
name of a relevant identifier in it. Answers for parts (i), (ii), (vi), (vii), (viii) that gave a
correct answer as part of a declaration were accepted this year; answers that
included the identifier as part of some other statement (e.g. within an assignment
statement) were rejected. In future examinations, any answer that includes anything
other than the name of the identifier will not be deemed creditworthy.

Part (iii) was generally well-answered though some candidates gave an answer that
global variables are declared at the start of a program. This is often true, but it is
possible to declare global variables in other places in a program and this was not

sufficient (on its own) for a mark.

Most candidates were able to answer part (iv). The most common error was stating
that the instructions would stop being repeated when an ‘X’ or ‘Y’ is entered (instead
of ‘X’ or ‘O’). Some candidates just copied and pasted code from the Skeleton
Program rather than describe the stopping condition.
Most candidates seemed to be aware of the role of variables. More were able to
identify stepper role variables than fixed-value role variables. The most common
incorrect answers for the fixed-role variables were PlayerOneSymbol (this is
given a value inside a loop and so its value can change several times)

and StartSymbol (which changes value after each game).

Part (ix) was answered well, but some candidates gave a declaration rather than an
assignment statement and others copied in several lines of code rather than just the
assignment statement. A few candidates copied in the code for the entire subroutine
which showed that they did not understand what an assignment statement was.
Good answers for part (x) referred to how the value ‘X’/‘O’ would be assigned to the

variable WhoStarts. Most answers obtained some marks, but often referred
to how a value of ‘X’/‘O’ would be returned – this was not a description

of the selection statement, but the subroutine as a whole.

(b) The definition of boundary data was often unclear and most answers for part (i) did

not get the mark available. Very few candidates stated that boundary data is that
which is at the limit of what is allowed, just before the limit and just after the limit.
Some candidates gave answers in which they wrote about boundary data being data
which is only just allowed and then gave a (correct) example of boundary data as
being 4 (which would not be allowed).
Some candidates did not get the mark for the screen capture of the test as their test
did not show both the data entered and the behaviour that resulted from their test.

Q18.
(a) The checks for a valid YCoordinate were done correctly by most candidates. Some

candidates dropped marks by having code that would not return the correct value

from the function (by adding the validation checks after the value was assigned to
the function) or by combining the XCoordinate and YCoordinate checks in one

statement with an AND operator (this would not work unless brackets were added in
the correct places).

The check for overwriting moves was harder and was not done as well as the
YCoordinate check. Code that would not compile was often seen. Many candidates

did not ensure that the overwriting of moves was only checked for if the coordinates
were valid – this would result in checking an out-of-bounds position on an array
which could cause the program to crash when run (e.g. VB.Net) or to return spurious

results by checking a different memory location (e.g. Pascal). A few candidates
(mostly in Java and C#) used exception handling to deal with this problem. While
this was not on the mark scheme it was deemed to be worthy of the mark available,

Page 103 of 109

though it would be better practice to write code where exception handling was not
needed.

Some candidates had either code that would not compile for the overwriting check
or code that would crash when tested with an out-of-bounds coordinate but they had
included screen captures for part (ii). Marks were not awarded for part (ii) in these
cases as the marks were dependent on the code from part (i) – these candidates
had run a different version of their code for their testing from that they had included
for part (i).

(b) Most candidates did very well on this question and had obviously anticipated that

this would be asked and prepared for it accordingly.

Some answers clearly demonstrated that checking for a win on a row/column being
in a loop had not been understood, as they put the check for a line in a diagonal in a
loop that repeated three times unnecessarily e.g.

For Diagonal = 1 To 3

 Do

 If Board(1,1)= Board(2,2) And Board(2,2) = Board(3,3)

 And Board(2,2) " " Then XorOHasWon := True

(c) Most candidates answered this question well. A few dropped marks for part (ii) by
showing a drawn position for a second or third game in a match. Part (i) asked for
the code for the selection structure used in the Skeleton Program – if this was not
included (i.e. candidate only included the code for adding to the scores) then only
one mark could be awarded. Some candidates added a new selection structure

rather than amending the existing structure as asked for in the question – again only
one mark was awarded in this case.

