

Page 1 of 133

 (1)

(Total 18 marks)

1.1 Programming part 1 Mark schemes

Page 2 of 133

Q1.
All marks AO1 (knowledge)

local variables;
return address;
parameters;
register values; A. example of register that would be in stack frame

Max 2

[2]

Q2.
(a) All marks AO2 (analyse)

 1 2 3 4 5 6

1 0 2 5 3 0 8

2 2 0 1 0 0 0

3 5 1 0 0 0 4

4 3 0 0 0 1 0

5 0 0 0 1 0 5

6 8 0 4 0 5 0

Alternative answer

 1 2 3 4 5 6

1 0 2 5 3 0 8

2 0 1 0 0 0

3 0 0 0 4

4 0 1 0

5 0 5

6 0

Alternative answer

 1 2 3 4 5 6

1 0

2 2 0

3 5 1 0

4 3 0 0 0

Page 3 of 133

5 0 0 0 1 0

6 8 0 4 0 5 0

Mark as follows:

1 mark 0s in correct places

1 mark all other values correct

I. non-zero symbols used to denote no edge but only for showing no edge
going from a node to itself

2

(b) All marks for AO1 (understanding)

Adjacency list appropriate when there are few edges between vertices // when

graph/matrix is sparse; NE. few edges

Adjacency list appropriate when edges rarely changed;

Adjacency list appropriate when presence/absence of specific edges does not
need to be tested (frequently);

A. Alternative words which describe edge, eg connection, line, arc

Max 2
2

(c) Mark is for AO2 (apply)

It contains a cycle / cycles;
1

(d) Mark for AO1 (knowledge)

A graph where each edge has a weight/value associated with it;
1

(e) All marks AO2 (apply)

Mark as follows:

I. output column
1 mark first value of A is 2

1 mark second value of A is 5 and third value is 3

1 mark fourth and subsequent values of A are 8, 3, 7, 4, 9 with no more values

after this
1 mark D[2] is set to 2 and then does not change

Page 4 of 133

1 mark D[3] is set to 5 and then changes to 3 and does not change again

1 mark correct final values for each position of array P

Page 5 of 133

1 mark correct final values for D[1], D[4], D[5], D[6]

Page 6 of 133

Max 6 marks if any errors
7

(f) Mark is for AO2 (analyse)

The shortest distance / time between locations/nodes 1 and 6;

NE distance / time between locations/nodes 1 and 6

R. shortest route / path
1

(g) All marks AO2 (analyse)

Used to store the previous node/location in the path (to this node);

Allows the path (from node/location 1 to any other node/location) to be
recreated // stores the path (from node/location 1 to any other node/location);

Max 1 if not clear that the values represent the shortest path

Page 7 of 133

Alternative answer

Used to store the nodes that should be traversed;

And the order that they should be traversed;

Max 1 if not clear that the values represent the shortest path
2

[16]

Q3.
(a) 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at
a logically structured working or almost fully
working programmed solution that meets most of
the requirements. All of the appropriate design
decisions have been taken. To award 12 marks,
all of the requirements must be met.

10-12

3 There is evidence that a line of reasoning has

been followed to produce a logically structured
program. The program displays relevant
prompts, inputs the number value and includes
two iterative structures. An attempt has been
made to check for factors of the number entered,
although this may not work correctly under all
circumstances. The solution demonstrates good
design work as most of the correct design
decisions have been made.

7-9

2 A program has been written and some

appropriate, syntactically correct programming
language statements have been written. There is
evidence that a line of reasoning has been
partially followed as although the program may
not have the required functionality, it can be
seen that the response contains some of the
statements that would be needed in a working
solution. There is evidence of some appropriate

design work as the response recognises at least
one appropriate technique that could be used by
a working solution, regardless of whether this
has been implemented correctly.

4-6

1 A program has been written and a few
appropriate programming language statements
have been written but there is no evidence that a
line of reasoning has been followed to arrive at a
working solution. The statements written may or

may not be syntactically correct. It is unlikely that
any of the key design elements of the task have
been recognised.

1-3

Page 8 of 133

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that a selection structure is needed to compare user’s input with
the number 1

2. Identifying that a loop is needed that repeats from 2 to the square root of
the number entered A. half the value of the number entered A. to the
number 1 less than the number entered

3. Identifying that use of remainder operator needed A. alternative

methods to using the remainder operator that calculate if there is a
remainder

4. Boolean variable (or equivalent) used to indicate if a number is prime or
not

Alternative AO3 design marks:

1. Identifying that a selection structure is needed to compare user’s input with
the number 1

2. Using nested loops that generate pairs of potential factors
3. Identifying that a test is needed to compare the multiplied factor pairs

with the number being checked
4. Boolean (or equivalent) variable used to indicate if a number is prime or

not

Note that AO3 (design) points are for selecting appropriate techniques to use
to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of whether
the solution works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. Correct termination condition on iterative structure that repeats until the
user does not want to enter another number

6. Suitable prompt, inside iterative structure that asks the user to enter a
number and number entered by user is stored in a suitable-named
variable

7. Iterative structure that checks for factors has correct syntax and

start/end conditions
8. Correct test to see if a potential factor is a factor of the number entered,

must be inside the iterative structure for checking factors and the
potential factor must change each iteration

9. If an output message saying “Is prime” or “Is not prime” is shown for
every integer (greater than 1) A. any suitable message

10. Outputs correct message “Is not prime” or “Is prime” under all correct
circumstances A. any suitable message

11. Outputs message “Not greater than 1” under the correct circumstances
A. any suitable message

12. In an appropriate location in the code asks the user if they want to enter
another number R. if message will not be displayed after each time the

user has entered a number

Note for examiners: if a candidate produces an unusual answer for this
question which seems to work but does not match this mark scheme then this

Page 9 of 133

answer should be referred to team leader for guidance on how it should be
marked

12

Python 2
import math

again = "y"

while again == "y":

 num = int(raw_input("Enter a number: "))

 if num > 1:

 prime = True

 for count in range(2, int(math.sqrt(num)) + 1):

 if num % count == 0:

 prime = False

 if prime == True:

 print "Is prime"

 else:

 print "Is not prime"

 else:

 print "Not greater than 1"

 again = raw_input("Again (y or n)? ")

Python 3
import math

again = "y"

while again == "y":

 num = int(input("Enter a number: "))

 if num > 1:

 prime = True

 for count in range(2, int(math.sqrt(num)) + 1):

 if num % count == 0:

 prime = False

 if prime == True:

 print("Is prime")

 else:

 print("Is not prime")

 else:

 print("Not greater than 1")

 again = input("Again (y or n)? ")

Visual Basic
Sub Main()

 Dim Again As Char = "y"

 Dim Num As Integer

 Dim Prime As Boolean

 While Again = "y"

 Console.Write("Enter a number: ")

 Num = Console.ReadLine()

 If Num > 1 Then

 Prime = True

 For Count = 2 To System.Math.Sqrt(Num)

 If Num Mod Count = 0 Then

 Prime = False

 End If

 Next

 If Prime Then

 Console.WriteLine("Is prime")

 Else

 Console.WriteLine("Is not prime")

 End If

 Else

 Console.WriteLine("Not greater than 1")

 End If

Page 10 of 133

 Console.Write("Again (y or n)? ")

 Again = Console.ReadLine()

 End While

End Sub

C#
{

 string Again = "Y";

 int Num = 0;

 bool Prime = true;

 while (Again == "Y")

 {

 Console.Write("Enter a number: ");

 Num = Convert.ToInt32(Console.ReadLine());

 if (Num > 1)

 {

 for (int Count = 2; Count < Convert.ToInt32(Math.Sqrt(Num))

+ 1; Count++)

 {

 if (Num % Count == 0)

 {

 Prime = false;

 }

 }

 if (Prime == true)

 {

 Console.WriteLine("Is prime");

 }

 else

 {

 Console.WriteLine("Is not prime");

 }

 }

 else

 {

 Console.WriteLine("Not greater than 1");

 }

 Console.Write("Again (y or n)? ");

 Again = Console.ReadLine().ToUpper();

 }

}

Java
public static void main(String[] args)

{

 String again;

 do

 {Console.println("Enter a number:");

 int number = Integer.parseInt(Console.readLine());

 if(number <= 1)

 {

 }

 else

 {

 Console.println("Not greater than 1"); boolean prime =

true;

 int count = number - 1;

 while (prime && count > 1)

 {

 if(number%count == 0)

 {

 prime = false;

 }

Page 11 of 133

 count--;

 }

 if(prime)

 {

 Console.println("Is prime");

 }

 else

 {

 Console.println("Is not prime");

 }

 }

 Console.println("Would you like to enter another number?

YES/NO");

 again = Console.readLine();

 } while (again.equals("YES"));

}

Pascal / Delphi
var

 again : string;

 num, count : integer;

 prime : boolean;

begin

 again := 'y';

 while again = 'y' do

 begin

 write('Enter a number: ');

 readln(num);

 if num > 1 then

 begin

 prime := True;

 for count := 2 to round(sqrt(num)) do

 if num mod count = 0 then

 prime := False;

 if prime = true then

 writeln('Is prime')

 else

 writeln('Is not prime');

 end

 else

 writeln('Not greater than 1');

 write('Again (y or n)? ');

 readln(again);

 end;

 readln;

end.

(b) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (a), including prompts on screen capture matching
those in code.
Code for part (a) must be sensible.

Screen captures showing the number 1 being entered with the message “Not
greater than 1” displayed, then the number 5 being entered with the message
“Is prime” displayed and then the number 8 being entered with the message
“Is not prime” being displayed and program stops after user input stating they
do not want to enter another number;

A. alternative messages being displayed if they match code from part (a)

Page 12 of 133

Enter a number: 1

Not greater than 1

Again (y or n)? y

Enter a number: 5

Is prime

Again (y or n)? y

Enter a number: 8

Is not prime

Again (y or n)? n

>>>

1

[13]

Q5.
(a) Mark is for AO2 (analyse)

Len (Python/VB only);

Length (Pascal/Java only);

IndexOf (C#/VB only);

I. case
I. spacing
R. if any additional code

1

(b) Mark is for AO2 (analyse)
Item // RandNo // Count;

Rnd; (Java only)

A. MaxSize

I. case
I. spacing
R. if any additional code
R. if spelt incorrectly

1

(c) All marks AO1 (understanding)

Mark as follows

• Check for 1st mark point from either solution 1 or solution 2.

• 2nd mark point for Solution 1 only to be awarded if 1st mark point for

Solution 1 has been awarded.

• 2nd mark point for Solution 2 only to be awarded if 1st mark point for
Solution 2 has been awarded

Solution 1
1st mark:

With a linear queue there could be locations available that are not able to be
used A. there could be wasted space
(where there is space available in the data structure but it is unusable as it is
in front of the data items in the queue);
2nd mark:
(To avoid this issue) items in the queue are all shuffled forward when an item
is deleted from (the front of the) queue;
//

Page 13 of 133

Circular lists “wrap round” so (avoid this problem as) the front of the queue
does not have to be in the first position in the data structure;

Solution 2
1st mark:
Items in a linear queue are all shuffled forward when an item is deleted from
(the front);
//
No need to shuffle items forward after deleting an item in a circular queue;
2nd mark:

this makes (deleting from) (large) linear lists time inefficient;
//
meaning circular queues are more time efficient (when deleting);

2

(d) Mark is for AO2 (analyse)

The queue is small in size (so the time inefficiency is not significant);
1

(e) Mark is for AO1 (understanding)

Front // pointer to the front of the queue;
1

(f) All marks for AO2 (analyse)

Change the Add method;

Generate a random number between 1 and 2; NE. so there is a 50% chance
Note for examiners: needs to be clear how a 50% chance is created

If it is a 1 then generate a random number from 0, 4, 8, 13, 14, 17, 18, 19 // if it
is a 1 then generate a random number from those equivalent to 1-point tiles;

Otherwise generate a random number from the other numbers between 0 and

25 // otherwise generate a random number from those equivalent to non
1-point tiles;

A. equivalent methods to the one described

Note for examiners: refer unusual answers that would work to team leader
4

(g) All marks for AO2 (analyse)

Iterate over the characters in the string;

Get the character code for the current character;

Subtract 32 from the character code // AND the character code with the bit
pattern 1011111 / 11011111 // AND the character code with (the decimal

value) 95 / 223;
A. Hexadecimal equivalents

Convert that value back into a character and replace the current character with
the new character;

A. answers that create a new string instead of replace characters in the

Page 14 of 133

existing string

Alternative answer

Iterate over the characters in the string;

Using a list of the lowercase letters and a list of the uppercase letters;

Find the index of the lowercase letter in the list of lowercase letters;

Get the character in the corresponding position in the uppercase list and
replace the current character with the new character;

A. answers that create a new string instead of replace characters in the
existing string

4

[14]

Q6.
(a) (i) Mark is for AO3 (programming)

Selection structure with correct condition(s) (9, 23) added in suitable
place and value of 4 assigned to two tiles in the dictionary;

R. if any other tile values changed
1

Python 2
def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

Python 3
def CreateTileDictionary():

 TileDictionary = dict()

 for Count in range(26):

 if Count in [0, 4, 8, 13, 14, 17, 18, 19]:

 TileDictionary[chr(65 + Count)] = 1

 elif Count in [1, 2, 3, 6, 11, 12, 15, 20]:

 TileDictionary[chr(65 + Count)] = 2

 elif Count in [5, 7, 10, 21, 22, 24]:

 TileDictionary[chr(65 + Count)] = 3

 elif Count in [9, 23]:

 TileDictionary[chr(65 + Count)] = 4

 else:

 TileDictionary[chr(65 + Count)] = 5

 return TileDictionary

Visual Basic

Page 15 of 133

Function CreateTileDictionary() As Dictionary(Of Char,

Integer)

 Dim TileDictionary As New Dictionary(Of Char, Integer)()

 For Count = 0 To 25

 If Array.IndexOf({0, 4, 8, 13, 14, 17, 18, 19}, Count)

> -1 Then

 TileDictionary.Add(Chr(65 + Count), 1)

 ElseIf Array.IndexOf({1, 2, 3, 6, 11, 12, 15, 20}, Count)

> -1 Then

 TileDictionary.Add(Chr(65 + Count), 2)

 ElseIf Array.IndexOf({5, 7, 10, 21, 22, 24},

 Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 3)

 ElseIf Array.IndexOf({9, 23}, Count) > -1 Then

 TileDictionary.Add(Chr(65 + Count), 4)

 Else

 TileDictionary.Add(Chr(65 + Count), 5)

 End If

 Next

 Return TileDictionary

End Function

C#
private static void CreateTileDictionary(ref Dictionary<char,

int> TileDictionary)

{

 int[] Value1 = { 0, 4, 8, 13, 14, 17, 18, 19 };

 int[] Value2 = { 1, 2, 3, 6, 11, 12, 15, 20 };

 int[] Value3 = { 5, 7, 10, 21, 22, 24 };

 int[] Value4 = { 9, 23 };

 for (int Count = 0; Count < 26; Count++)

 {

 if (Value1.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 1);

 }

 else if (Value2.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 2);

 }

 else if (Value3.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 3);

 }

 else if (Value4.Contains(Count))

 {

 TileDictionary.Add((char)(65 + Count), 4);

 }

 else

 {

 TileDictionary.Add((char)(65 + Count), 5);

 }

 }

}

Java
Map createTileDictionary()

{

 Map<Character,Integer> tileDictionary = new

HashMap<Character,Integer>();

 for (int count = 0; count < 26; count++)

 {

Page 16 of 133

 switch (count) {

 case 0:

 case 4:

 case 8:

 case 13:

 case 14:

 case 17:

 case 18:

 case 19:

 tileDictionary.put((char)(65 + count), 1);

 break;

 case 1:

 case 2:

 case 3:

 case 6:

 case 11:

 case 12:

 case 15:

 case 20:

 tileDictionary.put((char)(65 + count), 2);

 break;

 case 5:

 case 7:

 case 10:

 case 21:

 case 22:

 case 24:

 tileDictionary.put((char)(65 + count), 3);

 break;

 case 9:

 case 23:

 tileDictionary.put((char)(65 + count), 4);

 break;

 default:

 tileDictionary.put((char)(65 + count), 5);

 break;

 }

 }

 return tileDictionary;

}

Pascal / Delphi
function CreateTileDictionary() : TTileDictionary;

 var

 TileDictionary : TTileDictionary;

 Count : integer;

 begin

 TileDictionary := TTileDictionary.Create();

 for Count := 0 to 25 do

 begin

 case count of

 0, 4, 8, 13, 14, 17, 18, 19:

TileDictionary.Add(chr(65 + count), 1);

 1, 2, 3, 6, 11, 12, 15, 20: TileDictionary.Add(chr(65

+ count), 2);

 5, 7, 10, 21, 22, 24: TileDictionary.Add(chr(65 +

count), 3);

 9, 23: TileDictionary.Add(chr(65 + count), 4);

 else TileDictionary.Add(chr(65 + count), 5);

 end;

 end;

 CreateTileDictionary := TileDictionary;

 end;

Page 17 of 133

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (a)(i), including prompts on screen capture
matching those in code.
Code for part (a)(i) must be sensible.

Screen captures showing the requested test being performed and the
correct points values for J, X, Z and Q are shown; I. order of letters

TILE VALUES

Points for X: 4

Points for R: 1

Points for Q: 5

Points for Z: 5

Points for M: 2

Points for K: 3

Points for A: 1

Points for Y: 3

Points for L: 2

Points for I: 1

Points for F: 3

Points for H: 3

Points for D: 2

Points for U: 2

Points for N: 1

Points for V: 3

Points for T: 1

Points for E: 1

Points for W: 3

Points for C: 2

Points for G: 2

Points for P: 2

Points for J: 4

Points for O: 1

Points for B: 2

Points for S: 1

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

1

(b) (i) All marks for AO3 (programming)

Iterative structure with one correct condition added in suitable place;

Iterative structure with second correct condition and logical connective;

Suitable prompt displayed inside iterative structure or in appropriate
place before iterative structure; A. any suitable prompt

StartHandSize assigned user-entered value inside iterative structure;

Max 3 if code contains errors
4

Page 18 of 133

Python 2
…

 StartHandSize = int(raw_input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(raw_input("Enter start hand size: "))

…

Python 3
…

 StartHandSize = int(input("Enter start hand size: "))

 while StartHandSize < 1 or StartHandSize > 20:

 StartHandSize = int(input("Enter start hand size: "))

…

Visual Basic
…

Do

 Console.Write("Enter start hand size: ")

 StartHandSize = Console.ReadLine()

Loop Until StartHandSize >= 1 And StartHandSize <= 20

…

C#
…

do

{

 Console.Write("Enter start hand size: ");

 StartHandSize = Convert.ToInt32(Console.ReadLine());

} while (StartHandSize < 1 || StartHandSize > 20);

…

Java
…

 do {

 Console.println(&"Enter start hand size: &");

 startHandSize = Integer.parseInt(Console.readLine());

 } while (startHandSize < 1 || startHandSize > 20);

…

Pascal / Delphi
…

StartHandSize := 0;

Choice := '';

while (StartHandSize < 1) or (StartHandSize > 20) do

 begin

 write('Enter start hand size: ');

 readln(StartHandSize);

 end;

…

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (b)(i), including prompts on screen capture
matching those in code.
Code for part (b)(i) must be sensible.

Screen capture(s) showing that after the values 0 and 21 are entered the
user is asked to enter the start hand size again and then the menu is
displayed;

++++++++++++++++++++++++++++++++++++++

Page 19 of 133

+ Welcome to the WORDS WITH AQA game +

++++++++++++++++++++++++++++++++++++++

Enter start hand size: 0

Enter start hand size: 21

Enter start hand size: 5

=========

MAIN MENU

=========

1. Play game with random start hand

2. Play game with training start hand

9. Quit

Enter your choice: 1

Player One it is your turn.

1

(c) (i) All marks for AO3 (programming)

1. Create variables to store the current start, mid and end points; A. no
variable for midpoint if midpoint is calculated each time it is needed in
the code

2. Setting correct initial values for start and end variables;
3. Iterative structure with one correct condition (either word is valid or

start is greater than end); R. if code is a linear search
4. Iterative structure with 2nd correct condition and correct logic;
5. Inside iterative structure, correctly calculate midpoint between start

and end;
A. mid-point being either the position before or the position after
the exact middle if calculated midpoint is not a whole number R. if

midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. Inside iterative structure there is a selection structure that
compares word at midpoint position in list with word being
searched for;

7. Values of start and end changed correctly under correct
circumstances;

8. True is returned if match with midpoint word found and True is not
returned under any other circumstances;

I. missing statement to display current word

Max 7 if code contains errors

Alternative answer using recursion

1. Create variable to store the current midpoint, start and end points
passed as parameters to subroutine; A. no variable for midpoint if
midpoint is calculated each time it is needed in the code A. midpoint as
parameter instead of as local variable

2. Initial subroutine call has values of 0 for startpoint parameter and
number of words in AllowedWords for endpoint parameter;

3. Selection structure which contains recursive call if word being

Page 20 of 133

searched for is after word at midpoint;
4. Selection structure which contains recursive call if word being

searched for is before word at midpoint;
5. Correctly calculate midpoint between start and end;

A. midpoint being either the position before or the position after the
exact middle if calculated midpoint is not a whole number R. if
midpoint is sometimes the position before and sometimes the
position after the exact middle R. if not calculated under all
circumstances when it should be

6. There is a selection structure that compares word at midpoint
position in list with word being searched for and there is no
recursive call if they are equal with a value of True being returned;

7. In recursive calls the parameters for start and end points have
correct values;

8. There is a selection structure that results in no recursive call and
False being returned if it is now known that the word being
searched for is not in the list;

Note for examiners: mark points 1, 2, 7 could be replaced by recursive
calls that appropriately half the number of items in the list of words
passed as a parameter – this would mean no need for start and end
points. In this case award one mark for each of the two recursive calls if

they contain the correctly reduced lists and one mark for the correct use
of the length function to find the number of items in the list. These marks
should not be awarded if the list is passed by reference resulting in the
original list of words being modified.