(d) Answers to this question were generally good with many candidates getting full
marks for parts (i) to (vi). The most common incorrect answer for part (ii) was to
change the maximum number of moves to 12, not 16. Part (vii) was more
challenging and many candidates dropped marks here. Many incorrectly gave
(correct) code for 4-in-a-row rather than 3-in-a-row. Another common error was to
add a second loop for the rows that went from 2 to 4 instead of 1 to 4. Some
candidates did not read the question carefully and gave an answer that checked for
a win in a column not a row. Part (viii) was done well by those who had done part
(vii); some candidates did not read the question carefully and did not test for a
winning row in the position asked for. There were a lot of correct answers for part

(ix) although some dropped a mark by stating the change and not describing it as
well. It is important that candidates recognise key words used in questions, like
describe and explain, and understand how these should be answered. The most
common correct answer was actually the one not on the specification about using a
3D array. A significant number of candidates did not describe how the data structure
could be represented and instead wrote about how the displaying of the board would
have to be modified.

Q19.
The format of this paper – where candidates were required at an early stage to program a
task from scratch for a relatively straight forward specification – seemed to work well and
a large number of candidates scored the maximum seven marks for the program source
code. The question assessed the candidate’s ability to implement the given problem

description using the basic constructs of a high level language. However, candidates need
to be made aware that the algorithm given had to be seen as a formal specification where
the wording in any output or user prompts in their program code had to match exactly that

Page 104 of 109

given in the algorithm. The mark scheme reflected this and, as a result, candidates
frequently lost marks for their screen shots because of their lack of attention to detail.

Q21.
Questions (a) to (c) required candidates to identify certain features of the Skeleton
Program and this was generally well answered. Many candidates did not associate the
term ‘pre-defined function’ to mean a built-in function and hence did not score the mark for

question (b)(ii).

For question (e)(i) candidates were able to describe the condition which controlled the

loop ‘PhraseOK=True’ and to describe for question (e)(ii) that the consequence would be
a continuous loop. However, the explanation of why the programmer had used a ‘For’ loop
was often poor with candidates unable to give a convincing explanation for this choice
(and not a ‘repeat-until’ structure). Also candidates were unable to use precise language
to describe a ‘known’ number of iterations.

This question was well answered with many candidates scoring the maximum 10 marks.
Better answers for question (g) scored the final mark by describing a Boolean flag or an
integer value of 1 indicating that a particular letter had been guessed. If the candidate
described the letter itself stored as the indicator, then this was deemed creditworthy.

There was possible ambiguity between the wording of the stem for question (j)(i) and the
statement in the Preliminary Material that 'An entered letter is never stored more than
once.' As a result an answer of either yes or no for question (j)(i) scored the 1 mark and

this followed through into the marking of question (j)(ii).

Q22.
(a) By this stage of the examination, weaker candidates were either starting to find the

paper challenging or were struggling to complete the paper in the two hours.
Attempts at this question ranged from not attempted (which were relatively few) to a
completely correct solution. The question – similar to question (c)(ii) – required that
the candidate followed precisely the specification given to gain full marks. It was
suspected that many candidates’ practice for the examination had included the
coding of a guess of the complete phrase and so included this code even though it
had not been asked for in the question. Candidates should be reminded of the need
to answer the question set; not one that they wish had been set! Candidates
seemed to understand fully what was meant by a ‘procedure / function stub’ and

followed the instructions to produce all the evidence required.

(b) The majority of candidates had clearly read the suggestions in the Preliminary
Material and were well prepared for this task. As a general principle, no credit was
given for any screen shot evidence – e.g. question (e)(ii) – which was not supported
by relevant and plausible code. The able candidates had no difficulty answering this
question and often gained very close to the maximum mark. Common shortcomings
were solutions which read the phrases into an array which had been set to a
particular size (24 or 25) and so assumed prior knowledge of the number of phrases
in the file.

For question (f)(i) a common shortcoming was code which generated a random
number between 1 and 24, not 1 and ‘the computed number of phrases in the file’.

Many candidates for question (h) included a complete listing of their final program

code (possibly because this was a requirement on the COMP1 Specimen Paper).
This was not in the rubric of the operational examination question.

Page 105 of 109

Q23.
It was pleasing to see the number of candidates that scored highly on this question. Most
candidates were able to obtain the mark for part (a) and a large number did very well on
part (b). It must be emphasised that candidates were asked to dry run the algorithm and
complete the trace table. A small number of candidates were able to produce the correct
output but did not produce a satisfactory trace. Marks were given for the trace and so it is
essential that candidates fill this in correctly. Although most candidates obtained one mark

for part (b)(ii), few obtained two. Candidates must realise that correct technical
terminology should be used.

Q24.
Most candidates obtained the mark for part (a). It was also very pleasing to see the
number of candidates who were able to correctly trace the algorithm. Many candidates
obtained good marks on this question. Although many candidates did go wrong with the
trace, very few candidates failed to attempt it.