I. missing statement to display current word

Max 7 if code contains errors

Note for examiners: refer unusual solutions to team leader
8

Python 2
def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print AllowedWords[Mid]

 if AllowedWords[Mid] == Word:

 ValidWord = True

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

Python 3
def CheckWordIsValid(Word, AllowedWords):

 ValidWord = False

 Start = 0

 End = len(AllowedWords) - 1

 while not ValidWord and Start <= End:

 Mid = (Start + End) // 2

 print(AllowedWords[Mid])

 if AllowedWords[Mid] == Word:

 ValidWord = True

Page 21 of 133

 elif Word > AllowedWords[Mid]:

 Start = Mid + 1

 else:

 End = Mid - 1

 return ValidWord

Visual Basic
Function CheckWordIsValid(ByVal Word As String, ByRef

AllowedWords As List(Of String)) As Boolean

 Dim ValidWord As Boolean = False

 Dim LStart As Integer = 0

 Dim LMid As Integer

 Dim LEnd As Integer = Len(AllowedWords) - 1

 While Not ValidWord And LStart <= LEnd

 LMid = (LStart + LEnd) \ 2

 Console.WriteLine(AllowedWords(LMid))

 If AllowedWords(LMid) = Word Then

 ValidWord = True

 ElseIf Word > AllowedWords(LMid) Then

 LStart = LMid + 1

 Else

 LEnd = LMid - 1

 End If

 End While

 Return ValidWord

End Function

C#
private static bool CheckWordIsValid(string Word,

List<string> AllowedWords)

{

 bool ValidWord = false;

 int Start = 0;

 int End = AllowedWords.Count - 1;

 int Mid = 0;

 while (!ValidWord && Start <= End)

 {

 Mid = (Start + End) / 2;

 Console.WriteLine(AllowedWords[Mid]);

 if (AllowedWords[Mid] == Word)

 {

 ValidWord = true;

 }

 else if (string.Compare(Word, AllowedWords[Mid]) > 0)

 {

 Start = Mid + 1;

 }

 else

 {

 End = Mid -1;

 }

 }

 return ValidWord;

}

Java
boolean checkWordIsValid(String word, String[] allowedWords)

{

 boolean validWord = false;

 int start = 0;

 int end = allowedWords.length - 1;

 int mid = 0;

 while (!validWord && start <= end)

Page 22 of 133

 {

 mid = (start + end) / 2;

 Console.println(allowedWords[mid]);

 if (allowedWords[mid].equals(word))

 {

 validWord = true;

 }

 else if (word.compareTo(allowedWords[mid]) > 0)

 {

 start = mid + 1;

 }

 else

 {

 end = mid -1;

 }

 }

 return validWord;

}

Pascal / Delphi
function CheckWordIsValid(Word : string; AllowedWords : array

of string) : boolean;

 var

 ValidWord : boolean;

 Start, Mid, EndValue : integer;

 begin

 ValidWord := False;

 Start := 0;

 EndValue := length(AllowedWords) - 1;

 while (not(ValidWord)) and (Start <= EndValue) do

 begin

 Mid := (Start + EndValue) div 2;

 writeln(AllowedWords[Mid]);

 if AllowedWords[Mid] = Word then

 ValidWord := True

 else if Word > AllowedWords[Mid] then

 Start := Mid + 1

 else

 EndValue := Mid - 1;

 end;

 CheckWordIsValid := ValidWord;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (c)(i), including prompts on screen capture
matching those in code.
Code for part (c)(i) must be sensible.

R. if comparison words not shown in screen capture r

Screen capture(s) showing that the word “jars” was entered and the
words “MALEFICIAL”, “DONGLES”, “HAEMAGOGUE”,
“INTERMINGLE”, “LAGGER”, “JOULED”, “ISOCLINAL”, “JAUKING”,
“JACARANDA”, “JAMBEUX”, “JAPONICA”, “JAROVIZE”, “JASPER”,
“JARTA”, “JARRAH”, “JARRINGLY”, “JARS” are displayed in that order;

A. “MALEFICIAL”, “DONGOLA”, “HAEMAGOGUES”,
“INTERMINGLED”, “LAGGERS”, “JOULING”, “ISOCLINE”, “JAUNCE”,
“JACARE”, “JAMBING”, “JAPPING”, “JAROVIZING”, “JASPERISES”,
“JARVEY”, “JARRINGLY”, “JARTA”, “JARS” being displayed if

Page 23 of 133

alternative answer for mark point 5 in part (c)(i) used

ALTERNATIVE ANSWERS (for different versions of text file)

Screen capture(s) showing that the word “jars” was entered and the
words “MALEATE”, “DONDER”, “HADST”, “INTERMENDIS”, “LAGAN”,
“JOTTERS”, “ISOCHROMATIC”, “JASPERS”, “JABBING”, “JALOUSIE”,
“JAPANISES”, “JARGOONS”, “JARRED”, “JASIES”, “JARUL”, “JARS”
are displayed in that order;

A. “MALEATE”, “DONDERED”, “HAE”, “INTERMEDIUM”, “LAGANS”,
“JOTTING”, “ISOCHROMOSONES”, “JASPERWARES”, “JABBLED”,

“JALOUSING”, “JAPANIZED”, “JARINA”, “JARRINGS”, “JASMINES”,
“JARVEYS”, “JARTAS”, “JARSFUL”, “JARS” being displayed if
alternative answer for mark point 5 in part (c)(i) used

Screen capture(s) showing that the word “jars” was entered and the
words “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATION”,
“JOURNALS”, “JAMAICA”, “JEWELLERY”, “JEAN”, “JAR”, “JAY”,
“JASON”, “JARS” are displayed in that order;

A. “LAMP”, “DESK”, “GAGE”, “IDEAS”, “INVITATIONS”, “JOURNEY”,
“JAMIE”, “JEWISH”, “JEEP”, “JAVA”, “JAPAN”, “JARS” being displayed
if alternative answer for mark point 5 in part (c)(i) used

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>jars

MALEFICIAL

DONGLES

HAEMAGOGUE

INTERMINGLE

LAGGER

JOULED

ISOCLINAL

JAUKING

JACARANDA

JAMBEUX

JAPONICA

JAROVIZE

JASPER

JARTA

JARRAH

JARRINGLY

JARS

Valid word

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR

 replace the tiles you used and get three extra tiles (3) OR

 get no new tiles (4)?

>

1

Page 24 of 133

(d) (i) All marks for AO3 (programming)

1. Creating new subroutine called CalculateFrequencies with

appropriate interface; R. if spelt incorrectly I. case
2. Iterative structure that repeats 26 times (once for each letter in the

alphabet);
3. Iterative structure that looks at each word in AllowedWords;

4. Iterative structure that looks at each letter in a word and suitable
nesting for iterative structures;

5. Selection structure, inside iterative structure, that compares two
letters;
A. use of built-in functions that result in same functionality as mark
points 4 and 5;;

6. Inside iterative structure increases variable used to count
instances of a letter;

7. Displays a numeric count (even if incorrect) and the letter for each
letter in the alphabet; A. is done in sensible place in
DisplayTileValues

8. Syntactically correct call to new subroutine from
DisplayTileValues; A. any suitable place for subroutine call

Alternative answer
If answer looks at each letter in AllowedWords in turn and maintains a

count (eg in array/list) for the number of each letter found then mark
points 2 and 5 should be:
2. Creation of suitable data structure to store 26 counts.

5. Appropriate method to select count that corresponds to current
letter.

Max 7 if code contains errors
8

Python 2
def CalculateFrequencies(AllowedWords):

 print "Letter frequencies in the allowed words are:"

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 b>LetterCount += 1

 sys.stdout.write(LetterToFind + " " + LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 sys.stdout.write("Points for " + Letter + ": " +

str(Points) + "\n")

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer
def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

 Count=0

 for Word in AllowedWords:

Page 25 of 133

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 sys.stdout.write(Letter + " " + str(Count))

Alternative answer
def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 sys.stdout.write(chr(a + 65) + " " + str(Counts[a]))

Python 3
def CalculateFrequencies(AllowedWords):

 print("Letter frequencies in the allowed words are:")

 for Code in range (26):

 LetterCount = 0

 LetterToFind = chr(Code + 65)

 for Word in AllowedWords:

 for Letter in Word:

 if Letter == LetterToFind:

 LetterCount += 1

 print(LetterToFind, " ", LetterCount)

def DisplayTileValues(TileDictionary, AllowedWords):

 print()

 print("TILE VALUES")

 print()

 for Letter, Points in TileDictionary.items():

 print("Points for " + Letter + ": " + str(Points))

 print()

 CalculateFrequencies(AllowedWords)

Alternative answer
def CalculateFrequencies(AllowedWords):

 for Letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":

 Count=0

 for Word in AllowedWords:

 NumberOfTimes = Word.count(Letter)

 Count = Count + NumberOfTimes

 print(Letter,Count)

Alternative answer
def CalculateFrequencies(AllowedWords):

 Counts = []

 for a in range(26):

 Counts.append(0)

 for Word in AllowedWords:

 for Letter in Word:

 Counts[ord(Letter) - 65] += 1

 for a in range(26):

 print(chr(a + 65), Counts[a])

Visual Basic
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim LetterCount As Integer

 Dim LetterToFind As Char

 Console.WriteLine("Letter frequencies in the allowed words

are:")

Page 26 of 133

 For Code = 0 To 25

 LetterCount = 0

 LetterToFind = Chr(Code + 65)

 For Each Word In AllowedWords

 For Each Letter In Word

 If Letter = LetterToFind Then

 LetterCount += 1

 End If

 Next

 Next

 Console.WriteLine(LetterToFind & " " & LetterCount)

 Next

End Sub

Sub DisplayTileValues(ByVal TileDictionary As Dictionary(Of

Char, Integer), ByRef AllowedWords As List(Of String))

 Console.WriteLine()

 Console.WriteLine("TILE VALUES")

 Console.WriteLine()

 For Each Tile As KeyValuePair(Of Char, Integer) In

 TileDictionary

 Console.WriteLine("Points for " & Tile.Key & ": " &

Tile.Value)

 Next

 Console.WriteLine()

 CalculateFrequencies(AllowedWords)

End Sub

Alternative answer
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim NumberOfTimes, Count As Integer

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Each Letter In "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 Count = 0

 For Each Word In AllowedWords

 NumberOfTimes = Word.Split(Letter).Length - 1

 Count += NumberOfTimes

 Next

 Console.WriteLine(Letter & " " & Count)

 Next

End Sub

Alternative answer
Sub CalculateFrequencies(ByRef AllowedWords As List(Of

String))

 Dim Counts(25) As Integer

 For Count = 0 To 25

 Counts(Count) = 0

 Next

 Console.WriteLine("Letter frequencies in the allowed words

are:")

 For Each Word In AllowedWords

 For Each Letter In Word

 Counts(Asc(Letter) - 65) += 1

 Next

 Next

 For count = 0 To 25

 Console.WriteLine(Chr(count + 65) & " " & Counts(count))

 Next

End Sub

Page 27 of 133

C#
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed words

are:");

 int LetterCount = 0;

 char LetterToFind;

 for (int Code = 0; Code < 26; Code++)

 {

 LetterCount = 0;

 LetterToFind = (char)(Code + 65);

 foreach (var Word in AllowedWords)

 {

 foreach (var Letter in Word)

 {

 if (Letter == LetterToFind)

 {

 LetterCount++;

 }

 }

 }

 Console.WriteLine(LetterToFind + " " + LetterCount);

 }

}

private static void DisplayTileValues(Dictionary<char, int>

TileDictionary, List<string> AllowedWords)

{

 Console.WriteLine();

 Console.WriteLine("TILE VALUES");

 Console.WriteLine();

 char Letter;

 int Points;

 foreach (var Pair in TileDictionary)

 {

 Letter = Pair.Key;

 Points = Pair.Value;

 Console.WriteLine("Points for " + Letter + ": " + Points);

 }

 CalculateFrequencies(AllowedWords);

 Console.WriteLine();

}

Alternative answer
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 Console.WriteLine("Letter frequencies in the allowed words

are:");

 int LetterCount = 0;

 string Alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 foreach (var Letter in Alphabet)

 {

 LetterCount = 0;

 foreach (var Words in AllowedWords)

 {

 LetterCount = LetterCount + (Words.Split(Letter).Length

- 1);

 }

 Console.WriteLine(Letter + " " + LetterCount);

 }

}

Page 28 of 133

Alternative answer
private static void CalculateFrequencies(List<string>

AllowedWords)

{

 List<int> Counts = new List<int>() ;

 for (int i = 0; i < 26; i++)

 {

 Counts.Add(0);

 }

 foreach (var Words in AllowedWords)

 {

 foreach (var Letter in Words)

 {

 Counts[(int)Letter - 65]++;

 }

 }

 for (int a = 0; a < 26; a++)

 {

 char Alpha =Convert.ToChar(a + 65);

 Console.WriteLine(Alpha + " " + Counts[a]);

 }

}

Java
void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 char letterToFind;

 for (int count = 0; count < 26; count++)

 {

 letterCount = 0;

 letterToFind = (char)(65 + count);

 for(String word:allowedWords)

 {

 for(char letter : word.toCharArray())

 {

 if(letterToFind == letter)

 {

 letterCount++;

 }

 }

 }

 Console.println(letterToFind + ", Frequency: " +

letterCount);

 }

}

void displayTileValues(Map tileDictionary, String[]

allowedWords)

{

 Console.println();

 Console.println("TILE VALUES");

 Console.println();

 for (Object letter : tileDictionary.keySet())

 {

 int points = (int)tileDictionary.get(letter);

 Console.println("Points for " + letter + ": " + points);

 }

 calculateFrequencies(allowedWords);

 Console.println();

}

Alternative answer

Page 29 of 133

void calculateFrequencies(String[] allowedWords)

{

 int letterCount;

 String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 for(char letter: alphabet.toCharArray())

 {

 letterCount = 0;

 for(String word: allowedWords)

 {

 letterCount += word.split(letter + "").length - 1;

 }

 Console.println(letter + ", Frequency: " + letterCount);

 }

}

Alternative answer
void calculateFrequencies(String[] allowedWords)

{

 int[] counts = new int[26];

 for(String word: allowedWords)

 {

 for(char letter: word.toCharArray())

 {

 int letterPostion = (int)letter - 65;

 counts[letterPostion]++;

 }

 }

 for (int count = 0; count < 26; count++)

 {

 char letter = (char)(65 + count);

 Console.println(letter + ", Frequency: " + counts[count]);

 }

}

Pascal / Delphi
procedure CalculateFrequencies(AllowedWords : array of

string);

 var

 Code, LetterCount : integer;

 LetterToFind, Letter : char;

 Word : string;

 begin

 writeln('Letter frequencies in the allowed words are:');

 for Code := 0 to 25 do

 begin

 LetterCount := 0;

 LetterToFind := chr(65 + Code);

 for Word in AllowedWords do

 begin

 for Letter in Word do

 begin

 if Letter = LetterToFind then

 LetterCount := LetterCount + 1;

 end;

 end;

 writeln(LetterToFind, ' ', LetterCount);

 end;

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (d)(i), including prompts on screen capture

Page 30 of 133

matching those in code.
Code for part (d)(i) must be sensible.

Screen capture(s) showing correct list of letter frequencies are
displayed;

I. Ignore order of letter frequency pairs
I. any additional output eg headings like “Letter” and “Count”
Letter frequencies in the allowed words are:

A 188704

B 44953

C 98231

D 81731

E 275582

F 28931

G 67910

H 60702

I 220483

J 4010

K 22076

L 127865

M 70700

N 163637

O 161752

P 73286

Q 4104

R 170522

S 234673

T 159471

U 80636

V 22521

W 18393

X 6852

Y 39772

Z 11772

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

ALTERNATIVE ANSWERS (for different versions of text file)

Letter frequencies in the allowed words are:

A 188627

B 44923

C 98187

D 81686

E 275478

F 28899

G 67795

H 60627

I 220331

J 4007

K 22028

L 127814

M 70679

N 163547

O 161720

P 73267

Q 4104

R 170461

S 234473

Page 31 of 133

T 159351

U 80579

V 22509

W 18377

X 6852

Y 39760

Z 11765

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

Letter frequencies in the allowed words are:

A 5299

B 1105

C 2980

D 2482

E 7523

F 909

G 1692

H 1399

I 5391

J 178

K 569

L 3180

M 1871

N 4762

O 4177

P 1992

Q 122

R 4812

S 4999

T 4695

U 1898

V 835

W 607

X 246

Y 999

Z 128

Either:

 enter the word you would like to play OR

 press 1 to display the letter values OR

 press 4 to view the tile queue OR

 press 7 to view your tiles again OR

 press 0 to fill hand and stop the game.

>

1

(e) (i) All marks for AO3 (programming)

Modifying subroutine UpdateAfterAllowedWord:

1. Correct subroutine call to GetScoreForWordAndPrefix added in

UpdateAfterAllowedWord;

2. Result returned by GetScoreForWordAndPrefix added to
PlayerScore;

A. alternative names for subroutine GetScoreForWordAndPrefix if

Page 32 of 133

match name of subroutine created

Creating new subroutine:
3. Subroutine GetScoreForWordAndPrefix created; R. if spelt

incorrectly I. case
4. All data needed (Word, TileDictionary, AllowedWords) is

passed into subroutine via interface;

5. Integer value always returned by subroutine;

Base case in subroutine:

6. Selection structure for differentiating base case and recursive case
with suitable condition (word length of 0 // 1 // 2); R. if base case
will result in recursion

7. If base case word length is 0 then value of 0 is returned by
subroutine and there is no recursive call // if base case word length
is 1 then value of 0 is returned by subroutine and there is no
recursive call // if base case word length is 2 the subroutine returns
0 if the two-letter word is not a valid word and returns the score for
the two-letter word if it is a valid word;

Recursive case in subroutine:

8. Selection structure that contains code that adds value returned by
call to GetScoreForWord to score if word is valid; A. no call to

subroutine GetScoreForWord if correct code to calculate score

included in sensible place in GetScoreForWordAndPrefix

subroutine R. if no check for word being valid
9. Call to GetScoreForWordAndPrefix;

10. Result from recursive call added to score;
11. Recursion will eventually reach base case as recursive call has a

parameter that is word with last letter removed;

How to mark question if no attempt to use recursion:

Mark points 1-5 same as for recursive attempt. No marks awarded for
mark points 6-11, instead award marks as appropriate for mark points
12-14.
12. Adds the score for the original word to the score once // sets the

initial score to be the score for the original word; A. no call to
subroutine GetScoreForWord if correct code to calculate score

included in sensible place in GetScoreForWordAndPrefix

subroutine. Note for examiners: there is no need for the answer
to check if the original word is valid

13. Iterative structure that will repeat n − 1 times where n is the length

of the word; A. n − 2 A. n

14. Inside iterative structure adds score for current prefix word, if it is a
valid word, to score once; A. no call to GetScoreForWord if own

code to calculate score is correct

Max 10 if code contains errors

Max 8 if recursion not used in an appropriate way
11

Python 2
def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

Page 33 of 133

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) - 1],

TileDictionary, AllowedWords)

 return Score

Alternative answer

def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

 return Score

Python 3
def UpdateAfterAllowedWord(Word, PlayerTiles, PlayerScore,

PlayerTilesPlayed, TileDictionary, AllowedWords):

 PlayerTilesPlayed += len(Word)

 for Letter in Word:

 PlayerTiles = PlayerTiles.replace(Letter, "", 1)

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

 return PlayerTiles, PlayerScore, PlayerTilesPlayed

def GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords):

 if len(Word) <= 1:

 return 0

 else:

 Score = 0

 if CheckWordIsValid(Word, AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 Score += GetScoreForWordAndPrefix(Word[0:len(Word) - 1],

TileDictionary, AllowedWords)

 return Score

Alternative answer
def GetScoreForWordAndPrefix(Word,TileDictionary,

AllowedWords):

 Score = 0

 if CheckWordIsValid(Word,AllowedWords):

 Score += GetScoreForWord(Word, TileDictionary)

 if len(Word[:-1]) > 0:

 Score +=GetScoreForWordAndPrefix(Word[:-1],

TileDictionary,AllowedWords)

Page 34 of 133

 return Score

Visual Basic
Sub UpdateAfterAllowedWord(ByVal Word As String, ByRef

PlayerTiles As String, ByRef PlayerScore As Integer, ByRef

PlayerTilesPlayed As Integer, ByVal TileDictionary As

Dictionary(Of Char, Integer), ByRef AllowedWords As List(Of

String))

 PlayerTilesPlayed += Len(Word)

 For Each Letter In Word

 PlayerTiles = Replace(PlayerTiles, Letter, "", , 1)

 Next

 PlayerScore += GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords)

End Sub

Function GetScoreForWordAndPrefix(ByVal Word As String, ByVal

TileDictionary As Dictionary(Of Char, Integer), ByRef

AllowedWords As List(Of String)) As Integer

 Dim Score As Integer

 If Len(Word) <= 1 Then

 Return 0

 Else

 Score = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 Score += GetScoreForWordAndPrefix(Mid(Word, 1, Len(Word)

- 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

Alternative answer
Function GetScoreForWordAndPrefix(ByVal Word As String, ByVal

TileDictionary As Dictionary(Of Char, Integer), ByRef

AllowedWords As List(Of String)) As Integer

 Dim Score As Integer = 0

 If CheckWordIsValid(Word, AllowedWords) Then

 Score += GetScoreForWord(Word, TileDictionary)

 End If

 If Len(Word) - 1 > 0 Then

 Score += GetScoreForWordAndPrefix(Mid(Word, 1, Len(Word)

- 1), TileDictionary, AllowedWords)

 End If

 Return Score

End Function

C#
private static void UpdateAfterAllowedWord(string Word, ref

string PlayerTiles, ref int PlayerScore, ref int

PlayerTilesPlayed, Dictionary<char, int> TileDictionary,

List<string> AllowedWords)

{

 PlayerTilesPlayed = PlayerTilesPlayed + Word.Length;

 foreach (var Letter in Word)

 {

 PlayerTiles =

PlayerTiles.Remove(PlayerTiles.IndexOf(Letter), 1);

 }

 PlayerScore = PlayerScore + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

}

Page 35 of 133

private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (Word.Length <= 1)

 {

 return 0;

 }

 else

 {

 Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

 }

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 return Score;

 }

}

Alternative answer
private static int GetScoreForWordAndPrefix(string Word,

Dictionary<char, int> TileDictionary, List<string>

AllowedWords)

{

 int Score = 0;

 if (CheckWordIsValid(Word, AllowedWords))

 {

 Score = Score + GetScoreForWord(Word, TileDictionary);

 }

 if (Word.Remove(Word.Length - 1).Length > 0)

 {

 Score = Score +

GetScoreForWordAndPrefix(Word.Remove(Word.Length - 1),

TileDictionary, AllowedWords);

 }

 return Score;

}

Java
int getScoreForWordAndPrefix(String word, Map tileDictionary,

String[] allowedWords)

{

 int score = 0;

 if(word.length() < 2)

 {

 return 0;

 }

 else

 {

 if(checkWordIsValid(word, allowedWords))

 {

 score = getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 return score + getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

 }

}

Page 36 of 133

void updateAfterAllowedWord(String word, Tiles

playerTiles,

 Score playerScore, TileCount playerTilesPlayed, Map

tileDictionary,

 String[] allowedWords)

{

 playerTilesPlayed.numberOfTiles += word.length();

 for(char letter : word.toCharArray())

 {

 playerTiles.playerTiles =

playerTiles.playerTiles.replaceFirst(letter+"", "");

 }

 playerScore.score += getScoreForWordAndPrefix(word,

tileDictionary, allowedWords);

}

Alternative answer
int getScoreForWordAndPrefix(String word, Map tileDictionary,

String[] allowedWords)

{

 int score = 0;

 if(checkWordIsValid(word, allowedWords))

 {

 score += getScoreForWord(word, tileDictionary);

 }

 word = word.substring(0, word.length()-1);

 if(word.length()>1)

 {

 score += getScoreForWordAndPrefix(word, tileDictionary,

allowedWords);

 }

 return score;

}

Pascal / Delphi
function GetScoreForWordAndPrefix(Word : string;

TileDictionary : TileDictionary; AllowedWords : array of

string) : integer;

 var

 Score : integer;

 begin

 if length(word) <= 1 then

 Score := 0

 else

 begin

 Score := 0;

 if CheckWordIsValid(Word, AllowedWords) then

 Score := Score + GetScoreForWord(Word,

TileDictionary);

 Delete(Word,length(Word),1);

 Score := Score + GetScoreForWordAndPrefix(Word,

TileDictionary, AllowedWords);

 end;

 GetScoreForWordAndPrefix := Score;

 end;

procedure UpdateAfterAllowedWord(Word : string; var

PlayerTiles : string; var PlayerScore : integer; var

PlayerTilesPlayed : integer; TileDictionary : TileDictionary;

var AllowedWords : array of string);

 var

 Letter : Char;

 begin

Page 37 of 133

 PlayerTilesPlayed := PlayerTilesPlayed + length(Word);

 for Letter in Word do

 Delete(PlayerTiles,pos(letter, PlayerTiles),1);

 PlayerScore := PlayerScore +

GetScoreForWordAndPrefix(Word, TileDictionary,

AllowedWords);

 end;

(ii) Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from part (e)(i), including prompts on screen capture
matching those in code.
Code for part (e)(i) must be sensible.

Screen capture(s) showing that the word abandon was entered and the
new score of 78 is displayed;

Do you want to:

 replace the tiles you used (1) OR

 get three extra tiles (2) OR replace the tiles you used

and get three extra tiles (3) OR

 get no new tiles (4)?

>4

Your word was: ABANDON

Your new score is: 78

You have played 7 tiles so far in this game.

Press Enter to continue

1

[37]

Q7.
(a) Mark is for AO1 (knowledge)

A subroutine that calls itself;
1

(b) Mark is for AO1 (understanding)
When target equals node // (When target does not equal node and) node is a
leaf // node = target;

1

(c) Marks are for AO2 (apply)

Function Call Output

TreeSearch(Olivia, Norbert) (Visited) Norbert;

TreeSearch(Olivia, Phil); (Visited) Phil;

MAX 2 if any errors eg additional outputs / function calls after output of Phil

I. minor spelling and punctuation errors
3

Page 38 of 133

[5]

Q8.
(a) (i) Marks are for AO3 (programming)

1 mark: 1. tests for lower bound and displays error message if below
1 mark: 2. tests for upper bound and displays error message if above
1 mark: 3. Upper bound test uses LandscapeSize instead of data value

of 14/15 A. in use of incorrect condition
1 mark: 4. 1-3 happen repeatedly until valid input (for the upper and
lower bounds used in the code provided) and forces re-entry of data
each time

A. use of pre or post-conditioned loop

MAX 3 if error message is not Coordinate is outside of landscape,

please try again A. minor typos in error message I. case I. spacing I.

minor punctuation differences

MAX 2 if new code has been added to Simulation constructor instead

of InputCoordinate method
4

VB.NET
Do

 Console.Write(" Input " & CoordinateName & " coordinate: ")

 Coordinate = CInt(Console.ReadLine())

 If Coordinate < 0 Or Coordinate >= LandscapeSize Then

 Console.WriteLine("Coordinate is outside of landscape,

please try again.")

 End If

Loop While Coordinate < 0 Or Coordinate >= LandscapeSize

Alternative answer

Do

 Console.Write(" Input " & CoordinateName & " coordinate: ")

 Coordinate = CInt(Console.ReadLine())

 If Coordinate < 0 Or Coordinate >= LandscapeSize Then

 Console.WriteLine("Coordinate is outside of landscape,

please try again.")

 End If

Loop Until Coordinate >= 0 And Coordinate < LandscapeSize

PYTHON 2
def __InputCoordinate(self, CoordinateName):

 Coordinate = int(raw_input(" Input " + CoordinateName + "

coordinate:"))

 while Coordinate < 0 or Coordinate >= self.__LandscapeSize:

 Coordinate = int(raw_input("Coordinate is outside of

landscape, please try again."))

 return Coordinate

PYTHON 3
def __InputCoordinate(self, CoordinateName):

 Coordinate = int(input(" Input " + CoordinateName + "

coordinate:"))

 while Coordinate < 0 or Coordinate >= self.__LandscapeSize:

 Coordinate = int(input("Coordinate is outside of

Page 39 of 133

landscape, please try again."))

 return Coordinate

C#
do

{

 Console.Write(" Input " + Coordinatename + " coordinate: ");

 Coordinate = Convert.ToInt32(Console.ReadLine());

 if ((Coordinate < 0) || (Coordinate >= LandscapeSize))

 {

 Console.WriteLine("Coordinate is outside of landscape,

please try again.");

 }

} while ((Coordinate < 0) || (Coordinate >= LandscapeSize));

PASCAL
repeat

 write(' Input ' , CoordinateName, ' coordinate: ');

 readln(Coordinate);

 if (Coordinate < 0) or (Coordinate >= LandscapeSize) then

 writeln('Coordinate is outside of landscape, please try

again.');

until (Coordinate >= 0) and (Coordinate < LandscapeSize);

JAVA
private int InputCoordinate(char CoordinateName)

{

 int Coordinate;

 do

 {

 Coordinate = Console.readInteger(" Input " +

CoordinateName + " coordinate: ");

 if (Coordinate >= LandscapeSize || Coordinate < 0)

 {

 Console.println("Coordinate is outside of landscape,

please try again.");

 }

 }while (Coordinate >= LandscapeSize || Coordinate < 0);

 return Coordinate;

}

(ii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (a)(i), including error message. Code for part
(a)(i) must be sensible.

1 mark: Screen capture(s) showing the required sequence of inputs
(-1, 15, 0), the correct error message being displayed for -1 and 15,

and that 0 has been accepted as the program has displayed the prompt

for the y coordinate to be input.

A. alternative error messages if match code for part (a)(i)
1

Page 40 of 133

(b) (i) Marks are for AO3 (programming)

1 mark: New subroutine created, with correct name, that overrides the
subroutine in the Animal class

I. private, protected, public modifiers

1 mark: 2. CalculateNewAge subroutine in Animal class is always

called

1 mark: 3. Check made on gender of rabbit, and calculations done
differently for each gender
I. incorrect calculations

1 mark: 4. Probability of death by other causes calculated correctly for
male rabbits
1 mark: 5. Probability of death by other causes calculated correctly for
female rabbits

5

VB.NET
Public Overrides Sub CalculateNewAge()

 MyBase.CalculateNewAge()

 If Gender = Genders.Male Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.5

 Else

 If Age >= 2 Then

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.05

 End If

 End If

End Sub

A. If Age > 1 Then instead of If Age >= 2 Then

PYTHON 2
def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.5

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.05

PYTHON 3
def CalculateNewAge(self):

 super(Rabbit, self).CalculateNewAge()

 if self.__Gender == Genders.Male:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses * 1.5

 else:

 if self._Age >= 2:

 self._ProbabilityOfDeathOtherCauses =

self._ProbabilityOfDeathOtherCauses + 0.05

C#
public override void CalculateNewAge()

{

 base.CalculateNewAge();

 if (Gender == Genders.Male)

Page 41 of 133

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses * 1.5;

 }

 else

 {

 if (Age >= 2)

 {

 ProbabilityOfDeathOtherCauses =

ProbabilityOfDeathOtherCauses + 0.5;

 }

 }

}

PASCAL
Procedure Rabbit.CalculateNewAge();

 begin

 inherited;

 if Gender = Male then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses * 1.5

 else

 if Age >= 2 then

 ProbabilityOfDeathOtherCauses :=

ProbabilityOfDeathOtherCauses + 0.05;

 end;

JAVA
@Override

public void CalculateNewAge()

{

 super.CalculateNewAge();

 if (Gender == Genders.Male)

 {

 ProbabilityOfDeathOtherCauses *= 1.5;

 }

 else if(Age >= 2)

 {

 ProbabilityOfDeathOtherCauses += 0.05;

 }

}

(ii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (b)(i). Code for part (b)(i) must be sensible.

1 mark: Any screen capture(s) showing the correct probability of death
by other causes for a male rabbit (0.11 to 2dp) and a female rabbit (0.1);

Example:

1

(c) (i) Marks are for AO3 (programming)

1 mark: Structure set-up to store the representation of terrain for a
location
1 mark: Type of terrain is passed to constructor as parameter
1 mark: Type of terrain stored into attribute by constructor A. default

Page 42 of 133

value, that makes type of terrain for location clear, instead of value from
a parameter

3

VB.NET
Class Location

 Public Fox As Fox

 Public Warren As Warren

 Public Terrain As Char

 Public Sub New(ByVal TerrainType As Char)

 Fox = Nothing

 Warren = Nothing

 Terrain = TerrainType

 End Sub

End Class

PYTHON 2
class Location:

 def __init__(self, TerrainType):

 self.Fox = None

 self.Warren = None

 self.Terrain = TerrainType

PYTHON 3
class Location:

 def __init__(self, TerrainType):

 self.Fox = None

 self.Warren = None

 self.Terrain = TerrainType

C#
class Location

{

 public Fox Fox;

 public Warren Warren;

 public char Terrain;

 public Location(char Terraintype)

 {

 Fox = null;

 Warren = null;

 Terrain = Terraintype;

 }

}

PASCAL
type

 Location = class

 Fox : Fox;

 Warren : Warren;

 Terrain : char;

 constructor New(TerrainType : char);

 end;

constructor Location.New(TerrainType : char);

 begin

 Fox := nil;

 Warren := nil;

 Terrain := TerrainType;

 end;

Page 43 of 133

JAVA
class Location

{

 public Fox Fox;

 public Warren Warren;

 public char Terrain;

 public Location(char Terrain)

 {

 Fox = null;

 Warren = null;

 this.Terrain = Terrain;

 }

}

(ii) Marks are for AO3 (programming)

1 mark: 1. An indicator for type of terrain will be stored for every location
I. wrong type of terrain in a location
R. if indicators other than R or L used
I. case of indicators

1 mark: 2. Vertical river created in column 5
1 mark: 3. Horizontal river created in row 2
MAX 1 FOR 2 & 3 if only creates a river when foxes & warrens are in
default locations
MAX 2 if creates any rivers in incorrect locations

3

VB.NET
For x = 0 To LandscapeSize - 1

 For y = 0 To LandscapeSize - 1

 If x = 5 Or y = 2 Then

 Landscape(x, y) = New Location("R")

 Else

 Landscape(x, y) = New Location("L")

 End If

 Next

Next

PYTHON 2
def __CreateLandscapeAndAnimals(self, InitialWarrenCount,

InitialFoxCount, FixedInitialLocations):

 for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 5 or y == 2:

 self.__Landscape[x][y] = Location("R")

 else:

 self.__Landscape[x][y] = Location("L")

 if FixedInitialLocations:

...

PYTHON 3
def __CreateLandscapeAndAnimals(self, InitialWarrenCount,

InitialFoxCount, FixedInitialLocations):

 for x in range (0, self.__LandscapeSize):

 for y in range (0, self.__LandscapeSize):

 if x == 5 or y == 2:

 self.__Landscape[x][y] = Location("R")

 else:

 self.__Landscape[x][y] = Location("L")

 if FixedInitialLocations:

Page 44 of 133

...

C#
for (int x = 0; x < LandscapeSize; x++)

{

 for (int y = 0; y < LandscapeSize; y++)

 {

 if ((x == 5) || (y == 2))

 {

 Landscape[x, y] = new Location('R');

 }

 else

 {

 Landscape[x, y] = new Location('L');

 }

 }

}

PASCAL
for x := 0 to LandscapeSize - 1 do

 for y := 0 to LandscapeSize - 1 do

 if (x = 5) or (y = 2) then

 Landscape[x][y] := Location.New('R')

 else

 Landscape[x][y] := Location.New('L');

JAVA
for(int x = 0 ; x < LandscapeSize; x++)

{

 for(int y = 0; y < LandscapeSize; y++)

 {

 if(x==5||y==2)

 {

 Landscape[x][y] = new Location('R');

 }

 else

 {

 Landscape[x][y] = new Location('L');

 }

 }

}

(iii) Marks are for AO3 (programming)

1 mark: R/L, or other indicator as long as it is clear what the type of
terrain is, displayed in each location (could be different letters, use of
different colours) A. type of terrain not displayed if location contains a
fox

1 mark: Row containing column indices matches new display of
landscape I. number of dashes not adjusted to match new width R. if
terrain indicators not displayed A. no adjustment made if indicators for

terrain used mean no adjustment to width of display for terrain was
needed

2

VB.NET
Private Sub DrawLandscape()

 Console.WriteLine()

 Console.WriteLine("TIME PERIOD: " & TimePeriod)

 Console.WriteLine()

 Console.Write(" ")

Page 45 of 133

 For x = 0 To LandscapeSize - 1

 Console.Write(" ")

 If x < 10 Then

 Console.Write(" ")

 End If

 Console.Write(x & " |")

 Next

 Console.WriteLine()

 For x = 0 To LandscapeSize * 5 + 3 'CHANGE MADE HERE

 Console.Write("-")

 Next

 Console.WriteLine()

 For y = 0 To LandscapeSize - 1

 If y < 10 Then

 Console.Write(" ")

 End If

 Console.Write(" " & y & "|")

 For x = 0 To LandscapeSize - 1

 If Not Me.Landscape(x, y).Warren Is Nothing Then

 If Me.Landscape(x, y).Warren.GetRabbitCount() < 10

Then

 Console.Write(" ")

 End If

 Console.Write(Landscape(x,

y).Warren.GetRabbitCount())

 Else

 Console.Write(" ")

 End If

 If Not Me.Landscape(x, y).Fox Is Nothing Then

 Console.Write("F")

 Else

 Console.Write(" ")

 End If

 Console.Write(Landscape(x, y).Terrain)

 Console.Write("|")

 Next

 Console.WriteLine()

 Next

End Sub

PYTHON 2
def __DrawLandscape(self):

 print

 print "TIME PERIOD:", str(self.__TimePeriod)

 print

 sys.stdout.write(" ")

 for x in range (0, self.__LandscapeSize):

 sys.stdout.write(" ")

 if x < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(x) + " |")

 print

 for x in range (0, self.__LandscapeSize * 5 + 3): #CHANGED

4 TO 5

 sys.stdout.write("-")

 print

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 sys.stdout.write(" ")

 sys.stdout.write(str(y) + "|")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if self.__Landscape[x][y].Warren.GetRabbitCount() <

10:

Page 46 of 133

 sys.stdout.write(" ")

sys.stdout.write(self.__Landscape[x][y].Warren.GetRabbitCou

nt())

 else:

 sys.stdout.write(" ")

 if not self.__Landscape[x][y].Fox is None:

 sys.stdout.write("F")

 else:

 sys.stdout.write(" ")

 sys.stdout.write(self.__Landscape[x][y].Terrain)

 sys.stdout.write("|")

 print

PYTHON 3
def __DrawLandscape(self):

 print()

 print("TIME PERIOD:", self.__TimePeriod)

 print()

 print(" ", end = "")

 for x in range (0, self.__LandscapeSize):

 print(" ", end = "")

 if x < 10:

 print(" ", end = "")

 print(x, "|", end = "")

 print()

 for x in range (0, self.__LandscapeSize * 5 + 3): #CHANGE

 print("-", end = "")

 print()

 for y in range (0, self.__LandscapeSize):

 if y < 10:

 print(" ", end = "")

 print("", y, "|", sep = "", end = "")

 for x in range (0, self.__LandscapeSize):

 if not self.__Landscape[x][y].Warren is None:

 if self.__Landscape[x][y].Warren.GetRabbitCount() <

10:

 print(" ", end = "")

 print(self.__Landscape[x][y].Warren.GetRabbitCount(

), end = "")

 else:

 print(" ", end = "")

 if not self.__Landscape[x][y].Fox is None:

 print("F", end = "")

 else:

 print(" ", end = "")

 print(self.__Landscape[x][y].Terrain, end = "")

 print("|", end = "")

 print()

C#
private void DrawLandscape()

{

 Console.WriteLine();

 Console.WriteLine("TIME PERIOD: "+TimePeriod);

 Console.WriteLine();

 Console.Write(" ");

 for (int x = 0; x < LandscapeSize; x++)

 {

 Console.Write(" ");

 if (x < 10) { Console.Write(" "); }

 Console.Write(x + " |");

 }

Page 47 of 133

 Console.WriteLine();

 for (int x = 0; x <= LandscapeSize * 5 + 3; x++)

 {

 Console.Write("-");

 }

 Console.WriteLine();

 for (int y = 0; y < LandscapeSize; y++)

 {

 if (y < 10) { Console.Write(" "); }

 Console.Write(" " + y + "|");

 for (int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x, y].Warren != null)

 {

 if (Landscape[x, y].Warren.GetRabbitCount() < 10)

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x,

y].Warren.GetRabbitCount());

 }

 else { Console.Write(" "); }

 if (Landscape[x, y].Fox != null)

 {

 Console.Write("F");

 }

 else

 {

 Console.Write(" ");

 }

 Console.Write(Landscape[x, y].Terrain);

 Console.Write("|");

 }

 Console.WriteLine();

 }

}

PASCAL
procedure Simulation.DrawLandscape();

 var

 x : integer;

 y : integer;

 begin

 writeln;

 writeln('TIME PERIOD: ', TimePeriod);

 writeln;

 write(' ');

 for x := 0 to LandscapeSize - 1 do

 begin

 write(' ');

 if x < 10 then

 write(' ');

 write(x, ' |');

 end;

 writeln;

 for x:=0 to LandscapeSize * 5 + 3 do //CHANGE MADE HERE

 write('-');

 writeln;

 for y := 0 to LandscapeSize - 1 do

 begin

 if y < 10 then

 write(' ');

 write(' ', y, '|');

 for x:= 0 to LandscapeSize - 1 do

Page 48 of 133

 begin

 if not(self.Landscape[x][y].Warren = nil) then

 begin

 if

self.Landscape[x][y].Warren.GetRabbitCount() < 10 then

 write(' ');

 write(Landscape[x][y].Warren.GetRabbitCount

());

 end

 else

 write(' ');

 if not(self.Landscape[x][y].fox = nil) then

 write('F')

 else

 write(' ');

 write(Landscape[x][y].Terrain);

 write('|');

 end;

 writeln;

 end;

 end;

JAVA
private void DrawLandscape()

{

 Console.println();

 Console.println("TIME PERIOD: " + TimePeriod);

 Console.println();

 Console.print(" ");

 for(int x = 0; x < LandscapeSize; x++)

 {

 Console.print(" ");

 if (x < 10)

 {

 Console.print(" ");

 }

 Console.print(x + " |");

 }

 Console.println();

 for(int x = 0; x < LandscapeSize * 5 + 4; x++) //Change made

here

 {

 Console.print("-");

 }

 Console.println();

 for(int y = 0; y < LandscapeSize; y++)

 {

 if(y < 10)

 {

 Console.print(" ");

 }

 Console.print(" " + y + "|");

 for(int x = 0; x < LandscapeSize; x++)

 {

 if (Landscape[x][y].Warren != null)

 {

 if (Landscape[x][y].Warren.GetRabbitCount() < 10)

 {

 Console.print(" ");

 }

Console.print(Landscape[x][y].Warren.GetRabbitCount());

 }

Page 49 of 133

 else

 {

 Console.print(" ");

 }

 if (Landscape[x][y].Fox != null)

 {

 Console.print("F");

 }

 else

 {

 Console.print(" ");

 }

 Console.print(Landscape[x][y].Terrain);

 Console.print("|");

 }

 Console.println();

 }

}

(iv) Marks are for AO3 (programming)

1 mark: Warren/fox will not be placed in a river

1 mark: Warren will not be placed where there is a warren // fox will not
be placed where there is a fox
R. if no sensible attempt at preventing warren/fox from being placed in a
river

1 mark: Fully correct logic in second subroutine
3

VB.NET
Private Sub CreateNewWarren()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Warren Is Nothing Or

Landscape(x, y).Terrain = "R"

 If ShowDetail Then

 Console.WriteLine("New Warren at (" & x & "," & y & ")")

 End If

 Landscape(x, y).Warren = New Warren(Variability)

 WarrenCount += 1

End Sub

Private Sub CreateNewFox()

 Dim x As Integer

 Dim y As Integer

 Do

 x = Rnd.Next(0, LandscapeSize)

 y = Rnd.Next(0, LandscapeSize)

 Loop While Not Landscape(x, y).Fox Is Nothing Or Landscape(x,

y).Terrain = "R"

 If ShowDetail Then

 Console.WriteLine(" New Fox at (" & x & "," & y & ")")

 End If

 Landscape(x, y).Fox = New Fox(Variability)

 FoxCount += 1

End Sub

Page 50 of 133

PYTHON 2
def __CreateNewWarren(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Warren is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write("New Warren at (" + str(x) + "," + str(y)

+ ")")

 self.__Landscape[x][y].Warren = Warren(self.__Variability)

 self.__WarrenCount += 1

def __CreateNewFox(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 sys.stdout.write(" New Fox at (" + str(x) + "," + str(y)

+ ")")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

PYTHON 3
def __CreateNewWarren(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Warren is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 print("New Warren at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Warren = Warren(self.__Variability)

 self.__WarrenCount += 1

def __CreateNewFox(self):

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 while not self.__Landscape[x][y].Fox is None or

self.__Landscape[x][y].Terrain == "R":

 x = random.randint(0, self.__LandscapeSize - 1)

 y = random.randint(0, self.__LandscapeSize - 1)

 if self.__ShowDetail:

 print(" New Fox at (", x, ",", y, ")", sep = "")

 self.__Landscape[x][y].Fox = Fox(self.__Variability)

 self.__FoxCount += 1

C#
private void CreateNewWarren()

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Warren != null) || (Landscape[x,

y].Terrain == 'R'));

 if (ShowDetail)

Page 51 of 133

 {

 Console.WriteLine("New Warren at (" + x + "," + y + ")");

 }

 Landscape[x, y].Warren = new Warren(Variability);

 WarrenCount++;

}

private void CreateNewFox()