Q25.
(a) (i) Well answered with the most popular answers being constants and functions.

(ii) Many candidates then misunderstood what was wanted here and proceeded
to give answers which generally described how programs were constructed

with loops, selection statements, etc.

Due to the range of differences with different languages, a wide range of answers
were considered acceptable; the most popular being ‘it must not contain any
<Space> characters’ and ‘the use of reserved words is not permitted’. Some
candidates confused what is allowed in a programming language with what is
permitted by the operating system, proceeding to explain what was not allowed for
filenames. Worse, was the suggested answer that ’names must be more than 6
characters long’ which suggested that the rules about the choice of passwords were
being described.

(b) No great detail was expected for the mark and most candidates were able to give
an answer which mapped to those on the mark scheme. Use of language was an
issue for some candidates who described ‘chunks of program code’! There were
also answers which clearly were answering ‘last year’s question’ suggesting

procedures may or may not return values, contrasting with functions which always
return a value.

(c) This was similar to questions which have previously been set and was well
answered.

Q26.
In general the dry run was poorly answered and left completely blank on too many scripts.

(a) Many candidates scored the maximum three marks for identifying the data types.
Some candidates lost a mark for suggesting that ‘yes/no’ or a ‘check box’ was an
acceptable data type. This comes from their practical experience with database
design software and a visual programming language, but candidates should
appreciate they are not acceptable names for programming language data types.

Page 106 of 109

(b) This was a different style of question from that previously seen. Candidates seemed
to cope well with being asked to ‘fill in the blanks’ in the algorithm.

(c) (ii) Answers were often incorrect, but then inexplicably candidates were able to
use the same function correctly in part (iii).

Q27.
(a) The majority of candidates were able to describe a stack structure as a ‘first in last

out’ or ‘last in first out’ operation.

(b) The weaker answers seen here moved values to a different memory location once

additions and deletions occurred, or used location 605 as the first available and so
qualified for a maximum of two (only) ‘follow through’ marks.

(c) Many candidates were clear about the basic operation which was taking place but
then their communication skills let them down in the descriptions required for (ii) and
(iii). For (ii) the answer looked for was the idea that items leave the stack one after
the other. For (iii) a description was required for the principle of operation of a
queue.

Q28.
Candidates generally scored well on this question. Recursively-defined was well
understood although many candidates were unable to describe the use of the stack well
enough. It was pleasing to see the majority of candidates obtaining most of the marks on
part (c). Candidates often failed to obtain the mark for part (d) due to inadequate

descriptions. Although many candidates provided a situation where the algorithm will fail,
fewer were able to suggest a suitable modification. Once again this was often due to an
inability to express themselves well. A wide range of answers were supplied for part (g)
but a substantial number of correct responses were given.

Q29.
(a) Despite an extensive (and perhaps ’generous’) mark scheme list it was rare for

candidates to score more than 1 mark, and this was usually for a “selection/iteration”
answer.

(b) (i) Candidates often failed to score three easy marks. The inclusion of <Space>
or other illegal characters used in the identifier names was penalised once
only. The other common error was the suggestion of incorrect data types, the
most common being ‘Number’ and ‘Decimal’. However, this was answered

significantly better than on previous papers.

(ii) Despite a question of this type not having been set previously, it was clear
from answers seen that candidates knew what was required. The most
common error was simply not to make the connection between part (b)(i) and
(b)(ii); for example, by introducing new identifiers to answer (ii) which gained
no credit.

Q30.
A general observation was that candidates scored significantly better with tracing the
algorithm than with the first part of the question where they were asked to recognise
various components of the given program.

(a) Almost all candidates got the idea that the program was calculating a weekly total.

Page 107 of 109

Very few stated for the second mark that it output the result.

(b) (i) A common error was to copy the first assignment statement which appeared,
ignoring the rubric that it should ‘perform a calculation’.

(ii) A common error was the statements that RejectTotal:=0 was a declaration
statement.

(iii) Very few answers scored here. The most common (wrong) answer was that it
represented the day of the week.

(c) This should have been an easy two marks. Common errors were for candidates to
introduce their own output messages, or to use incorrect logic; typically where the

equality condition produced both messages.

A wide variety of answers were considered acceptable including the use of two
separate IF statements.

(d) This is only the second paper on which an explanation of the use of library
programs was required and it is clearly still not well understood. The most common
correct answers were that library programs are pre-written code which has the
potential for reuse or code which is purchased from 3rd party suppliers. Such
answers were however rare and there were far too many vague answers with
statements such as “their use will make life easier for the programmer”.