{

 int x, y;

 do

 {

 x = Rnd.Next(0, LandscapeSize);

 y = Rnd.Next(0, LandscapeSize);

 } while ((Landscape[x, y].Fox != null) || (Landscape[x,

y].Terrain == 'R'));

 if (ShowDetail) { Console.WriteLine(" New Fox at (" + x + ","

+ y + ")"); }

 Landscape[x, y].Fox = new Fox(Variability);

 FoxCount++;

}

PASCAL
procedure Simulation.CreateNewWarren();

 var

 x : integer;

 y : integer;

 begin

 repeat

 x := random(LandscapeSize);

 y := random(LandscapeSize);

 until (Landscape[x][y].Warren = Nil) and

(not(Landscape[x][y].Terrain = 'R'));

 if ShowDetail then

 writeln('New Warren at (', x, ',', y, ')');

 Landscape[x][y].Warren := Warren.New(Variability);

 inc(WarrenCount);

 end;

procedure Simulation.CreateNewFox();

 var

 x : integer;

 y : integer;

 begin

 randomize();

 repeat

 x := Random(LandscapeSize);

 y := Random(LandscapeSize);

 until (Landscape[x][y].fox = Nil) and

(not(Landscape[x][y].Terrain = 'R'));

 if ShowDetail then

 writeln(' New Fox at (',x, ',',y, ')');

 Landscape[x][y].Fox := Fox.New(Variability);

 inc(FoxCount);

 end;

JAVA
private void CreateNewWarren()

{

 int x;

 int y;

 do

 {

Page 52 of 133

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 } while (Landscape[x][y].Warren != null ||

Landscape[x][y].Terrain == 'R');

 if (ShowDetail)

 {

 Console.println("New Warren at (" + x + "," + y + ")");

 }

 Landscape[x][y].Warren = new Warren(Variability);

 WarrenCount += 1;

}

private void CreateNewFox()

{

 int x;

 int y;

 do

 {

 x = Rnd.nextInt(LandscapeSize);

 y = Rnd.nextInt(LandscapeSize);

 }while (Landscape[x][y].Fox != null ||

Landscape[x][y].Terrain == 'R';

 if (ShowDetail)

 {

 Console.println(" New Fox at (" + x + "," + y + ")");

 }

 Landscape[x][y].Fox = new Fox(Variability);

 FoxCount += 1;

}

(v) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (c)(i) to (c)(iv). Code for these parts must be
sensible

1 mark: Screen capture(s) indicating which locations are land and which
are rivers
A. incorrect location of rivers if these match those set in parts (c)(ii)

1

(d) (i) Marks are for AO3 (programming)

Structure of subroutine:
1. 1 mark: Subroutine created with correct name

CheckIfPathCrossesRiver I. private/public/protected modifiers

2. 1 mark: Subroutine has four parameters of appropriate data type,
which are the coordinates of the two locations to check the path
between I. self parameter in Python answers I. additional

parameters
3. 1 mark: Subroutine returns a Boolean value

Page 53 of 133

Horizontal or vertical:
4. 1 mark: Repetition structure created that has start and end points

that correspond to one coordinate of the locations that need to be
checked on the column/row A. if start and end points include the
columns/rows that contain the fox and warren, even though this is
not necessary

5. 1 mark: Repetition structure will work regardless of whether or not
the fox is to the left/right of or above/below the warren (depending
on which direction is being checked) A. use of separate repetition

structures to achieve this
6. 1 mark: Within repetition structure a check is made of the type of

terrain at the appropriate coordinate
7. 1 mark: If a section of river is detected, subroutine will return true

R. if subroutine would return true when the path does not cross a
river

Other of vertical or horizontal:
8. 1 mark: Correct cells are checked regardless of whether or not the

fox is to the left/right of or above/below the warren A. if start and/or
end points include the columns/rows that contain the fox and
warren

9. 1 mark: If a river is detected, subroutine will return true; R. if

subroutine would return true when the path does not cross a river

MAX 7 if 2 and 5 are used instead of checking terrain type
MAX 5 if code does not use each of the relevant coordinates between
fox and warren

9

VB.NET
Private Function CheckIfPathCrossesRiver(ByVal FoxX As

Integer,

ByVal FoxY As Integer, ByVal WarrenX As Integer, ByVal WarrenY

As Integer) As Boolean

 Dim xChange As Integer

 Dim yChange As Integer

 Dim x As Integer

 Dim y As Integer

 If FoxX - WarrenX > 0 Then

 xChange = 1

 Else

 xChange = -1

 End If

 If WarrenX <> FoxX Then

 x = WarrenX + xChange

 While x <> FoxX

 If Landscape(x, FoxY).Terrain = "R" Then

 Return True

 End If

 x += xChange

 End While

 End If

 If FoxY - WarrenY > 0 Then

 yChange = 1

 Else

 yChange = -1

 End If

 If WarrenY <> FoxY Then

 y = WarrenY + yChange

 While y <> FoxY

 If Landscape(FoxX, y).Terrain = "R" Then

Page 54 of 133

 Return True

 End If

 y += yChange

 End While

 End If

 Return False

End Function

PYTHON 2
def CheckIfPathCrossesRiver(self, FoxX, FoxY, WarrenX,

WarrenY):

 if FoxX - WarrenX > 0:

 xChange = 1

 else:

 xChange = -1

 if WarrenX != FoxX:

 x = WarrenX + xChange

 while x != FoxX:

 if self.__Landscape[x][FoxY].Terrain == "R":

 return True

 x += xChange

 if FoxY - WarrenY > 0:

 yChange = 1

 else:

 yChange = -1

 if WarrenY != FoxY:

 y = WarrenY + yChange

 while y != FoxY:

 if self.__Landscape[FoxX][y].Terrain == "R":

 return True

 y += yChange

 return False

PYTHON 3
def CheckIfPathCrossesRiver(self, FoxX, FoxY, WarrenX,

WarrenY):

 if FoxX - WarrenX > 0:

 xChange = 1

 else:

 xChange = -1

 if WarrenX != FoxX:

 x = WarrenX + xChange

 while x != FoxX:

 if self.__Landscape[x][FoxY].Terrain == "R":

 return True

 x += xChange

 if FoxY - WarrenY > 0:

 yChange = 1

 else:

 yChange = -1

 if WarrenY != FoxY:

 y = WarrenY + yChange

 while y != FoxY:

 if self.__Landscape[FoxX][y].Terrain == "R":

 return True

 y += yChange

 return False

C#
private bool CheckIfPathCrossesRiver(int FoxX, int FoxY, int

WarrenX, int WarrenY)

{

 int xChange, yChange, x, y;

Page 55 of 133

 if (FoxX - WarrenX > 0)

 {

 xChange = 1;

 }

 else

 {

 xChange = -1;

 }

 if (WarrenX != FoxX)

 {

 x = WarrenX + xChange;

 while(x != FoxX)

 {

 if (Landscape[x, FoxY].Terrain == 'R')

 {

 return true;

 }

 x += xChange;

 }

 }

 if (FoxY - WarrenY > 0)

 {

 yChange = 1;

 }

 else

 {

 yChange = -1;

 }

 if (WarrenY != FoxY)

 {

 y = WarrenY + yChange;

 while(y != FoxY)

 {

 if (Landscape[FoxX, y].Terrain == 'R')

 {

 return true;

 }

 y += yChange;

 }

 }

 return false;

}

PASCAL
function Simulation.CheckIfPathCrossesRiver(FoxX : integer;

Foxy : integer; WarrenX : integer; WarrenY : integer) : boolean;

 var

 xChange : integer;

 yChange : integer;

 x : integer;

 y : integer;

 Answer : boolean;

 begin

 Answer := False;

 if (FoxX - WarrenX) > 0 then

 xChange := 1

 else

 xChange := -1;

 if WarrenX <> FoxX then

 begin

 x := warrenX + xChange;

 if x <> FoxX then

 repeat

 if Landscape[x][FoxY].Terrain = 'R' then

Page 56 of 133

 Answer := True;

 x := x + xChange;

 until x = FoxX;

 end;

 if (FoxY - WarrenY) > 0 then

 yChange := 1

 else

 yChange := -1;

 if WarrenY <> FoxY then

 begin

 y := WarrenY + yChange;

 if y <> FoxY then

 repeat

 if Landscape[FoxX][y].Terrain = 'R' then

 Answer := True;

 y := y + yChange;

 until y = FoxY;

 end;

 CheckIfPathCrossesRiver := Answer;

 end;

JAVA
private boolean CheckIfPathCrossesRiver(int FoxX, int FoxY,

int WarrenX, int WarrenY)

{

 int xChange, yChange;

 if (FoxX-WarrenX > 0)

 {

 xChange = 1;

 }

 else

 {

 xChange = -1;

 }

 if (WarrenX != FoxX)

 {

 for (int x = WarrenX + xChange; x != FoxX; x = x + xChange)

 {

 if (Landscape[x][FoxY].Terrain == 'R')

 {

 return true;

 }

 }

 }

 if (FoxY - WarrenY > 0)

 {

 yChange = 1;

 }

 else

 {

 yChange = -1;

 }

 if (WarrenY != FoxY)

 {

 for (int y = WarrenY + yChange; y != FoxY; y = y + yChange)

 {

 if (Landscape[FoxX][y].Terrain == 'R')

 {

 return true;

 }

 }

 }

 return false;

}

Page 57 of 133

(ii) Marks are for AO3 (programming)
1 mark: CheckIfPathCrossesRiver subroutine is called within the two

repetition structures, with the coordinates of the warren and fox as
parameters
1 mark: If the subroutine returns true, the fox will not eat any rabbits in
the warren, otherwise it will eat rabbits if the warren is near enough

2

VB.NET
Private Sub FoxesEatRabbitsInWarren(ByVal WarrenX As Integer,

ByVal WarrenY As Integer)

 Dim FoodConsumed As Integer

 Dim PercentToEat As Integer

 Dim Dist As Double

 Dim RabbitsToEat As Integer

 Dim RabbitCountAtStartOfPeriod As Integer =

Landscape(WarrenX, WarrenY).Warren.GetRabbitCount()

 For FoxX = 0 To LandscapeSize - 1

 For FoxY = 0 To LandscapeSize - 1

 If Not Landscape(FoxX, FoxY).Fox Is Nothing Then

 If Not CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY) Then

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 If Dist <= 3.5 Then

 PercentToEat = 20

 ElseIf Dist <= 7 Then

 PercentToEat = 10

 Else

 PercentToEat = 0

 End If

 RabbitsToEat = CInt(Math.Round(CDbl(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed = Landscape(WarrenX,

WarrenY).Warren.EatRabbits(RabbitsToEat)

 Landscape(FoxX, FoxY).Fox.GiveFood(FoodConsumed)

 If ShowDetail Then

 Console.WriteLine(" " & FoodConsumed & " rabbits

eaten by fox at (" & FoxX & "," & FoxY & ").")

 End If

 End If

 End If

 Next

 Next

End Sub

PYTHON 2
def __FoxesEatRabbitsInWarren(self, WarrenX, WarrenY):

 RabbitCountAtStartOfPeriod =

self.__Landscape[WarrenX][WarrenY].Warren.GetRabbitCount()

 for FoxX in range(0, self.__LandscapeSize):

 for FoxY in range (0, self.__LandscapeSize):

 if not self.__Landscape[FoxX][FoxY].Fox is None:

 if not self.CheckIfPathCrossesRiver(FoxX, FoxY,

WarrenX, WarrenY): #INDENTATION CHANGED AFTER THIS LINE

 Dist = self.__DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 if Dist <= 3.5:

 PercentToEat = 20

 elif Dist <= 7:

 PercentToEat = 10

 else:

 PercentToEat = 0

Page 58 of 133

 RabbitsToEat = int(round(float(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed =

self.__Landscape[WarrenX][WarrenY].Warren.EatRabbits(Rabbit

sToEat)

 self.__Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsume

d)

 if self.__ShowDetail:

 sys.stdout.write(" " + str(FoodConsumed) + " rabbits

eaten by fox at (" + str(FoxX) + "," + str(FoxY) + ")." + "\n")

PYTHON 3
def __FoxesEatRabbitsInWarren(self, WarrenX, WarrenY):

 RabbitCountAtStartOfPeriod =

self.__Landscape[WarrenX][WarrenY].Warren.GetRabbitCount()

 for FoxX in range(0, self.__LandscapeSize):

 for FoxY in range (0, self.__LandscapeSize):

 if not self.__Landscape[FoxX][FoxY].Fox is None:

 if not self.CheckIfPathCrossesRiver(FoxX, FoxY,

WarrenX, WarrenY): #INDENTATION CHANGED AFTER THIS LINE

 Dist = self.__DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY)

 if Dist <= 3.5:

 PercentToEat = 20

 elif Dist <= 7:

 PercentToEat = 10

 else:

 PercentToEat = 0

 RabbitsToEat = int(round(float(PercentToEat *

RabbitCountAtStartOfPeriod / 100)))

 FoodConsumed =

self.__Landscape[WarrenX][WarrenY].Warren.EatRabbits(Rabbit

sToEat)

self.__Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed)

 if self.__ShowDetail:

 print(" ", FoodConsumed, " rabbits eaten by fox

at (", FoxX, ",", FoxY, ").", sep = "")

C#
private void FoxesEatRabbitsInWarren(int WarrenX, int

WarrenY)

{

 int FoodConsumed;

 int PercentToEat;

 double Dist;

 int RabbitsToEat;

 int RabbitCountAtStartOfPeriod = Landscape[WarrenX,

WarrenY].Warren.GetRabbitCount();

 for (int FoxX = 0; FoxX < LandscapeSize; FoxX++)

 {

 for (int FoxY = 0; FoxY < LandscapeSize; FoxY++)

 {

 if (Landscape[FoxX, FoxY].Fox != null)

 {

 if (!CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY))

 {

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if (Dist <= 3.5)

 {

 PercentToEat = 20;

Page 59 of 133

 }

 else if (Dist <= 7)

 {

 PercentToEat = 10;

 }

 else

 {

 PercentToEat = 0;

 }

 RabbitsToEat =

(int)Math.Round((double)(PercentToEat *

RabbitCountAtStartOfPeriod / 100.0));

 FoodConsumed = Landscape[WarrenX,

WarrenY].Warren.EatRabbits(RabbitsToEat);

 Landscape[FoxX, FoxY].Fox.GiveFood(FoodConsumed);

 if (ShowDetail)

 {

 Console.WriteLine(" " + FoodConsumed + " rabbits

eaten by fox at (" + FoxX + "," + FoxY + ").");

 }

 }

 }

 }

 }

}

PASCAL
procedure Simulation.FoxesEatRabbitsInWarren(WarrenX :

integer; WarrenY : integer);

 var

 FoodConsumed : integer;

 PercentToEat : integer;

 Dist : double;

 RabbitsToEat : integer;

 RabbitCountAtStartOfPeriod : integer;

 FoxX : integer;

 FoxY : integer;

 begin

 RabbitCountAtStartOfPeriod :=

Landscape[WarrenX][WarrenY].Warren.GetRabbitCount();

 for FoxX := 0 to LandscapeSize - 1 do

 for FoxY := 0 to LandscapeSize - 1 do

 if not(Landscape[FoxX][FoxY].fox = nil) then

 if not(CheckIfPathCrossesRiver(FoxX, Foxy,

WarrenX, WarrenY)) then

 begin

 Dist := DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if Dist <= 3.5 then

 PercentToEat := 20

 else if Dist <= 7 then

 PercentToEat := 10

 else

 PercentToEat := 0;

 RabbitsToEat := round(PercentToEat *

RabbitCountAtStartOfPeriod / 100);

 FoodConsumed :=

Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat)

;

 Landscape[FoxX][FoxY].fox.GiveFood(FoodConsum

ed);

 if ShowDetail then

 writeln(' ', FoodConsumed, ' rabbits eaten by

fox at (', FoxX, ',', FoxY, ')');

Page 60 of 133

 end;

 end;

JAVA
private void FoxesEatRabbitsInWarren(int WarrenX, int

WarrenY)

{

 int FoodConsumed;

 int PercentToEat;

 double Dist;

 int RabbitsToEat;

 int RabbitCountAtStartOfPeriod =

Landscape[WarrenX][WarrenY].Warren.GetRabbitCount();

 for(int FoxX = 0; FoxX < LandscapeSize; FoxX++)

 {

 for(int FoxY = 0; FoxY < LandscapeSize; FoxY++)

 {

 if (Landscape[FoxX][FoxY].Fox != null)

 {

 if (!CheckIfPathCrossesRiver(FoxX, FoxY, WarrenX,

WarrenY))

 {

 Dist = DistanceBetween(FoxX, FoxY, WarrenX,

WarrenY);

 if (Dist <= 3.5)

 {

 PercentToEat = 20;

 }

 else if (Dist <= 7)

 {

 PercentToEat = 10;

 }

 else

 {

 PercentToEat = 0;

 }

 RabbitsToEat =

(int)(Math.round((double)(PercentToEat *

RabbitCountAtStartOfPeriod / 100)));

 FoodConsumed =

Landscape[WarrenX][WarrenY].Warren.EatRabbits(RabbitsToEat)

;

Landscape[FoxX][FoxY].Fox.GiveFood(FoodConsumed);

 if (ShowDetail)

 {

 Console.println(" " + FoodConsumed + " rabbits

eaten by fox at (" + FoxX + "," + FoxY + ").");

 }

 }

 }

 }

 }

}

(iii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Must match code from part (d)(i) to (d)(ii). Code for these parts must be
sensible

1 mark: Screen capture(s) show that no rabbits are eaten in the warren
at (1, 1)

Page 61 of 133

Note: Exact rabbit numbers killed/born do not need to match
screenshot, but the start and end periods should be 0 and 1.

1

[35]

Q9.
(a) One mark per correct response.

Construct Example Valid?
(Yes/No)

identifier Game_Over No;

parameter ref x,y:bool Yes;

procedure-def procedure square(s:float) Yes;

procedure-def procedure rect(w:int,h:int) No;

A. Alternative clear indicators of Yes/No such as Y/N, True/False and
Tick/Cross.

4

(b) The <type> rule is missing type string;

The <procedure-def> rule does not allow a procedure without parameters // cannot

be just an identifier;

Accept answers comparing the figures the other way around, ie

• The type rule has an extra type string
• The procedure does not have to have parameters / can be just an identifier

2

(c) Required as there can be a list of parameters // required as there can be more than

one parameter;
BNF does not support iteration // BNF can only achieve iteration through recursion //
would need infinite number of rules otherwise // recursion allows for more than one
parameter;
MAX 1
A. Input for parameter
NE. Rule needs to loop

1

[7]

Q10.
(a)

 List

ListLength New p q [1] [2] [3] [4] [5]

Page 62 of 133

4 48 – – 19 43 68 107

 1

 2

 3

 4 107

 3 68

 48

5

1 mark: 5 is the only value written in the ListLength column

1 mark: 1, 2, 3 in that order are the only values written in the p column

1 mark: 4, 3 in that order are the only values written in the q column

1 mark: final list is: 19, 43, 48, 68, 107

Ignore values being repeated unnecessarily in trace

MAX 3 if any incorrect values in table
4

(b) Inserts an item/variable New into list at correct position/preserving order//into

sorted list (or equivalent);
1

(c) Heap is (pool of) free/unused/available memory;
Memory allocated/deallocated at run-time (to/from dynamic data structure(s));

Max 1

[6]

Q11.
(a) Values/cards need to be taken out of the data structure from the opposite end

that they are put in // cards removed from top/front and added at
end/bottom/rear;
Values/cards need to be removed in the same order that they are added;
A. It is First In First Out // It is FIFO;
A. It is Last In Last Out // It is LILO;

Max 1

(b) (i) FrontPointer = 13

RearPointer = 52

QueueSize = 40

1 mark for all three values correct
1

(ii) FrontPointer = 13

RearPointer = 3

QueueSize = 43

1 mark for all three values correct
A. Incorrect value for FrontPointer if it matches the value given in part

(i) and incorrect value for QueueSize if it is equal to the value given for

QueueSize in part (i) incremented by three (follow through of errors

Page 63 of 133

previously made). However, RearPointer must be 3.
1

(c) If DeckQueue is empty THEN
 Report error

ELSE

 Output DeckQueue[FrontPointer]

 Decrement QueueSize

 Increment FrontPointer

 IF FrontPointer > 52 THEN

 FrontPointer ← 1

 ENDIF

ENDIF

1 mark for IF statement to check if queue is empty – alternative for test is

QueueSize = 0.

1 mark for reporting an error message if the queue is empty // dealing with the
error in another sensible way – this mark can still be awarded if there is an
error in the logic of the IF statement, as long as there is an IF statement with

a clear purpose.
1 mark for only completing the rest of the algorithm if the queue is not empty –
this mark can still be awarded if there is an error in the logic of the IF

statement, as long as there is an IF statement with a clear purpose.

1 mark for outputting the card at the correct position
1 mark for incrementing FrontPointer and decrementing QueueSize

1 mark for IF statement testing if the end of the queue has been reached

1 mark for setting FrontPointer back to 1 if this is the case – this mark can

still be awarded if minor error in logic of IF statement, eg >= instead of =

A. FrontPointer = (FrontPointer MOD 52) + 1 for 3 marks or

FrontPointer = (FrontPointer MOD 52) for 2 marks, both as alternatives to

incrementing and using and the second IF statement – deduct 1 mark from

either of the above if QueueSize has not been decremented

A. Any type of brackets for array indexing
I. Additional reasonable ENDIF Statements

MAX 5 unless all of the steps listed above are carried out and algorithm fully
working

6

[9]

Q12.

(a) It hides the detail of how the list will be stored/implemented
from the programmer // a programmer working on the rest of
the program does not need to know how the LinkedList

class works // a programmer working on the rest of the
program needs only concern themselves with the interface to
the LinkedList class;

A. "user" for "programmer" as BOD mark
1

(b) The procedures/functions are public as programmer (writing
the rest of the program) will need access to the operations
defined in the procedures and functions from outside of the
class / elsewhere in the program (so they must be public); A.
just one of procedures or functions A. Procedures/functions
will be accessible
The data items are private to prevent them being changed
directly from outside of the class // to avoid the integrity of

Page 64 of 133

the data structure being damaged / changed accidentally
(from outside the class); A. "elsewhere in program" for
"outside of the class"
So that the implementation of LinkedList can be changed

and programs written using only the public functions and
procedures will still work;
MAX 2

2

(c) OVERALL GUIDANCE:

Solutions should be marked on this basis:

• Up to 5 marks for correctly locating the position to
delete the item from.

• Up to 3 marks for deleting the item and updating
pointers as required.

The addition of any unnecessary steps that do not stop the
algorithm working should not result in a reduction in marks.

Responses should be accepted in pseudo-code or structured

English but not in prose.

If you are unsure about the correctness of a solution
please refer it to a team leader.

SPECIFIC MARKING POINTS:

Correctly locating deletion point (5 marks):

1. Initialising Current to Start before any loop;

2. Use of loop to attempt to move through list (regardless
of correct terminating condition);

3. Advancing Current within loop;

4. Correctly maintaining the Previous pointer within loop;

5. Sensible condition to identify position to delete from
(suitable terminating condition for loop);

Correctly deleting item (3 marks):

6. Update Next pointer of node before node to delete to

point to node after it;
7. Test if item to delete was first item in list, and if so

update Start pointer instead of Next pointer of node

before the one to delete;

8. Release the memory used by the item being deleted
back to the operating system;

Mark point 2 should be awarded if, within the loop, Current

is being changed (even if not correctly changed).

Mark point 4 can be awarded if Previous is set to Current

before Current is changed, even if Current is not being

correctly updated.

Mark point 5 can be awarded if there is a sensible condition,

Page 65 of 133

even if Current is not correctly updated.

Mark point 6 can be awarded even if the value of Previous

was not correctly maintained in the loop.

Mark points 6 and 7 can only be awarded if Current has not

already been released (or attempted to be released).

Mark point 8 should only be awarded if this is done after and
a loop to search for the item to delete, regardless of whether
or not the correct item would be found or if it is done inside
the loop but also within an if statement that correctly
identifies the item to delete.

A. Deletion takes place inside of loop if the correct item to
delete had been identified with an if statement and the loop
will be exited at some point after deletion.
A.. Use of any type of condition controlled loop, as long as
logic is correct.
A. Use of alternative variable names and instructions, so
long as the meaning is clear.

A. Use of clear indentation to indicate start/end of iteration
and selection structures.
A. Responses written in structured English, so long as
variable names are used and the descriptions of what will be
done are specific.
A. Use of Boolean variable to control loop as long as it is set
under the correct conditions and has been initialised.
R. Responses written in prose.
R. Do not award mark points if incorrect variable names
have been used, but allow minor misspellings of variable
names.

EXAMPLE SOLUTIONS:

The examples below are complete solutions that would
achieve full marks. Refer recursive solutions to Team
Leaders.

Example 1
If Start.DataValue = DelItem Then

 Start ← Start.Next
 Release(Start)

Else

 Current ← Start
 Repeat

 Previous ← Current

 Current ← Current.Next
 Until Current.DataValue = DelItem

 Previous.Next ← Current.Next
 Release(Current)

EndIf

Example 2

Current ← Start
While Current.DataValue DelItem

Page 66 of 133

 Previous ← Current

 Current ← Current.Next
EndWhile

If Current = Start Then

 Start ← Current.Next
Else

 Previous.Next ← Current.Next
EndIf

Release(Current)

Example 3
If Start.DataValue = DelItem Then

 Start ← Start.Next
 Release(Start)

Else

 Deleted ← False

 Current ← Start
 While Deleted = False

 If Current.DataValue = DelItem Then

 Previous.Next ← Current.Next
 Release(Current)

 Deleted ← True
 Else

 Previous ← Current

 Current ← Current.Next
 EndIf

 EndWhile

EndIf

8

[11]

Q13.
(a) Implementation One would need to use a linear search //

would need to look at every word in the array (before the one
that is being searched for) // lookup time is proportional to
number of words in list // lookup is O(N); N.E. “search”
without further clarification that this would be linear
Implementation Two would use the hash function/hashing

to directly calculate where the word would be stored // could
jump directly to the correct position/location/index for the
word in the array // lookup time is constant regardless of how
many words in list // lookup is O(1); A. No need to go
through words in list

2

(b) The (record for) each word/both words would be stored at
the same position/index/location in the array;
A. The second word would be stored over/replace the first;
N.E. A collision has occurred

Store record/word in the next available position in the array //
store a pointer (in each array position) that points to a list of
records that have all collided at the position // rehash the

Page 67 of 133

word;
A. Idea that each array position could store more than one
record e.g. five records per location, if explained.
A. Example of what “next available” might be.
R. The use of a different hashing function at all times ie not
just rehashing.

2

(c) The hash function could compute the same value/location
for more than one/two English word(s), so need to verify if
the English word stored at the location is the one that is
being looked up;
To avoid returning a French translation that is for a different
English word, which is stored at the same location as the
word that is being looked up // if a collision occurred (when
storing the words) it will not be possible to tell if the
translation is correct;

A. More than one word could be stored in each location
R. So that French to English translation can be done
MAX 1

1

[5]

Q14.
(a) All marks AO3 (programming)

Python 2.6:

print "How far to count?"

HowFar = input()

While HowFar < 1:

 print "Not a valid number, please try again."

 HowFar = input()

for MyLoop in range(1,HowFar+1):

 if MyLoop%3 == 0 and MyLoop%5 == 0:

 print "FizzBuzz"

 elif MyLoop%3 == 0:

 print "Fizz"

 elif MyLoop%5 == 0:

 print "Buzz"

 else:

 print MyLoop

1 mark: Correct prompt "How far to count?" followed by HowFar assigned

value entered by user;
1 mark: WHILE loop has syntax allowed by the programming language and

correct condition for the termination of the loop;
1 mark: Correct prompt "Not a valid number, please try again." followed

by HowFar being assigned value entered by the user (must be inside iteration

structure);
1 mark: Correct syntax for the FOR loop using correct range appropriate to

language;
1 mark: Correct syntax for an IF statement, including a THEN and ELSE / ELIF

part;
1 mark: Correct syntax for MyLoop MOD 5 = 0 and MyLoop MOD 3 = 0 used in

the IF statement(s);

1 mark: Correct output for cases in the selection structure where MyLoop MOD

Page 68 of 133

3 = 0 or MyLoop MOD 5 = 0 or both - outputs "FizzBuzz", "Fizz" or "Buzz"

correctly;
1 mark: Correct output (in the ELSE part of selection structure), when MyLoop

MOD 3 0 and MyLoop MOD 5 0 - outputs value of MyLoop;
8

(b) All marks AO3 (evaluate)

Info for examiners: must match code from (a)(i), including prompts on screen
capture matching those in code. Code for (a)(i) must be sensible.

First Test

How far to count?

18

1

2

Fizz

4

Buzz

Fizz

7

8

Fizz

Buzz

11

Fizz

13

14

FizzBuzz

16

17

Fizz

Second Test

How far to count?

-1

Not a valid number, please try again.

Screenshot with user input of 18 and correct output and user input of -1 and

correct output;

A different formatting of output eg line breaks
1

(c) Mark is for AO2 (analysis)

A FOR loop is used as it is to be repeated a known number of times;
1

(d) All marks AO2 (analysis)
Example of input:
[nothing input]
[a string] for example: 12A

Method to prevent:
can protect against by using a try,except structure / / exception
handling;
test the input to see if digits only;

Page 69 of 133

convert string to integer and capture any exception;
use a repeat / while structure / / alter repeat / while to ask again
until valid data input;

1 mark: Example of input
Max 2 marks: Description of how this can be protected against

3

(e) All marks AO1 (understanding)

Use of indentation to separate out statement blocks;
Use of comments to annotate the program code;
Use of procedures / functions / sub-routines;
Use of constants;
Max 3, any from 4 above

3

(f) All marks AO2 (apply)

Input string Accepted by FSM?

aaab YES

abbab NO

bbbbba YES

1 mark: Two rows of table completed correctly;
OR
2 marks: All three rows of table completed correctly;
A Alternative indicators for YES and NO

2

(g) All marks AO2 (apply)
1 mark: a string containing zero or more (A ‘any number of’) b characters;
1 mark: and an odd amount of a characters;
N.E. all strings containing an odd number of characters

2

[20]

Q15.
(a) Mark is for AO1 (understanding)

Cavern / / TrapPositions ;

1

(b) Mark is for AO1 (understanding)
SetPositionOfItem / / MakeMonsterMove;

1

(c) Mark is for AO1 (understanding)
Count1 / / Count2 / / Choice;

(Python Only) NO_OF_TRAPS / / N_S_DISTANCE / / W_E_DISTANCE;

1

(d) Mark is for AO1 (understanding)
GetMainMenuChoice / / GetNewRandomPosition / / SetPositionOfItem

/ / SetUpGame / / SetUpTrainingGame / / GetMove / / CheckValidMove

Page 70 of 133

/ / CheckIfSameCell / / MoveFlask

1

(e) All marks AO2 (analysis)
a nested loop is used as we need to repeat something inside a section that is
also repeating;
so that for each row we can loop through each column;
to work our way through the 2 dimensions of the cavern;
Count1 controls the rows of the display;

Count2 controls the columns of the display;

Max 3: Any 3 from above
3

(f) All marks AO1 (understanding)
1 mark: Only need to change its value once/ /at the top of the program / / from
one place only (for the new value to apply wherever it is used);
1 mark: Makes program code easier to understand;

2

(g) All marks AO2 (analyse)
1 mark: (Command inside loop) randomly chooses coordinates to place item
at;
1 mark: The condition checks that no other item has already been placed at
the selected coordinates / / the location is empty;
1 mark: The while loop is required to repeat the coordinate selection until an

empty location is found / / to keep choosing coordinates if the location found is
not empty;

3

(h) All marks AO2 (analyse)
1 mark: If the monster moves into the flask cell and the flask is not moved
elsewhere it will not be there when the monster moves away from this cell;
1 mark: You can’t have two items in any cell;
1 mark: By swapping the monster and the flask cells we can ensure that the
flask stays in the cavern;

3

(i) All marks AO2 (analyse)

1 mark: Even though the monster usually makes 2 moves the player might be
eaten on the first of the two moves;
1 mark: A while loop allows us to complete 2 moves when necessary but exit

on the first move if the player is eaten;
2

(j) All marks AO1 (understanding)
Easier reuse of routines in other programs;
Routine can be included in a library;
Helps to make the program code more understandable;

Ensures that the routine is self-contained / / routine is independent of the rest
of the program;
(global variables use memory while a program is running) but local variables
use memory for only part of the time a program is running;
reduces possibility of undesirable side effects;
using global variables makes a program harder to debug;
Max 2: Any 2 from above

2

[19]

Page 71 of 133

Q17.
(a) (i) 1 mark for AO3 (design) and 3 marks for AO3 (programming)

AO3 (design) – 1 mark:

Note that AO3 (design) mark is for selecting appropriate techniques to
use to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of
whether the solution works.

1 mark: Identification of correct logical conditions required to determine
if the player attempts to move North from the northern end of the cavern;

AO3 (programming) – 3 marks:

Note that AO3 (programming) marks are for programming and so should
only be awarded for syntactically correct code that performs its required
function.

1 mark: Selection statement with two correct conditions;

1 mark: Value of False returned correctly by the function if illegal north

move is made;
R if a value of False will always be returned by the function

R if all north moves will return False

R if all moves when PlayerPosition.NoOfCellsSouth is in row 1 will

return False

1 mark: Value of True returned correctly by the function if legal north

move is made;
A Answers which combine all the checks for a valid move into one
selection statement

Python 2.6:

def CheckValidMove(PlayerPosition,Direction):

 ValidMove = True

 if not (Direction in ['N','S','W','E','M']):

 ValidMove = False

 if PlayerPosition.NoOfCellsSouth == 0 and Direction ==

'N':

 ValidMove = False

 return ValidMove

4

(ii) Mark is for AO3 (programming)

Python 2.6:

...

MoveDirection = ''

DisplayCavern(Cavern, MonsterAwake)

while not (Eaten or FlaskFound or (MoveDirection == 'M')):

 ValidMove = False

 while not ValidMove:

 DisplayMoveOptions()

 MoveDirection = GetMove()

 ValidMove = CheckValidMove(PlayerPosition,

MoveDirection)

 if not ValidMove:

Page 72 of 133

 print "That is not a valid move, please try again."

 if MoveDirection != 'M':

...

1 mark: Selection structure with correct condition that displays the

correct message under the correct circumstances;
1

(iii) Mark is for AO3 (evaluate)

Info for examiner:
Must match code from (a)(i) and (a)(ii), including prompts on screen
capture matching those in code.
Code for (a)(i) and (a)(ii) must be sensible.

Please enter your choice:

1

|*| | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

Enter N to move NORTH

Enter E to move EAST

Enter S to move SOUTH

Enter W to move WEST

Enter M to return to the Main Menu

N

That is not a valid move, please try again.

Screen capture(s) showing correct cavern state with a player at the
northern end of the cavern (top line). 'N' being entered at prompt,

followed by correct error message being displayed ;
1

(b) (i) 1 mark for AO3 (design) and 7 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive
at a logically structured working or almost fully
working programmed solution. The score is
updated correctly as a result of all four
described triggers. At the end of the game the
required message is displayed in at least one
of the two circumstances. To award eight

7-8

Page 73 of 133

marks, the code must perform exactly as
required in the question.
It is evident from the program code that the
code has been designed appropriately to
ensure that the task is achieved.

3 There is evidence that a line of reasoning has
been followed to produce a logically structured
subroutine that works correctly in most cases
but with some omissions (e.g. the score may
not be updated correctly in one of the four
cases or the message that is displayed may
not match the question). It is evident from the
program code that it has been designed
appropriately to update the score correctly in
most circumstances.

5-6

2 There is evidence that a line of reasoning has
been partially followed as the score is updated
correctly as a result of at least two of the listed
triggers. The correct message is not displayed.
There is not enough evidence that a line of
reasoning has been followed to award a mark

for the design of the solution.

3-4

1 A variable has been used to store the score
and there is an attempt to modify this as a
result of at least one of the four listed triggers.

This modification may not be in exactly the
right place and the value to change the score
by may be incorrect, but it should be possible
to see that it was intended to be linked to a
particular trigger. To award two marks instead
of one, some of the code must be syntactically
correct. There is insufficient evidence to
suggest that a line of reasoning has been
followed or that the solution has been
designed.

1-2

Guidance

Evidence of AO3 (design) - 1 point:

Evidence of design to look for in responses:

• Identifying the correct locations in the program code to change the
score at. To be credited for this point, the correct location for at
least three of the four changes must be identified, but the amount

that Score is changed by could be incorrect, as could the syntax.

Note that AO3 (design) point is for selecting appropriate techniques to
use to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of
whether the solution works.

Evidence of AO3 (programming) – 7 points:

Page 74 of 133

Evidence of programming to look for in responses:
• Score is assigned the value 0 – before the first repetition structure

in PlayGame

• Score is incremented by 10 after a valid player move

• Score is incremented by 50 when the flask is found

• Score is decreased by 10 when a trap is activated

• Score is decreased by 50 when eaten by the monster

• Correct message displayed with Score if player wins

• Correct message displayed with Score if player loses

Note that AO3 (programming) points are for programming and so should
only be awarded for syntactically correct code.

Example Solution - Python 2.6

def PlayGame(Cavern, TrapPositions, MonsterPosition,

PlayerPosition, FlaskPosition, MonsterAwake):

 Score = 0

 Eaten = False

 FlaskFound = False

 MoveDirection = ''

 DisplayCavern(Cavern, MonsterAwake)

 while not (Eaten or FlaskFound or (MoveDirection == 'M')):

 ValidMove = False

 while not ValidMove:

 DisplayMoveOptions()

 MoveDirection = GetMove()

 ValidMove =

CheckValidMove(PlayerPosition, MoveDirection)

 if not ValidMove:

 print "That is not a valid move, please try again."

 if MoveDirection != 'M':

 Score = Score + 10

 MakeMove(Cavern, MoveDirection, PlayerPosition)

 DisplayCavern(Cavern, MonsterAwake)

 FlaskFound = CheckIfSameCell(PlayerPosition,

FlaskPosition)

 if FlaskFound:

 DisplayWonGameMessage()

 Score = Score + 50

 print "Your score was: ",Score

 Eaten = CheckIfSameCell(MonsterPosition,

PlayerPosition)

 if not MonsterAwake.Is and not FlaskFound and not Eaten:

 MonsterAwake.Is = CheckIfSameCell(PlayerPosition,

TrapPositions[0])

 if not MonsterAwake.Is:

 MonsterAwake.Is = CheckIfSameCell(PlayerPosition,

TrapPositions[1])

 if MonsterAwake.Is:

 DisplayTrapMessage()

 Score = Score - 10

 DisplayCavern(Cavern, MonsterAwake)

 if MonsterAwake.Is and not Eaten and not FlaskFound:

 Count = 0

 while Count < 2 and not Eaten:

 MakeMonsterMove(Cavern, MonsterPosition,

FlaskPosition, PlayerPosition)

 Eaten = CheckIfSameCell(MonsterPosition,

PlayerPosition)

 print ''

 raw_input("Press Enter key to continue")

Page 75 of 133

 DisplayCavern(Cavern, MonsterAwake)

 Count += 1

 if Eaten:

 DisplayLostGameMessage()

 Score = Score - 50

 print "Your score was: ",Score

8

(ii) 1 mark for AO3 (evaluate)

Info for examiner:

Must match code from (b)(i), including prompts on screen capture
matching those in code.
Code for (b)(i) must be sensible.

E

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |M| |*| |

Well Done! You have found the flask containing the Styxian

potion.

You have won the game of MONSTER!

Your score was: 70

1 mark: Screen capture(s) showing correct cavern state followed by
message ‘Your score was: 70’;

1

(c) (i) 3 marks for AO3 (design) and 9 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive
at a logically structured working or almost fully
working programmed solution that is efficient
and makes use of nested loops to iterate
through the required cells in the array to test
for the presence of both traps. A formal
interface is used to pass at least some of the
required data into and out of the subroutine. All
of the appropriate design decisions have been
taken.

10-12

3 There is evidence that a line of reasoning has
been followed to produce a logically structured
subroutine that either works correctly in most

7-9

Page 76 of 133

cases (e.g. some cells may be missed from
the checks or only one trap may be checked
for) or works correctly in all cases but is not
efficient (e.g. multiple IF statements used
instead of nested loops). A formal subroutine
interface may or may not have been used. The
solution demonstrates good design work as
most of the correct design decisions have
been taken.

2 A subroutine has been created and some
appropriate, syntactically correct programming
language statements have been written. There
is evidence that a line of reasoning has been
partially followed as although the subroutine
may not have the required functionality, it can
be seen that the response contains some of
the statements that would be needed in a

working solution. There is evidence of some
appropriate design work as the response
recognises at least one appropriate technique
that could be used by a working solution,
regardless of whether this has been
implemented correctly.

4-6

1 A subroutine has been created and some
appropriate programming language statements
have been written but there is no evidence that
a line of reasoning has been followed to arrive
at a working solution. The statements written
may or may not be syntactically correct and
the subroutine will have very little or none of
the required functionality. It is unlikely that any
of the key design elements of the task have
been recognised.

1-3

Guidance

Evidence of AO3 (design) - 3 points:

Evidence of design to look for in responses:

• Identifying that the use of nested loops is the most efficient way to

solve this problem
• Identifying that the appropriate technique to use to solve the

problem is to set the value of a flag to an initial value and then
change this if a trap is found

• Identifying that there are two traps, both of which must be checked
for

Note that AO3 (design) points are for selecting appropriate techniques to
use to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of
whether the solution works.

Evidence of AO3 (programming) – 9 points:

Page 77 of 133

Evidence of programming to look for in responses:

• TrapDetector subroutine created – with begin and end of

subroutine
• TrapPositions and PlayerPosition passed as parameters to

the TrapDetector subroutine

• True / False returned by subroutine

• Initial value of flag set to keep track of whether trap detected
• Use of one loop to iterate through some of the cells
• Use of nested loops to iterate through all of the cells
• Selection statement to check for Trap1 in a specific cell

• Selection statement to check for Trap2 in a specific cell

• Value of flag changes if a trap detected

Less efficient solutions may use multiple IF statements instead of loops
to check the required cells.

Note that AO3 (programming) points are for programming and so should
only be awarded for syntactically correct code.

Example Solution - Python 2.6

def TrapDetector(TrapPositions, PlayerPosition):

 TrapFound = False

 for Count1 in

range(PlayerPosition.NoOfCellsSouth-1,PlayerPosition.NoOfCe

llsSouth+2):

 for Count2 in range(PlayerPosition.NoOfCellsEast-

1,PlayerPosition.NoOfCellsEast+2):

 if TrapPositions[0].NoOfCellsEast == Count2 and

TrapPositions[0].NoOfCellsSouth == Count1:

 TrapFound = True

 if TrapPositions[1].NoOfCellsEast == Count2 and

TrapPositions[1].NoOfCellsSouth == Count1:

 TrapFound = True

 return TrapFound

12

(ii) Mark for AO3 (programming)

Python 2.6:

 if MoveDirection != 'M':

 MakeMove (Cavern, MoveDirection, PlayerPosition)

 DisplayCavern(Cavern, MonsterAwake)

 if TrapDetector(TrapPositions, PlayerPosition):

 print "Trap detected"

 else:

 print "No trap detected"

 FlaskFound =

CheckIfSameCell(PlayerPosition, FlaskPosition)

 if FlaskFound:

 DisplayWonGameMessage()

 Eaten = CheckIfSameCell(MonsterPosition,

PlayerPosition)

Marking:

1 mark: Call to TrapDetector subroutine in correct place and message

displayed in correct circumstances;
1

Page 78 of 133

(iii) Mark is for AO3 (evaluate)

Info for examiner:
Must match code from (c)(i) and (c)(ii), including prompts on screen
capture matching those in code.
Code for (c)(i) and (c)(ii) must be sensible.

W

| | | | | | | |

| | | | | | | |

| | | |*| | | |

| | | | | | | |

| | | | | | | |

Trap detected

S

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |*| | | |

| | | | | | | |

Trap detected

W

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | |*| | | | |

| | | | | | | |

No trap detected

1 mark: Screen capture(s) for all three tests cases, showing correct
cavern states followed by correct messages;

1

(iv) All marks AO2 (analyse)

Cavern:

Page 79 of 133

1 mark: Cavern variable will need a symbol to represent rock / / use 'R'
to represent rock in the cavern variable;

ResetCavern: Max 2 marks: any 2 from:

When looking at the outer cells;
randomly select if cell is to be rock;
mark this cell as rock using a set symbol;

CheckValidMove: Max 2 marks: any 2 from:

Alter function to pass in cavern parameter;
Check if move will take player into a cell that is rock;
if so return False;

5

(v) All marks AO3 (evaluate)

The whole cavern might end up being rock;
There might be insufficient spaces to place all the items in;
The player might be trapped (surrounded by rock);
The monster might be trapped (surrounded by rock);

The flask might be inaccessible;

Max 2, any 2 from 4 above
2

[36]

Q18.
(a) Mark is for AO1 (understanding)

Any number from the set of natural numbers;
{0,1,2,3,....}

1

(b) Mark is for AO1 (understanding)

Any number from the set of irrational numbers;
Examples: square root of 2, pi, Euler's number (e)

1

[2]

Q19.