(e) An encouraging sign on this paper, continuing on from June 2006, is much
improved answers seen for the trace table question, especially as this question
contained a procedure which had not appeared in previous questions.

Q31.
This was the first question paper on which two-dimensional arrays had been set and the
answers seen were encouraging.

(a) Most candidates correctly described that this was the issues figure for salesperson
7 in month 4. Some candidates described the figure as the highest sales figure for
April which gained no credit.

(b) Only better candidates wrote an acceptable declaration statement which required
the correct identifier StoreCards with the correct subscripts in the correct order.

(c) Few acceptable statements were seen.

(d) Encouragingly, this was well answered, with most candidates able to describe the
purpose of the algorithm. Answers which did little more that re-write statement(s)
from the given algorithm into a narrative form - e.g. “person total set to zero” - which

was little different, did not gain credit. The common error was stating that the
algorithm calculated a total for ‘each’ salesperson.

(e) Somewhat surprisingly – despite similar questions on previous papers - candidates
were often unable to state a correct data type, which would suggest the fundamental
concept in programming that “identifiers will have a stated or implied data type” is
not understood.

For (ii) almost all gave Boolean, with every possible phonetic spelling, and some
gave integer for (iii). Real/Float or other acceptable alternatives for (i) were rare.

Page 108 of 109

Q32.
(a) Many candidates were able to explain that functions always return a value but few

candidates were able to distinguish this from the way a procedure behaves.

For candidates who had covered this theory in a practical context this was an easy
two marks. Candidates should have been exposed to a subset of the functions
available in their programming language. The final part of the question stem “…or
when using a generic software package” was intended to help the weaker
candidates in triggering some of the functions they would have used; unfortunately,
candidates often gave answers describing features of a generic software package.

(b) This question was generally well answered, although it was noticeable that the
standard of answers varied between centres. Candidates who found the question
easy were undoubtedly those who had practical experience of using functions which
required none, one or two parameters when used.

(c) The most popular answer was to use identifier names for constants, followed by

procedures and functions.

(d) This was well answered with most candidates able to score marks. The key word in
the question stem was “advantage” and so answers required more than just a
description of a compiler and an interpreter.

Q33.
(a) (i) The use of GoTo statements has not previously been examined on this paper

and most candidates struggled to suggest a single reason why this was poorly
designed code, despite a large number of acceptable answers. The most
common correct answers were that the use of GoTo statements gives rise to
code which is difficult to follow and trace; there is no output produced when
the SearchName value is not found; when there is more than one occurrence
of SearchName in the PolicyHolder array, the program will output the number

of claims value for the first occurrence of the name only.

(ii) Few marks were obtained here with most candidates failing to give the bounds
of the array for PolicyHolder or NoOfClaims, or omitting a data type for the
identifier.

(b) Candidates should be able to write small amounts of program code in a unit that
has the word ‘programming’ in its title. Knowledge of loops other than a For loop
was rare. It was hoped that candidates would have constructed a Repeat – Until or
While loop which terminated when a NoOfClaims value of 5 or more was found.
Candidates who used a For loop were, however, still able to score the maximum 5
marks.

Examiners were not looking for the correct use of exact syntax for the language as
stated by the candidate.

The use of IF statements was better understood, but this often did not extend to
using an array index for the NoOfClaims as part of the IF statement. Very many

candidates used the maths operator incorrectly, e.g.  or more usually =>. Quite a
few candidates reversed the logic testing for <5 and gave appropriate output for
which they gained marks. Most popular languages seen were Pascal and Visual
Basic but the candidates that used C on the whole answered the question very well
indeed.

Page 109 of 109

Q34.
Although a short question, it proved difficult for most candidates. Many missed the point
that both part (a) and part (b) were about the implementation of a stack, and in part (b)

gave answers that were about applications that were suitable for a linked list or an array.
However, we can note one particularly lucid answer to part (a)(i): “This is a static data
structure with a finite pre-declared capacity.”

Q35.
This was another question which most candidates found difficult, if not impossible.
However, some good candidates produced very good answers.

Most candidates were able to answer part (a).

The examiners only rarely awarded full marks for the trace table. A lot of candidates
abandoned the trace once they realised that the numbers were being output in ascending
order. This limited their reward to two or three marks at best since half of the marks
depended on the trace being completed. Many candidates had difficulty logging the

procedure calls even when they made a good attempt at showing the tree in the T column.

Some candidates got the two marks for part (b)(ii) without attempting the trace while
others who showed the right output in (i) called the procedure a search or a bubble sort.