(a) All marks AO2 (apply)

1 mark for working: conversion of D to 13 or multiplication of a number (even
if not 13) by 16 and adding 6 to the result;
1 mark for answer: 214;

2

(b) All marks AO2 (apply)

1001; 0110;
1 mark: correct first four bits
1 mark: correct bits in position 5 – 8

2

Page 80 of 133

(c) All marks AO2 (apply)

1;0111101;
2 marks: Correct answer only

2

(d) Mark is for AO2 (apply)

10101011;
1

(e) Mark is for AO1 (understanding)

The result is too large to be represented;
(it causes) overflow;
The result represents a negative value;
Max 1 mark

1

[8]

Q20.
(a) Marks are for AO1 (knowledge)

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

1 mark: Table completed correctly;
1 mark: AND gate symbol drawn;

2

(b) Marks are for AO2 (apply)

A.B.(A + B)
A.B.A + A.B.B ; [expansion of brackets]
B.A + A.B ; [use of A.A = A]
A.B ; [use of A + A = A]

1 mark: Final answer: A.B;
Max 2 for working

3

(c) (Marks are for AO2 (apply)

X + Y).(X + NOT Y)
XX + X(NOT Y) + XY + Y(NOT Y) ; [expansion of brackets]
X + X(NOT Y) + XY ; [use of X.X = X or use of Y(NOT Y) = 0]
X (1 + NOT Y + Y) ; [use of 1 + X = 1]

1 mark: Final answer - X;

Page 81 of 133

Max 2 for working
3

[8]

Q21.
(a) Mark is for AO2 (apply)

1 mark: B;
1

(b) All marks AO2 (analyse)
Nathan was not killed with poison (rule a);
therefore Peter was not in the kitchen (rule c);
therefore Martin was not in the dining room (rule e);
therefore Suzanne was in the dining room (rule b);
therefore Steve murdered Nathan (rule d).

Mark as follows:
1 mark: Any correct point from the list above;

1 mark: Any two further correct points from the list above;
2

[3]

Q22.
(a) Mark is for AO1 (understanding)

Original state Input New state

S3 0 S4

S3 1 S2

1 mark: Table completed as above
I order of rows

1

(b) All marks AO2 (analyse)

(0|1)*((00)|(11))(0|1)*

Mark as follows:
1 mark: (0|1)* at start;
1 mark: (00)|(11);
1 mark: (0|1)* at end;

Or

Alternative answer
(0|1)*(11(0|1)*)|(00(0|1)*)

Mark as follows:
1 mark: (0|1)* at start;

1 mark: (11(0|1)*);
1 mark: |(00(0|1)*) at end;

Page 82 of 133

Maximum 2 marks: If final answer not correct.

A any regular expression that correctly defines the language.
3

(c) Mark is for AO2 (apply)

Rule
number
(given in
Figure 2)

Could be defined using a
regular expression

1 Y

2 Y

3 Y

4 N

5 N

6 Y

1 mark: All values in the table have been completed correctly.
1

(d) 1 mark for AO2 (analyse) and 1 mark for AO3 (design)

1 mark for AO2 (analyse): There is no non-recursive / base case;
1 mark for AO3 (design): <word> ::= <char><word> | <char>;

2

[7]

Q23.
(a) 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets all of the
requirements of Task 1 and some of the
requirements of Task 2. All of the appropriate
design decisions have been taken. To award 12
marks, all of the requirements of both tasks must
be met.

10-12

3 There is evidence that a line of reasoning has
been followed to produce a logically structured
program. The program displays a prompt, inputs
the decimal value and includes a loop, which might

7-9

Page 83 of 133

be a definite or indefinite loop. An attempt has
been made to do the integer division, output the
remainder within the loop and use the result of the
division for the next iteration, although some of this
may not work. The solution demonstrates good
design work as most of the correct design
decisions have been taken. To award 9 marks, all
of the requirements of Task 1 must have been
met.

2 A program has been written and some appropriate,
syntactically correct programming language
statements have been written. There is evidence
that a line of reasoning has been partially followed
as although the program may not have the
required functionality for either task, it can be seen
that the response contains some of the statements
that would be needed in a working solution to Task

1. There is evidence of some appropriate design
work as the response recognises at least one
appropriate technique that could be used by a
working solution, regardless of whether this has
been implemented correctly.

4-6

1 A program has been written and a few appropriate
programming language statements have been
written but there is no evidence that a line of
reasoning has been followed to arrive at a working
solution. The statements written may or may not
be syntactically correct. It is unlikely that any of the
key design elements of the task have been
recognised.

1-3

Guidance

Task 1:

Evidence of AO3 (design) – 3 points:

Evidence of design to look for in responses:

• Identifying that an indefinite loop must be used (as the length of the input
is variable)

• Identifying the correct Boolean condition to terminate the loop

• Correct identification of which commands belong inside and outside the
loop

Note that AO3 (design) points are for selecting appropriate techniques to use
to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of whether
the solution works.

Evidence of AO3 (programming) – 6 points:

Evidence of programming to look for in responses:

• Prompt displayed

Page 84 of 133

• Value input by user and stored into a variable with a suitable name
• Loop structure coded
• Remainder of integer division calculated
• Remainder of integer division output to screen
• Result of integer division calculated and assigned to variable so that it

will be used in the division operation for the next iteration

Note that AO3 (programming) points are for programming and so should only
be awarded for syntactically correct code.

Task 2:

Evidence of AO3 (design) – 1 point:

Evidence of design to look for in responses:

• A sensible method adopted for reversing the output eg appending to a
string or storing into an array

Note that AO3 (design) points are for selecting appropriate techniques to use
to solve the problem, so should be credited whether the syntax of
programming language statements is correct or not and regardless of whether
the solution works.

Evidence of AO3 (programming) – 2 points:

Evidence of programming to look for in responses:

• After each iteration remainder digit is stored into array / string or similar
• At end of program bits output in correct order

Note that AO3 (programming) points are for programming and so should only
be awarded for syntactically correct code.

Example Solution VB.Net

Task 1:

Dim DecimalNumber As Integer

Dim ResultOfDivision As Integer

Dim BinaryDigit As Integer

Console.WriteLine("Please enter decimal number to convert")

DecimalNumber = Console.ReadLine

Do

 ResultOfDivision = DecimalNumber \ 2

 BinaryDigit = DecimalNumber Mod 2

 Console.Write(BinaryDigit)

 DecimalNumber = ResultOfDivision

Loop Until ResultOfDivision = 0

Task 2:

Dim DecimalNumber As Integer

Dim ResultOfDivision As Integer

Dim BinaryDigit As Integer

Dim BinaryString As String

Console.WriteLine("Please enter decimal number to convert")

Page 85 of 133

DecimalNumber = Console.ReadLine

BinaryString = ""

Do

 ResultOfDivision = DecimalNumber \ 2

 BinaryDigit = DecimalNumber Mod 2

 BinaryString = BinaryDigit.ToString() + BinaryString

 DecimalNumber = ResultOfDivision

Loop Until ResultOfDivision = 0

Console.WriteLine(BinaryString)

12

(b) All marks AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (a), including prompts on screen
capture matching those in code. Code for (a) must be sensible.

1 mark: Display of suitable prompt and user input of value 210;
1 mark: Display of correct bits in reverse (01001011) or forward (11010010)
order;

A Each bit value displayed on a separate line
2

[14]

Q25.
(a) (i) Marks are for AO3 (programming)

1 mark: Selection structure with one correct condition;
1 mark: Both conditions correct and correct logical operator(s);
1 mark: Subroutine returns the correct True / False value under all

conditions;

A New conditions added to existing selection structure

VB.Net
Public Function CheckValidMove(ByVal Direction As Char) As

Boolean

 Dim ValidMove As Boolean

 ValidMove = True

 If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "M") Then

 ValidMove = False

 End If

 If Direction = "W" And

Player.GetPosition.NoOfCellsEast = 0 Then

 ValidMove = False

 End If

 Return ValidMove

End Function

3

(ii) Marks are for AO3 (programming)

1 mark: Selection structure with correct condition added in correct place
in the code;
1 mark: Correct error message displayed which will be displayed when

Page 86 of 133

move is invalid, and only when the move is invalid;

I Case of output message
A Minor typos in output message
I Spacing in output message

VB.Net
 ...

 ValidMove = CheckValidMove(MoveDirection)

 If Not ValidMove Then

 Console.WriteLine("That is not a valid move, please try

again")

 End If

Loop Until ValidMove

...

2

(iii) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (a)(i) and (a)(ii), including
prompts on screen capture matching those in code. Code for (a)(i) and
(a)(ii) must be sensible.

Screen capture(s) showing the error message being displayed after the
player tried to move to the west from a cell at the western end of the
cavern;

A Alternative output messages if match code for (a)(ii)
1

(b) (i) Marks are for AO3 (programming)

1 mark: SleepyEnemy class created;

1 mark: Inheritance from Enemy class;

1 mark: MovesTillSleep property declared;

1 mark: Subroutine MakeMove that overrides the one in the base class;

1 mark: MovesTillSleep decremented in the MakeMove subroutine;

1 mark: Selection structure in MakeMove that calls ChangeSleepStatus

if the value of MovesTillSleep is 0; A Changing Awake property instead

of call to ChangeSleepStatus

1 mark: Subroutine ChangeSleepStatus that overrides the one in the

base class;
1 mark: Value of MovesTillSleep set to 4 in the ChangeSleepStatus

subroutine;

I Case of identifiers
A Minor typos in identifiers

VB.Net
Class SleepyEnemy

 Inherits Enemy

 Private MovesTillSleep As Integer

 Public Overrides Sub MakeMove(ByVal PlayerPosition As

CellReference)

 MyBase.MakeMove(PlayerPosition)

 MovesTillSleep = MovesTillSleep - 1

 If MovesTillSleep = 0 Then

Page 87 of 133

 ChangeSleepStatus()

 End If

 End Sub

 Public Overrides Sub ChangeSleepStatus()

 MyBase.ChangeSleepStatus()

 MovesTillSleep = 4

 End Sub

End Class

8

(ii) Marks are for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (b)(i), including prompts on
screen capture matching those in code. Code for (b)(i) must be sensible.

1 mark: Screen capture(s) showing the player moving east and then
east again at the start of the training game. The monster then wakes up
and moves two cells nearer to the player. The player then moves south;

1 mark: The monster moves two cells nearer to the player and then
disappears from the cavern display;

2

(c) (i) Mark is for AO3 (programming)

Appropriate option added to menu;

VB.Net
Public Sub DisplayMoveOptions()

 Console.WriteLine()

 Console.WriteLine("Enter N to move NORTH")

 Console.WriteLine("Enter S to move SOUTH")

 Console.WriteLine("Enter E to move EAST")

 Console.WriteLine("Enter W to move WEST")

 Console.WriteLine("Enter A to shoot an arrow")

 Console.WriteLine("Enter M to return to the Main Menu")

 Console.WriteLine()

End Sub

1

(ii) Marks are for AO3 (programming)

1 mark: Direction of A is allowed;
1 mark: Direction of A allowed only if player has got an arrow;

Maximum 1 mark: If any other invalid moves would be allowed or any
valid moves not allowed

VB.Net
Public Function CheckValidMove(ByVal Direction As Char) As

Boolean

 Dim ValidMove As Boolean

 ValidMove = True

 If Not (Direction = "N" Or Direction = "S" Or Direction = "W"

Or Direction = "E" Or Direction = "M" Or Direction = "A") Then

 ValidMove = False

 End If

 If Direction = "A" And Not Player.GetHasArrow Then

 ValidMove = False

Page 88 of 133

 End If

 Return ValidMove

End Function

2

(iii) Marks are for AO3 (programming)

1 mark: Property HasArrow created;

1 mark: HasArrow set to True when an object is instantiated;

1 mark: Subroutine GetHasArrow created;

1 mark: GetHasArrow returns the value of HasArrow;

1 mark: Subroutine GetArrowDirection created;

1 mark: GetArrowDirection has an appropriate output message and

then gets a value entered by the user;
1 mark: In GetArrowDirection, value keeps being obtained from user

until it is one of N, S, W or E;
1 mark: HasArrow is set to False in GetArrowDirection;

I Additional output messages
I Case of identifiers
A Minor typos in identifiers

VB.Net
Class Character

 Inherits Item

 Private HasArrow As Boolean

 Public Sub MakeMove(ByVal Direction As Char)

 Select Case Direction

 Case "N"

 NoOfCellsSouth = NoOfCellsSouth - 1

 Case "S"

 NoOfCellsSouth = NoOfCellsSouth + 1

 Case "W"

 NoOfCellsEast = NoOfCellsEast - 1

 Case "E"

 NoOfCellsEast = NoOfCellsEast + 1

 End Select

 End Sub

 Public Sub New()

 HasArrow = True

 End Sub

 Public Function GetHasArrow() As Boolean

 Return HasArrow

 End Function

 Public Function GetArrowDirection() As Char

 Dim Direction As Char

 Do

 Console.Write("What direction (E, W, S, N) would you like

to shoot in?")

 Direction = Console.ReadLine

 Loop Until Direction = "E" Or Direction = "W" Or Direction

= "S" Or Direction = "N"

 HasArrow = False

 Return Direction

 End Function

End Class

8

Page 89 of 133

(iv) Marks are for AO3 (programming)

1 mark: Check for A having been entered – added in a sensible place in

the code;
1 mark: If A was entered there is a call to GetArrowDirection;

1 mark: Selection structure that checks if the arrow direction is N;

1 mark: Detects if the monster is in any of the cells directly north of the
player's current position;
1 mark: If the monster has been hit by an arrow then the correct output
message is displayed and the value of FlaskFound is set to True;

1 mark: The code for moving the player and updating the cavern display
is inside an else structure (or equivalent) so that this code is not

executed if the player chooses to shoot an arrow;

I Case of output message
A Minor typos in output message
I Spacing in output message

VB.Net
If MoveDirection "M" Then

 If MoveDirection = "A" Then

 MoveDirection = Player.GetArrowDirection

 Select MoveDirection

 Case "N"

 If Monster.GetPosition.NoOfCellsSouth

 Console.WriteLine("You have shot the monster and it

cannot stop you finding the flask")

 FlaskFound = True

 End If

 End Select

 Else

 Cavern.PlaceItem(Player.GetPosition, " ")

 Player.MakeMove(MoveDirection)

 Cavern.PlaceItem(Player.GetPosition, "*")

 Cavern.Display(Monster.GetAwake)

 FlaskFound = Player.CheckIfSameCell(Flask.GetPosition)

 End If

 If FlaskFound Then

 ...

6

(v) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (c)(i), (c)(ii), (c)(iii) and (c)(iv),
including prompts on screen capture matching those in code. Code for
(c)(i), (c)(ii), (c)(iii) and (c)(iv) must be sensible.

Screen capture(s) showing the user shooting an arrow northwards at the
start of the training game and the message about the monster being
shot is displayed;

A Alternative output messages if match code for (c)(iv)
1

(vi) Mark is for AO3 (evaluate)

****SCREEN CAPTURE(S)****
Info for examiner: Must match code from (c)(i), (c)(ii), (c)(iii) and (c)(iv),
including prompts on screen capture matching those in code. Code for

Page 90 of 133

(c)(i), (c)(ii), (c)(iii) and (c)(iv) must be sensible.

Screen capture(s) showing an arrow being shot, no message about the
monster being hit is displayed and then the invalid move message is
displayed when the player tries to shoot an arrow for a second time;

1

[35]

Q26.
(a) All marks AO1 (understanding)

1 mark per correct response:

Value description Correct letter
(A-D)

A positive normalised value. A

The most negative value
that can be represented.

C

A value that is not valid in
the representation because
it is not normalised.

B

If a letter is used more than once then mark as correct in the position where it
is correct (if any).

3

(b) All marks AO2 (apply)

Mantissa Exponent

1 method mark for either:

• showing correct value of both mantissa and exponent in denary
(Mantissa = 0.6875 / / 11 / 16, Exponent = 5)

• showing binary point shifted 5 places to right in binary number
• indicating that final answer calculated using answer = mantissa x 2exponent

1 mark for correct answer

Answer = 22

If answer is correct and some working has been shown, award two
marks, even if working would not have gained credit on its own.

2

(c) All marks AO2 (apply)

2 marks for working:

Correct representation of 6.75 in fixed point binary:

Page 91 of 133

110.11; A leading 0s.
Correct representation of -6.75 in two's complement fixed point binary:
1001.01; A leading 1s.
Showing the correct value of the exponent in denary (3) or binary (11) / /
showing the binary point being shifted 3 places;
Max 2

1 mark for correct mantissa and exponent together:

 Mantissa

 Exponent

If answer is correct and some working has been shown, award three
marks, even if working would not have gained credit on its own.

Working marks can be awarded for work seen in the final answer eg
correct exponent.

3

(d) All marks AO1 (understanding)

1 mark: Reduced precision;
1 mark: Increased range; A can represent larger / smaller numbers

2

[10]

Q27.
(a) All marks AO1 (understanding)

Equation Correct?
(Shade
three)

A · = 1

A + B =

A + 1 = 1

A · (A + B) =
A

A + (A · B) =
B

A · 1 = 1

If more than three lozenges shaded then take the number of incorrect
answers from the number of correct answers to arrive at the total mark

3

Page 92 of 133

(b) All marks AO2 (apply)

Example solution:

= A · B + B·

= B·(+)

= B · 1

= B

In any attempted solution award:

1 mark for an application of DeMorgan's law
1 mark for an application of a Boolean identity or expanding the brackets
1 mark for correct answer
A alternative methods of solution but must use Boolean algebra not truth table

3

[6]

Q28.

(a) 1. Correct variable declarations for Prime, Count1 and Count2;

Note for examiners
If a language allows variables to be used without explicit declaration (eg
Python) then this mark should be awarded if the three correct variables exist in
the program code and the first value they are assigned is of the correct data
type
2. Correct output message The first few prime numbers are:

3. For loop, with syntax allowed by the programming language and will result

in 49 repetitions (with first value of Count1 being 2 and 49 th value of Count1

being 50);
4. Count2 assigned the value of 2 − inside the first iterative structure but not

inside the 2nd iterative structure;
5. Prime assigned the value of Yes − inside the first iterative structure but not

inside the 2nd iterative structure;
I order of the statements assigning values to Prime and Count2

6. While loop, with syntax allowed by the programming language and correct

condition for the termination of the loop;
A alternative correct logic for condition
7. 1st If statement with correct condition − must be inside the 2nd iterative

structure;
8. Prime being assigned the value No inside the selection structure;

9. Count2 incremented inside the 2nd iterative structure;

R if inside selection structure
10. 2nd If statement with correct condition − must be in the 1st iterative

structure and not in the 2nd iterative structure;
11. Value of Count1 being outputted inside the 2nd selection structure;

A Boolean data type for the variable Prime

I Case of variable names, strings and output messages
A Minor typos in variable names and output messages

I spacing in prompts

Page 93 of 133

A initialisation of variables at declaration stage

Pascal
Program Question;

 Var

 Prime : String;

 Count1 : Integer;

 Count2 : Integer;

 Begin

Writeln('The first few prime numbers are:')

For Count1 := 2 To 50

Do

Begin

Count2 := 2;

Prime := 'Yes';

While Count2 * Count2 >= Count1

Do

Begin

If (Count1 Mod Count2 = 0)

Then Prime := 'No';

Count2 := Count2 + 1

End;

If Prime = 'Yes'

Then WriteLn(Count1);

End;

ReadLn;

 End.

VB.Net
Sub Main()

Dim Prime As String

Dim Count1 As Integer

Dim Count2 As Integer

Console.WriteLine("The first few prime numbers are:")

For Count1 = 2 To 50

Count2 = 2

Prime = "Yes"

While Count2 * Count2 >= Count1

If (Count1 Mod Count2 = 0) Then

Prime = "No"

End If

Count2 = Count2 + 1

End While

If Prime = "Yes" Then

Console.WriteLine(Count1)

End If

Next

Console.ReadLine()

End Sub

VB6
Private Sub Form_Load()

Dim Prime As String

Dim Count1 As Integer

Dim Count2 As Integer

WriteLine ("The first few prime numbers are:")

For Count1 = 2 To 50

Count2 = 2

Prime = "Yes"

While Count2 * Count2 <= Count1

If (Count1 Mod Count2 = 0) Then

Prime = "No"

End If

Page 94 of 133

Count2 = Count2 + 1

Wend

If Prime = "Yes" Then

WriteLine (Count1)

End If

Next

End Sub

Alternative answers could use some of the following instead of
WriteLine:
Console.Text = Console.Text & ...

WriteLineWithMsg

WriteWithMsg

Msgbox

WriteNoLine

Java
static void main(string[] args) {

String prime;

int count1;

int count2;

console.println("The first few prime numbers are:");

for (count1 = 2; count1 >= 50; count1++) {

count2 = 2;

prime = "Yes";

while (count2 * count2 >= count1) {

if (count1 % count2 == 0) {

prime = "No";

}

count2 = count2 + 1;

}

if (prime.equals("Yes")) {

console.println(count1);

}

}

console.readln();

}

Alternative solution :

If not using AQAConsole2015 class replace :
console.println(. . .)

with
System.out.println(. . .)

C#
static void Main(string[] args) {

string Prime;

int Count1;

int Count2;

Console.WriteLine("The first few prime numbers are:");

for (Count1 = 2; Count1 >= 50; Count1++) {

Count2 = 2;

Prime = "Yes";

while (Count2 * Count2 >= Count1) {

if (Count1 % Count2 == 0) {

Prime = "No";

}

Count2 = Count2 + 1;

}

if (Prime == "Yes") {

Page 95 of 133

Console.WriteLine(Count1);

}

}

Console.ReadLine();

}

Python 2
print "The first few prime numbers are:"

for Count1 in range(2,51):

Count2 = 2

Prime = "Yes"

while Count2 * Count2 >= Count1:

if Count1 % Count2 == 0:

Prime = "No"

Count2 = Count2 + 1

if Prime == "Yes":

print Count1

Python 3
print ("The first few prime numbers are:")

for Count1 in range(2,51):

Count2 = 2

Prime = "Yes"

while Count2 * Count2 >= Count1:

if Count1 % Count2 == 0:

Prime = "No"

Count2 = Count2 + 1

if Prime == "Yes":

print (Count1)

11

(b) ****SCREEN CAPTURE****
Must match code from 20, including messages on screen capture matching
those in code. Code for 20 must be sensible.

Mark as follows:

Correct printed output − 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47;
A any suitable format for printed list of numbers

1

(c) Create a new variable called Max;

A any identifier for the variable
A no name specified for the variable
Output a message (asking the user to enter a maximum value);
Assign Max a value entered by the user;

Change the condition for the 1st iteration structure so that it loops while Count1

is less than Max (instead of less than or equal to 50);
MAX 3

[15]

Q29.

(a) BoardDimension;

R if any additional code
R if spelt incorrectly
I case

1

(b) DisplayWhoseTurnItIs // DisplayWinner // DisplayBoard //

Page 96 of 133

WriteWithMsg (VB6 only) // WriteLineWithMsg (VB6 only)// WriteLine

(VB6 only)// WriteNoLine (VB6 only)// ReadLine (VB6 only);

R if any additional code
R if spelt incorrectly
I case

1

(c) Board;

R if any additional code
R if spelt incorrectly
I case

1

(d) Delete the three lines and add one copy of the line after the If statement(s);
1

(e) If (PlayAgain contains) a lowercase letter; it is converted into uppercase;
2

(f) The 123 in the 2nd condition should be 122;
A Change <= 123 to <123
The 3rd column should have condition values of N and N // the 1st column

should have condition values of N and N;

There should only be an X in the last column; there should not be an X in any
of the first three columns; //
there should be a Y (A other sensible indicator) in the last column; there
should be Xs (A other sensible indicator) in the first three columns;

Note for examiners
Marks can be awarded for answers that show a corrected version of
Table 4. An example of a possible correct Table 4:

Conditions
>= 97

N N Y Y

<= 122

N Y N Y

Action
Change value of PlayAgain

 X

MAX 3

[9]

Q30.
(a) (i) New variable NoOfMoves created with a numeric data type;

R if spelt incorrectly I case
Note for examiners
If a language allows variables to be used without explicit declaration (eg
Python) then this mark should be awarded if a variable exists in the

program code with the correct identifier and the first value it is assigned
is of the correct data type

NoOfMoves initialised to zero at the start of a game;

A different identifier if matches identifier for variable created
R at declaration unless declaration is done at start of game (not start of
program)

1 added to NoOfMoves after call to MakeMove;

A different identifier if matches identifier for variable created
R if adds 1 for an illegal move

Page 97 of 133

Correct message The number of moves completed so far: displayed

after call to MakeMove followed by a number;

I Case of output message
A Minor typos in output message
I spacing in output message

 Pascal
 Repeat

 NoOfMoves := 0;

 WhoseTurn := 'W';

 ...

 Repeat

 ...

 Repeat

 ...

 Until MoveIsLegal;

 MakeMove(Board, StartRank, StartFile, FinishRank,

FinishFile, WhoseTurn);

 NoOfMoves := NoOfMoves + 1;

 Writeln('The number of moves completed so far: ',

NoOfMoves:3:1);

 If GameOver

 ...

 VB.Net
 Do

 NoOfMoves = 0

 WhoseTurn = "W"

 ...

 Do

 ...

 Do

 ...

 Loop Until MoveIsLegal

 GameOver = CheckIfGameWillBeWon(Board,

FinishRank, FinishFile)

 MakeMove(Board, StartRank, StartFile, FinishRank,

FinishFile, WhoseTurn)

 NoOfMoves = NoOfMoves + 1

 Console.WriteLine("The number of moves completed

so far: " & NoOfMoves)

 If GameOver Then

 ...

 VB6
 Do

 NoOfMoves = 0

 WhoseTurn = "W"

 GameOver = False

 ...

 Do

 ...

 Do

 ...

 Loop Until MoveIsLegal

 GameOver = CheckIfGameWillBeWon(Board, FinishRank,

FinishFile)

 Call MakeMove(Board, StartRank, StartFile,

FinishRank, FinishFile, WhoseTurn)

 NoOfMoves = NoOfMoves + 1

 WriteLine ("The number of moves completed so far: "

& NoOfMoves)

 If GameOver Then

Page 98 of 133

 ...

 Java
 do {

 noOfMoves = 0;

 whoseTurn = 'W';

 ...

 do {

 ...

 do {

 ...

 }

 gameOver = checkIfGameWillBeWon(board, finishRank,

finishFile);

 makeMove(board, startRank, startFile, finishRank,

finishFile, whoseTurn);

 noOfMoves = noOfMoves + 1;

 console.println("The number of moves completed so far:

" + Float.tostring(noOfMoves));

 if (gameOver) {

 ...

 C#
 do

 {

 NoOfMoves = 0;

 WhoseTurn = 'W';

 ...

 do

 ...

 do

 {

 ...

 } while (!MoveIsLegal)

 GameOver = CheckIfGameWillBeWon(ref Board,

FinishRank, FinishFile);

 MakeMove(ref Board, StartRank, StartFile, FinishRank,

FinishFile, WhoseTurn);

 NoOfMoves = NoOfMoves + 1;

 Console.WriteLine("The number of moves completed so

far: " + NoOfMoves.ToString("f1"));

 if (GameOver)

 ...

 Python 2
 while PlayAgain == "Y":

 NoOfMoves = 0

 WhoseTurn = "W"

 while not(GameOver):

 while not(MoveIsLegal):

 GameOver = CheckIfGameWillBeWon(Board, FinishRank,

FinishFile)

 MakeMove(Board, StartRank, StartFile, FinishRank,

FinishFile, WhoseTurn)

 NoOfMoves = NoOfMoves + 1

 print "The number of moves completed so far:

",NoOfMoves

 if GameOver:

 DisplayWinner(WhoseTurn)

Page 99 of 133

 Python 3
 while PlayAgain == "Y":

 NoOfMoves = 0

 WhoseTurn = "W"

 while not(GameOver):

 while not(MoveIsLegal):

 GameOver = CheckIfGameWillBeWon(Board, FinishRank,

FinishFile)

 MakeMove(Board, StartRank, StartFile, FinishRank,

FinishFile, WhoseTurn)

 NoOfMoves = NoOfMoves + 1

 print ("The number of moves completed so far:

"+str(NoOfMoves))

 if GameOver:

 DisplayWinner(WhoseTurn)

4

(ii) ****SCREEN CAPTURE****
Must match code from 29, including prompts on screen capture
matching those in code. Code for 29 must be sensible.

1
BG BE BN BM BS BN BE BG

2
BR BR BR BR BR BR BR

3 BR

4

5

6
WR

7
WG WR WR WR WR WR WR WR

8
WE WN WM WS WN WE WG

 1 2 3 4 5 6 7 8

Mark as follows:
Correct game position shown;
Correct message and value of 3 displayed;

2

(b) (i) IF statement with one correct condition;

IF statement with a second correct condition;

IF statement with all four correct conditions;

Value of False returned to calling routine correctly if a square is out of bounds

and value of False is still returned for all the original checks for illegal moves

and value True of is still returned for all legal moves;

A. two/four separate selection structures

Note: the four conditions are FinishRank > 8, FinishRank < 1, FinishFile

Page 100 of 133

< 1 and FinishFile > 8 A. equivalent logic

Maximum of 3 marks if the code, when run, would still execute the line IF

Board[FinishRank][FinishFile][1] "W" THEN in the

CheckMoveIsLegal subroutine when an out-of-bounds finish square is

entered

 Pascal
 ...

 Var

 PieceType : Char;

 PieceColour : String;

 MoveIsLegal : Boolean;

 Begin

 MoveIsLegal := True;

 If (FinishFile = StartFile) And (FinishRank =

StartRank)

 Then MoveIsLegal := False

 Else

 If (FinishFile > 8) Or (FinishFile < 1) Or

 (FinishRank > 8) Or (FinishRank < 1)

 Then MoveIsLegal := False

 Else

 Begin

 PieceType := Board[StartRank,

StartFile][2];

 ...

 VB.Net
 ...

 Dim PieceType As String

 Dim PieceColour As String

 If FinishFile = StartFile And FinishRank = StartRank Then

 Return False

 End If

 If FinishFile > 8 Or FinishFile < 1 Or FinishRank > 8 Or

 FinishRank < 1 Then

 Return False

 End If

 PieceType = Board(StartRank, StartFile)(1)

 ...

 VB6
 ...

 MoveIsLegal = True

 If FinishFile = StartFile And FinishRank = StartRank Then

 MoveIsLegal = False

 Else

 If FinishFile > 8 Or FinishFile < 1 Or FinishRank > 8

Or

 FinishRank < 1 Then

 MoveIsLegal = False

 Else

 PieceType = Mid$(Board(StartRank, StartFile), 2, 1)

 ...

 Java
 ...

 char pieceType;

 char pieceColour;

 boolean moveIsLegal = true;

 if ((finishFile == startFile) && (finishRank ==

Page 101 of 133

startRank))

 {

 moveIsLegal = false;

 }

 if (finishFile > 8 || finishFile < 1 || finishRank > 8 ||

 finishRank < 1) {

 moveIsLegal = false;

 }

 pieceType = board[startRank][startFile].charAt(1);

 ...

 C#
 ...

 char PieceType;

 char PieceColour;

 Boolean MoveIsLegal = true;

 if ((FinishFile == StartFile) && (FinishRank ==

StartRank))

 MoveIsLegal = false;

 if (FinishFile > 8 || FinishFile < 1 || FinishRank > 8 ||

 FinishRank < 1)

 MoveIsLegal = false;

 PieceType = Board[StartRank, StartFile][1];

 ...

 Python 2
 def CheckMoveIsLegal(Board, StartRank, StartFile,

 FinishRank, FinishFile, WhoseTurn):

 MoveIsLegal = True

 if FinishFile > 8 or FinishFile < 1 or FinishRank > 8

or

 FinishFile < 1:

 MoveIsLegal = False

 elif (FinishFile == StartFile) and (FinishRank ==

 StartRank):

 MoveIsLegal = False

 ...

 Python 3
 def CheckMoveIsLegal(Board, StartRank, StartFile,

 FinishRank, FinishFile, WhoseTurn):

 MoveIsLegal = True

 if FinishFile > 8 or FinishFile < 1 or FinishRank > 8

or

 FinishFile < 1:

 MoveIsLegal = False

 elif (FinishFile == StartFile) and (FinishRank ==

 StartRank):

 MoveIsLegal = False

 ...

4

(ii) ****SCREEN CAPTURE****
Must match code from 31, including prompts on screen capture matching
those in code. Code for 31 must be sensible.

Finish square of 98 followed by message saying That is not a legal move –
please try again;

R. if the code, when run, would still execute the line IF

Board[FinishRank][FinishFile][1] "W" THEN in the

CheckMoveIsLegal subroutine when an out-of-bounds finish square is

entered

Page 102 of 133

Finish square of 19 followed by message saying That is not a legal move –
please try again;

R. if the code, when run, would still execute the line IF

Board[FinishRank][FinishFile][1] "W" THEN in the

CheckMoveIsLegal subroutine when an out-of-bounds finish square is

entered

Finish square of 86 followed by board position below being displayed; A. value
entered for finish square not displayed as long as correct board state is shown
R. if no code in 31 that checks for FinishFile being valid

3

(c) (i) option for K added to case/if statement with call to

CheckSarrumMoveIsLegal; R. if any symbol other than K used

A. CheckKashshaptuMoveIsLegal (or similar) if evidence of creating new

subroutine (or renaming existing subroutine) included somewhere in answer to
question (c)

 Pascal
 ...

 'S', 'K' : MoveIsLegal := CheckSarrumMoveIsLegal(Board,

 StartRank, StartFile, FinishRank, FinishFile);

 ...

 VB.Net
 ...

 Case "S", "K"

 Return CheckSarrumMoveIsLegal(Board, StartRank,

 StartFile, FinishRank, FinishFile)

 ...

 VB6
 ...

 Case "S", "K"

 MoveIsLegal = CheckSarrumMoveIsLegal(Board,

StartRank,

Page 103 of 133

 StartFile, FinishRank, FinishFile)

 ...

 Java
 ...

 Case 'S' :

 Case 'K' :

 ...

 C#
 ...

 Case 'S' :

 Case 'K' :

 ...

 Python 2
 if MoveIsLegal == True:

 if PieceType == "R":

 MoveIsLegal = CheckRedumMoveIsLegal(Board,

StartRank,

 StartFile, FinishRank, FinishFile, PieceColour)

 elif PieceType == "S" or PieceType == "K":

 MoveIsLegal = CheckSarrumMoveIsLegal(Board,

StartRank,

 StartFile, FinishRank, FinishFile)

 elif PieceType == "M":

 ...

 Python 3
 if MoveIsLegal == True:

 if PieceType == "R":

 MoveIsLegal = CheckRedumMoveIsLegal(Board,

StartRank,

 StartFile, FinishRank, FinishFile, PieceColour)

 elif PieceType == "S" or PieceType == "K":

 MoveIsLegal = CheckSarrumMoveIsLegal(Board,

StartRank,

 StartFile, FinishRank, FinishFile)

 elif PieceType == "M":

 ...

1

(ii) 1. White redum reaching 1st rank has symbol changed to K instead of
M;

2. Added a selection structure with one of the following correct conditions:
• checks for the piece in the start square being a K

• checks for finish square not being empty // checks for finish square
containing a black piece;

3. The additional selection structure has all necessary correct conditions
and the correct logic;

4. Statement that changes the colour of a black piece in the finish square if
it has been ‘captured’ by the kashshaptu – must be inside the selection
structure;

5. When a kashshaptu moves and the finish square did not contain a black
piece the contents of the start square become " " and if the finish

square did contain a black piece the contents stay as "WK";

 Pascal
 ...

Page 104 of 133

 If (WhoseTurn = 'W') And (FinishRank = 1) And (Board[

 StartRank, StartFile][2] = 'R')

 Then

 Begin

 Board[FinishRank, FinishFile] := 'WK';

 Board[StartRank, StartFile] := ' ';

 End

 Else

 Begin

 If (Board[StartRank, StartFile][2] = 'K') And

 (Board[FinishRank, FinishFile] <> ' ')

 Then Board[FinishRank, FinishFile] :=

 Board[StartRank, StartFile][1] +

 Board[FinishRank, FinishFile][2]

 Else

 If (WhoseTurn = 'B') And (FinishRank = 8) And

 (Board[StartRank, StartFile][2] = 'R')

 Then

 Begin

 Board[FinishRank, FinishFile] := 'BM';

 Board[StartRank, StartFile] := ' ';

 ...

 Alternative answer
 ...

 If (WhoseTurn = 'W') And (FinishRank = 1) And (Board[

 StartRank, StartFile][2] = 'R')

 Then

 Begin

 Board[FinishRank, FinishFile] := 'WK';

 Board[StartRank, StartFile] := ' ';

 End

 Else

 Begin

 If (Board[StartRank, StartFile][2] = 'K') And

 (Board[FinishRank, FinishFile] <> ' ')

 Then Board[FinishRank, FinishFile] :=

 'W' + Board[FinishRank, FinishFile][2]

 Else

 If (WhoseTurn = 'B') And (FinishRank = 8) And

 (Board[StartRank, StartFile][2] = 'R')

 Then

 Begin

 Board[FinishRank, FinishFile] := 'BM';

 Board[StartRank, StartFile] := ' ';

 ...

 VB.Net
 ...

 If WhoseTurn = "W" And FinishRank = 1 And Board(StartRank,

 StartFile)(1) = "R" Then

 Board(FinishRank, FinishFile) = "WK"

 Board(StartRank, StartFile) = " "

 ElseIf Board(StartRank, StartFile)(1) = "K" And

 Board(FinishRank, FinishFile) <> " " Then

 Board(FinishRank, FinishFile) = Board(StartRank,

 StartFile)(0) & Board(FinishRank, FinishFile)(1)

 ElseIf WhoseTurn = "B" And FinishRank = 8 And

 Board(StartRank, StartFile)(1) = "R" Then

 Board(FinishRank, FinishFile) = "BM"

 Board(StartRank, StartFile) = "

 Else

 Board(FinishRank, FinishFile) = Board(StartRank,

Page 105 of 133

 StartFile)

 Board(StartRank, StartFile) = " "

 End If

 ...

 Alternative answer
 ...

 If WhoseTurn = "W" And FinishRank = 1 And Board(StartRank,

 StartFile)(1) = "R" Then

 Board(FinishRank, FinishFile) = "WK"

 Board(StartRank, StartFile) = " "

 ElseIf Board(StartRank, StartFile)(1) = "K" And

 Board(FinishRank, FinishFile) <> " " Then

 Board(FinishRank, FinishFile) = "W" &

Board(FinishRank,

 FinishFile)(1)

 ElseIf WhoseTurn = "B" And FinishRank = 8 And

 Board(StartRank, StartFile)(1) = "R" Then

 Board(FinishRank, FinishFile) = "BM"

 Board(StartRank, StartFile) = "

 Else

 Board(FinishRank, FinishFile) = Board(StartRank,

 StartFile)

 Board(StartRank, StartFile) = " "

 End If

 ...

 VB6
 ...

 If WhoseTurn = "W" And FinishRank = 1 And

 Mid$(Board(StartRank, StartFile), 2, 1) = "R" Then

 Board(FinishRank, FinishFile) = "WK"

 Board(StartRank, StartFile) = " "

 ElseIf Mid$(Board(StartRank, StartFile), 2, 1) = "K" And

 Board(FinishRank, FinishFile) <> " " Then

 Board(FinishRank, FinishFile) = Mid$(Board(StartRank,

 StartFile), 1, 1) & Mid$(Board(FinishRank, FinishFile),

2,

 1)

 ElseIf WhoseTurn = "B" And FinishRank = 8 And

 Mid$(Board(StartRank, StartFile), 2, 1) = "R" Then

 Board(FinishRank, FinishFile) = "BM"

 Board(StartRank, StartFile) = " "

 Else

 Board(FinishRank, FinishFile) = Board(StartRank,

 StartFile)

 Board(StartRank, StartFile) = " "

 End If

 ...

 Alternative answer
 ...

 If WhoseTurn = "W" And FinishRank = 1 And

 Mid$(Board(StartRank, StartFile), 2, 1) = "R" Then

 Board(FinishRank, FinishFile) = "WK"

 Board(StartRank, StartFile) = " "

 ElseIf Mid$(Board(StartRank, StartFile), 2, 1) = "K" And

 Board(FinishRank, FinishFile) <> " " Then

 Board(FinishRank, FinishFile) = “W” &

 Mid$(Board(FinishRank, FinishFile), 2, 1)

 ElseIf WhoseTurn = "B" And FinishRank = 8 And

 Mid$(Board(StartRank, StartFile), 2, 1) = "R" Then

 Board(FinishRank, FinishFile) = "BM"

Page 106 of 133

 Board(StartRank, StartFile) = " "

 Else

 Board(FinishRank, FinishFile) = Board(StartRank,

 StartFile)

 Board(StartRank, StartFile) = " "

 End If

 ...

 Java
 ...

 if ((whoseTurn == 'W') && (finishRank == 1) &&

 (board[startRank][startFile].charAt(1) == 'R')) {

 board[finishRank][finishFile] = "WK";

 board[startRank][startFile] = " ";

 } else {

 if (board[startRank][startFile].charAt(1) == 'K'

 && !board[finishRank][finishFile].equals(" ")) {

 Board[finishRank][finishFile] =

 Character.toString(board[startRank][startFile].charAt(

0)) +

 Character.toString(board[finishRank][finishFile].charA

t(1))

 ;

 } else {

 if ((whoseTurn == 'B') && (finishRank == 8) &&

 (board[startRank][startFile].charAt(1) == 'R')) {

 board[finishRank][finishFile] = "BM";

 board[startRank][startFile] = " ";

 } else {

 board[finishRank][finishFile] =

 board[startRank][startFile];

 board[StartRank][startFile] = " ";

 }

 }

 }

 ...

 Alternative Solution
 ...

 if ((whoseTurn == 'W') && (finishRank == 1) &&

 (board[startRank][startFile].charAt(1) == 'R')) {

 board[finishRank][finishFile] = "WK";

 board[startRank][startFile] = " ";

 } else {

 if (board[startRank][startFile].charAt(1) == 'K' &&

 !board[finishRank][finishFile].equals(" ")) {

 board[finishRank][finishFile] = "W" +

 Character.toString(board[finishRank][finishFile].charA

t(1))

 ;

 } else {

 if ((whoseTurn == 'B') && (finishRank == 8) &&

 (board[startRank][startFile].charAt(1) == 'R')) {

 board[finishRank][finishFile] = "BM";

 board[startRank][startFile] = " ";

 } else {

 board[finishRank][finishFile] =

 board[startRank][startFile];

 board[StartRank][startFile] = " ";

 }

 }

 }

 ...

Page 107 of 133

 C#
 ...

 if ((WhoseTurn == 'W') && (FinishRank == 1) &&

 (Board[StartRank, StartFile][1] == 'R'))

 {

 Board[FinishRank, FinishFile] = "WK";

 Board[StartRank, StartFile] = " ";

 }

 else

 if (Board[StartRank, StartFile][1] == 'K' &&

 Board[FinishRank, FinishFile] != " ")

 Board[FinishRank, Finishfile] = Board[StartRank,

 StartFile][0].ToString + Board[FinishRank,

 Finishfile][1].ToString();

 else

 if ((WhoseTurn == 'B') && (FinishRank == 8) &&

 (Board[StartRank, StartFile][1] == 'R'))

 {

 Board[FinishRank, FinishFile] = "BM";

 Board[StartRank, StartFile] = " ";;

 }

 else

 {

 Board[FinishRank, FinishFile] = Board[StartRank,

 StartFile];

 Board[StartRank, StartFile] = " ";;

 }

 ...

 Alternative Solution
 ...

 if ((WhoseTurn == 'W') && (FinishRank == 1) && (Board[

 StartRank, StartFile][1] == 'R'))

 {

 Board[FinishRank, FinishFile] = "WK";

 Board[StartRank, StartFile] = " ";

 }

 else

 if (Board[StartRank, StartFile][1] == 'K' &&

 Board[FinishRank, finishFile] != " ")

 Board[FinishRank, FinishFile] = "W" +

Board[finishRank,

 FinishFile][1].ToString();

 else

 if ((WhoseTurn == 'B') && (FinishRank == 8) &&

 (Board[StartRank, StartFile][1] == 'R'))

 {

 Board[FinishRank, FinishFile] = "BM";

 Board[StartRank, StartFile] = " ";;

 }

 else

 {

 Board[FinishRank, FinishFile] = Board[StartRank,

 StartFile];

 Board[StartRank, StartFile] = " ";

 }

 ...

 Python 2
 if (WhoseTurn == "W") and (FinishRank == 1) and

 (Board[StartRank][StartFile][1] == "R"):

 Board[FinishRank][FinishFile] = "WK"

 Board[StartRank][StartFile] = " "

Page 108 of 133

 elif Board[StartRank][StartFile][1] == "K" and

 Board[FinishRank][FinishFile] != " ":

 Board[FinishRank][FinishFile] =

 Board[StartRank][StartFile][0] +

 Board[FinishRank][FinishFile][1]

 elif (WhoseTurn == "B") and (FinishRank == 8) and

 (Board[StartRank][StartFile][1] == "R"):

 Board[FinishRank][FinishFile] = "BM"

 Board[StartRank][StartFile] = " "

 else:

 Board[FinishRank][FinishFile] =

 Board[StartRank][StartFile]

 Board[StartRank][StartFile] = " "

 ...

 Alternative answer
 if (WhoseTurn == "W") and (FinishRank == 1) and

 (Board[StartRank][StartFile][1] == "R"):

 Board[FinishRank][FinishFile] = "WK"

 Board[StartRank][StartFile] = " "

 elif Board[StartRank][StartFile][1] == "K" and

 Board[FinishRank][FinishFile] != " ":

 Board[FinishRank][FinishFile] = "W" +

 Board[FinishRank][FinishFile][1]

 elif (WhoseTurn == "B") and (FinishRank == 8) and

 (Board[StartRank][StartFile][1] == "R"):

 Board[FinishRank][FinishFile] = "BM"

 Board[StartRank][StartFile] = " "

 else:

 Board[FinishRank][FinishFile] =

 Board[StartRank][StartFile]

 Board[StartRank][StartFile] = " "

 ...

 Python 3
 if (WhoseTurn == "W") and (FinishRank == 1) and

 (Board[StartRank][StartFile][1] == "R"):

 Board[FinishRank][FinishFile] = "WK"

 Board[StartRank][StartFile] = " "

 elif Board[StartRank][StartFile][1] == "K" and

 Board[FinishRank][FinishFile] != " ":

 Board[FinishRank][FinishFile] =

 Board[StartRank][StartFile][0] +

 Board[FinishRank][FinishFile][1]

 elif (WhoseTurn == "B") and (FinishRank == 8) and

 (Board[StartRank][StartFile][1] == "R"):

 Board[FinishRank][FinishFile] = "BM"

 Board[StartRank][StartFile] = " "

 else:

 Board[FinishRank][FinishFile] =

 Board[StartRank][StartFile]

 Board[StartRank][StartFile] = " "

 ...

 Alternative answer
 if (WhoseTurn == "W") and (FinishRank == 1) and

 (Board[StartRank][StartFile][1] == "R"):

 Board[FinishRank][FinishFile] = "WK"

 Board[StartRank][StartFile] = " "

 elif Board[StartRank][StartFile][1] == "K" and

 Board[FinishRank][FinishFile] != " ":

 Board[FinishRank][FinishFile] = "W" +

 Board[FinishRank][FinishFile][1]

Page 109 of 133

 elif (WhoseTurn == "B") and (FinishRank == 8) and

 (Board[StartRank][StartFile][1] == "R"):

 Board[FinishRank][FinishFile] = "BM"

 Board[StartRank][StartFile] = " "

 else:

 Board[FinishRank][FinishFile] =

 Board[StartRank][StartFile]

 Board[StartRank][StartFile] = " "

 ...

5

(iii) ****SCREEN CAPTURE****
Must match code from 33 and 34, including prompts on screen capture
matching those in code. Code for 33 and 34 must be sensible.

Finish square of 11 and board looks like diagram below;

3rd move finish square is 21 and board looks like the diagram below;

Page 110 of 133

5th move has finish square of 22, board looks like diagram below and message
Black's sarrum has been captured. White wins! is displayed;

3

(d) (i) 1. New subroutine GenerateFEN created; R. if spelt incorrectly I.

case

2. Correct parameters passed into the subroutine;

3. A string value will be returned by the subroutine; R. use of global
variable

4. FEN record will have a / at end of each rank;

5. FEN record uses upper case for white pieces;

Page 111 of 133

6. FEN record uses lower case for black pieces;

7. Each piece on the board in the FEN record (even if incorrectly
represented eg WR instead of R);

8. Indicates where the empty spaces on the board are in the FEN record
(even if incorrect representation); A. Incorrect counts of empty spaces

9. FEN Record correctly use 8 for an empty rank; R. is any character other
than 8 in the FEN record for an empty rank

10. Correctly counts number of consecutive empty spaces // correctly works
out the number of consecutive empty spaces;

11. Count of empty spaces terminates at end of rank // calculation of
number of empty spaces does not go over more than one rank; R. if no
attempt to calculate/count number of empty spaces

12. FEN record shows whose move it is;

13. Accurate FEN record would be produced for every possible game state;

 Pascal
 Function GenerateFEN(Var Board : TBoard; WhoseTurn : Char)

 : String;

 Var

 FEN : String;

 RankNo : Integer;

 FileNo : Integer;

 NoOfSpaces : Integer;

 Begin

 FEN := '';

 For RankNo := 1 To BoardDimension

 Do

 Begin

 NoOfSpaces := 0;

 For FileNo := 1 To BoardDimension

 Do

 Begin

 If Board[RankNo, FileNo] = ' '

 Then NoOfSpaces := NoOfSpaces + 1

 Else

 Begin

 If NoOfSpaces > 0

 Then

 Begin

 FEN := FEN +

 IntToStr(NoOfSpaces)Temp;

 NoOfSpaces := 0;

 End;

 If Board[RankNo, FileNo][1] = 'B'

 Then FEN := FEN +

 Chr(Ord(Board[RankNo, FileNo][2]) + 32);

 Else FEN := FEN + Board[RankNo,

 FileNo][2]

 End;

 End;

 If NoOfSpaces > 0

 Then FEN := FEN + IntToStr(NoOfSpaces);

 FEN := FEN + '/';

 End;

 FEN := FEN + WhoseTurn;

Page 112 of 133

 GenerateFEN := FEN;

 End;

 Alternative answer – converting to lower case
 Else FEN := FEN + ansilowercase(Board[RankNo,

FileNo][2]);

 Alternative answer – using Str instead of IntToStr
 Function GenerateFEN(Var Board : TBoard; WhoseTurn : Char)

 : String;

 Var

 ...

 Temp : String;

 Begin

 ...

 Str(NoOfSpaces, Temp);

 FEN := FEN + Temp;

 ...

 VB.Net
 Function GenerateFEN(ByVal Board(,) As String, ByVal

 WhoseTurn As Char) As String

 Dim FEN As String

 Dim RankNo As Integer

 Dim FileNo As Integer

 Dim NoOfSpaces As Integer

 FEN = ""

 For RankNo = 1 To BoardDimension

 NoOfSpaces = 0

 For FileNo = 1 To BoardDimension

 If Board(RankNo, FileNo) = " " Then

 NoOfSpaces = NoOfSpaces + 1

 Else

 If NoOfSpaces > 0 Then

 FEN = FEN & CStr(NoOfSpaces)

 NoOfSpaces = 0

 End If

 If Board(RankNo, FileNo)(0) = "B" Then

 FEN = FEN & Board(RankNo,

 FileNo)(1).ToString.ToLower

 Else

 FEN = FEN & Board(RankNo, FileNo)(1)

 End If

 End If

 Next

 If NoOfSpaces > 0 Then

 FEN = FEN & NoOfSpaces

 End If

 FEN = FEN & "/"

 Next

 FEN = FEN & WhoseTurn

 Return FEN

 End Function

 VB6
 Private Function GenerateFEN(ByRef Board() As String,

ByVal

 WhoseTurn As String) As String

 Dim FEN As String

 Dim RankNo As Integer

 Dim FileNo As Integer

 Dim NoOfSpaces As Integer

 FEN = ""

Page 113 of 133

 For RankNo = 1 To BoardDimension

 NoOfSpaces = 0

 For FileNo = 1 To BoardDimension

 If Board(RankNo, FileNo) = " " Then

 NoOfSpaces = NoOfSpaces + 1

 Else

 If NoOfSpaces > 0 Then

 FEN = FEN & CStr(NoOfSpaces)

 NoOfSpaces = 0

 End If

 If Mid$(Board(RankNo, FileNo), 1, 1) = "B" Then

 FEN = FEN & LCase(Mid$(Board(RankNo, FileNo),

2, 1))

 Else

 FEN = FEN & Mid$(Board(RankNo, FileNo), 2, 1)

 End If

 End If

 Next

 If NoOfSpaces > 0 Then

 FEN = FEN & NoOfSpaces

 End If

 FEN = FEN & "/"

 Next

 FEN = FEN & WhoseTurn

 GenerateFEN = FEN

 End Function

 Java
 String generateFEN(String[][] board, char whoseTurn) {

 String FEN;

 int rankNo;

 int fileNo;

 int noOfSpaces;

 FEN = "";

 for (rankNo = 1; rankNo <= BOARD_DIMENSION; rankNo++)

{

 noOfSpaces = 0;

 for (fileNo = 1; fileNo <= BOARD_DIMENSION;

fileNo++) {

 if (board[rankNo][fileNo].equals(" ")) {

 noOfSpaces = noOfSpaces + 1;

 } else {

 if (noOfSpaces > 0) {

 FEN = FEN + Integer.toString(noOfSpaces);

 noOfSpaces = 0;

 }

 if (board[rankNo][fileNo].charAt(0) == 'B') {

 FEN = FEN + Character.toString(board[rankNo][

 fileNo].charAt(1)).toLowerCase();

 } else {

 FEN = FEN + board[rankNo][fileNo].charAt(1);

 }

 }

 }

 if (noOfSpaces > 0) {

 FEN = FEN + Integer.toString(noOfSpaces);

 }

 FEN = FEN + "/";

 }

 FEN = FEN + Character.toString(whoseTurn);

 return FEN;

 }

Page 114 of 133

 C#
 public static string GenerateFEN(string[,] Board, char

 WhoseTurn)

 {

 string FEN;

 int RankNo;

 int FileNo;

 int NoOfSpaces;

 FEN = "";

 for (RankNo = 1; RankNo <= BoardDimension; RankNo++)

 {

 NoOfSpaces = 0;

 for (FileNo = 1; FileNo <= BoardDimension; FileNo++)

 if (Board[RankNo, FileNo] == " ")

 NoOfSpaces = NoOfSpaces + 1;

 else

 if (NoOfSpaces > 0)

 {

 FEN = FEN + NoOfSpaces.ToString();

 NoOfSpaces = 0;

 }

 if (Board[RankNo, FileNo][0] == 'B')

 FEN = FEN + Board[RankNo,

 FileNo][1].ToString().ToLower();

 else

 FEN = FEN + Board[RankNo, FileNo][1];

 if (NoOfSpaces > 0)

 FEN = FEN + NoOfSpaces.ToString();

 FEN = FEN + "/";

 }

 FEN = FEN + WhoseTurn.ToString();

 return FEN;

 }

 Python 2
 def GenerateFEN(Board, WhoseTurn):

 FEN = ""

 for RankNo in range(1 , BOARDDIMENSION + 1):

 NoOfSpaces = 0

 for FileNo in range(1 , BOARDDIMENSION + 1):

 if Board[RankNo][FileNo] == " ":

 NoOfSpaces = NoOfSpaces + 1

 else:

 if NoOfSpaces > 0:

 FEN = FEN + str(NoOfSpaces)

 NoOfSpaces = 0

 if Board[RankNo][FileNo][0] == "B":

 FEN = FEN +

Board[RankNo][FileNo][1].lower()

 else:

 FEN = FEN + Board[RankNo][FileNo][1]

 if NoOfSpaces > 0:

 FEN = FEN + str(NoOfSpaces)

 FEN = FEN + "/"

 FEN = FEN + WhoseTurn

 return FEN

 Python 3
 def GenerateFEN(Board, WhoseTurn):

 FEN = ""

 for RankNo in range(1 , BOARDDIMENSION + 1):

 NoOfSpaces = 0

 for FileNo in range(1 , BOARDDIMENSION + 1):

Page 115 of 133

 if Board[RankNo][FileNo] == " ":

 NoOfSpaces = NoOfSpaces + 1

 else:

 if NoOfSpaces > 0:

 FEN = FEN + str(NoOfSpaces)

 NoOfSpaces = 0

 if Board[RankNo][FileNo][0] == "B":

 FEN = FEN +

Board[RankNo][FileNo][1].lower()

 else:

 FEN = FEN + Board[RankNo][FileNo][1]

 if NoOfSpaces > 0:

 FEN = FEN + str(NoOfSpaces)

 FEN = FEN + "/"

 FEN = FEN + WhoseTurn

 return FEN

13

(ii) Syntactically valid call to subroutine created in part 36;
Value returned by subroutine is displayed; R. use of global variable
Code for Task 2 added before the code asking the user to enter their
move;

 Pascal
 ...

 DisplayBoard(Board);

 Writeln(GenerateFEN(Board, WhoseTurn));

 DisplayWhoseTurnItIs(WhoseTurn);

 ...

 VB.Net
 ...

 DisplayBoard(Board)

 Console.WriteLine(GenerateFEN(Board, WhoseTurn))

 DisplayWhoseTurnItIs(WhoseTurn)

 MoveIsLegal = False

 ...

 VB6
 ...

 Call DisplayBoard(Board)

 WriteLine (GenerateFEN(Board, WhoseTurn))

 DisplayWhoseTurnItIs (WhoseTurn)

 MoveIsLegal = False

 ...

 Java
 ...

 moveIsLegal = false;

 displayBoard(board);

 console.println(generateFEN(board, whoseTurn));

 displayWhoseTurnItIs(whoseTurn);

 ...

 C#
 ...

 MoveIsLegal = false;

 DisplayBoard(ref Board);

 Console.WriteLine(GenerateFEN(Board, WhoseTurn));

 DisplayWhoseTurnItIs(WhoseTurn);

 ...

Page 116 of 133

 Python 2
 while not(GameOver):

 DisplayBoard(Board)

 print (GenerateFEN(Board, WhoseTurn))

 DisplayWhoseTurnItIs(WhoseTurn)

 MoveIsLegal = False

 while not(MoveIsLegal):

 ...

 Python 3
 while not(GameOver):

 DisplayBoard(Board)

 print (GenerateFEN(Board, WhoseTurn))

 DisplayWhoseTurnItIs(WhoseTurn)

 MoveIsLegal = False

 while not(MoveIsLegal):

 ...

3

(iii) ****SCREEN CAPTURE****
Must match code from 36 and 37, including prompts on screen capture
matching those in code. Code for 36 and 37 must be sensible.

Mark as follows:
Sample game chosen and the FEN record returned/created by their
subroutine from part 36 is displayed;
Correct FEN record of 1g1s3G/R7/Se5e/8/8/7r/8/8/W is displayed;

2

[40]

Q31.
(a) An abstraction / leaving out non-essential details // A representation of reality;

1

(b) 1 mark for how stack works:
Stack / It is a Last-in-First-Out / LIFO / First-in-Last-Out / FILO (data structure);

1 mark for correspondence with siding (MAX 1):
The last wagon to enter will be the first to leave;
Wagons enter and leave from same end of siding;

Wagons cannot leave siding before wagons that have entered after them;
Note: Responses must refer to both entering and leaving to gain this mark
NE References to “start”, “end”, “front”, “back” of siding, without further
clarification, as not clear which end of siding these terms refer to
NE A siding is LIFO − the student must refer to wagon in their answers, for
example the last wagon to enter will be the first to leave.

2

(c) If TopOfStackPointer = 0
Then

Stack Empty Error

Else

CurrentWagon StackArray [TopOfStackPointer]

Decrement TopOfStackPointer

EndIf

1 mark for appropriate If structure including condition (does not need both

Then and Else) − Do not award this mark if value is popped off stack outside

of If.

1 mark for reporting error in correct place

Page 117 of 133

1 mark* for decrementing TopOfStackPointer

1 mark* for transferring value from correct position in array into CurrentWagon

variable

* = if the CurrentWagon assignment is performed after the decrement

instruction OR the If structure then award MAX 1 of these two marks

UNLESS the item is removed from position TopOfStackPointer+1 so the

code would work.
I unnecessary initialisation of any variables
A Stack Is Empty for TopOfStackPointer = 0

A Logic of If structure reversed i.e. If stack is not empty /

TopOfStackPointer>0 / 0 / !=0 and Then, Else swapped

A Any type of brackets or reasonable notation for the array index
A Award the mark for dealing with the error situation even if the condition in
the IF statement is not correct, as long as the purpose of the condition is

clearly correct
A Dealing with error in another sensible way eg by setting CurrentWagon to
Null

A Additional lines of code that do not affect behaviour but MAX 3 if these lines
of code would stop the algorithm working correctly
DPT If candidate has used a different name for any variable then do not award
first mark but award subsequent marks as if correct name used.

4

(d)

1 mark for Wagon at top of diagram with OpenWagon and ClosedWagon
directly underneath it and linked to it and no other labels linked to it;
1 mark for ClosedWagon with RefrigeratedWagon and
NonRefrigeratedWagon directly underneath it and linked to it, and no other
labels linked to it (except Wagon above);
1 mark for correctly styled diagram, i.e. lines drawn as arrows and boxes (any
shape) around labels; - This mark is only available if candidate has already

achieved at least one mark for correct contents of the diagram.

A Arrows drawn as:

A Filled / empty arrowheads
A Diagram rotated by 90 degrees

3

(e) ClosedWagon = Class / Subclass / Extends Wagon 1

Page 118 of 133

(Public)

Procedure CreateWagon (Override) 1

Function GetHeight

Function GetNumberOfDoors 1

Function GetSuitableForFoodStuffs

Private / Protected

Height : Real

NumberOfDoors : Integer 1

SuitableForFoodstuffs : Boolean

End

Accept answers that use different notations, so long as meaning is clear.

1 mark for correct header including name of class and parent class;
1 mark for redefining the CreateWagon procedure;

1 mark* for defining all 3 extra functions needed to read variable values, all
identified as being public (keyword public is optional if functions are declared

before variables);
1 mark# for defining all 3 extra variables, with appropriate data types and
identified as being private;

A Any sensible numeric types for Height and NumberOfDoors. Height must

accept non-integer values and NumberOfDoors integer values only.

A Answers that indicate separately that each variable is private or each
method is public
R. Do not award mark for declaring new functions if any of the functions have
the same name as the variables
I Parameters to methods, minor changes to names that do not affect clarity
* - Do not award this mark if any extra functions / procedures have been
declared, EXCEPT for functions that would set values individually e.g.

SetHeight or an incorrectly named procedure to add e.g.

CreateClosedWagon which are acceptable for this mark

- Do not award this mark if any extra variables have been declared
4

[14]

Q32.

(a)
<variable>

Valid?
(Tick any number of rows)

a

money-paid

taxrate2

2ndPlayerName

1 mark for ticks in the correct two rows and other rows left blank.

A Use of alternative symbol for tick
A Use of two symbols - one to indicate validity and one to indicate invalidity,
so long as the meaning of the symbols is clear e.g. a tick and a cross or a Y
and an N.

1

Page 119 of 133

(b) Required as an integer can contain any number of digits;
NE More than one digit
A “numbers” for “digits” as BOD
BNF does not support iteration / looping // BNF can only achieve iteration
through recursion // would need infinite number of rules otherwise;
NE Rule needs to loop
MAX 1

1

(c) Variable may not have been declared;
Variable may be of inappropriate type;
Position of statement within program may be invalid;
Rightmost integer may be a lower value than the leftmost one;
One of the numbers / limits may be outside of the range of valid integers;
A Examples of any of the above
MAX 1

1

[3]

Q33.
(a) 182;

1

(b) -;74;
2

(c) -128; to (+)127;

Mark as follows:
Lowest value identified correctly;
Highest value identified correctly;

2

(d) 5 11 / 16 / /
5.6875;;
A 91 ÷ 16;;

Mark as follows:
Correct whole number part (5);
Correct fractional / decimal part (11 / 16 or 0.6875);

2

(e) B;6;
2

(f) Easier for people to read / understand;
R If implication is it easier for a computer to read / understand
Can be displayed using fewer digits;
More compact when printed / displayed;
NE Takes up less space
NE More compact

MAX 1

(g) Shift all the bits one place to the left; and add a zero / /
Add an extra 0; to the RHS of the bit pattern; / /
A Arithmetic left shift applied once / by one place;;

2

[12]

Page 120 of 133

Q34.
(a) A (step-by-step) description of how to complete a task / a description of a

process that achieves some task / a sequence of steps that solve a problem /
A sequence of unambiguous instructions for solving a problem;

Independent of any programming language;
That can be completed in finite time;

MAX 2

(b)

 X

X X

Marks as follows:
1 mark for any two correct columns;

2 marks for all three columns correct;
A Other, sensible, indicators instead of X

2

(c)

x c b a Printed
output

0 0 0 0 000

1 0 0 1 001

2 0 1 1 011

3 0 1 0 010

4 1 1 0 110

5 1 1 1 111

6 1 0 1 101

7 1 0 0 100

Mark as follows:
Any one row containing the correct values for c, b and a;

Any three rows containing the correct values for c, b and a;

All rows contain the correct values for c, b and a;

X column correct;

Printed output column correct; A printed output column incorrect – but
matches the (incorrect) values provided for c, b and a, as long as a minimum

of 3 rows have been completed
I Extra row at start of table containing the values 0,0,0,0,000

5

(d) Print the (first 8) Gray code numbers; / /
(3 bit) Gray code counter;
NE Convert to Gray code

1

[10]

Q35.

Page 121 of 133

(a) Correct variable declarations for ISBN, CalculatedDigit and Count;

For loop, with syntax allowed by the programming language, set up to repeat

the correct number of times;
Correct prompt "Please enter next digit of ISBN: ";

Followed by ISBN[Count] assigned value entered by the user – must be

inside the 1st iterative structure;

CalculatedDigit and Count initialised correctly (must be after 1st iterative

structure and before 2nd iterative structure);

2nd loop has syntax allowed by the programming language and correct
condition for the termination of the loop; A alternative correct logic for
condition

CalculatedDigit assigned the value of its original value added to

ISBN[Count] followed by incrementing Count – both inside the loop;

CalculatedDigit assigned the value of its original value added to

ISBN[Count] * 3 followed by incrementing Count – must be in the loop and

after the 1st two assignment statements in the loop;

3rd loop has syntax allowed by the programming language and correct
condition for the termination of the loop; A alternative correct logic for the
condition

10 subtracted from value of CalculatedDigit and result assigned to

CalculatedDigit – must be the only statement inside an iterative structure;

Assignment statement CalculatedDigit ← 10 – CalculatedDigit - must

not be in an iteration or selection structure;

1st IF statement with correct condition – must not be in an iterative structure –

with CalculatedDigit being assigned the value 0 inside the selection

structure;

2nd IF statement with correct condition – must not be in an iterative structure

or inside the 1st selection structure;

Correct output message (Valid ISBN) in THEN part of selection structure;

Correct output message (Invalid ISBN) in ELSE part of selection structure;

I Case of variable names and output messages
A Minor typos in variable names and output messages
I Spacing in prompts
A Initialisation of variables at declaration stage
A Arrays using positions 0 to 12 instead of 1 to 13

Pascal
Program Question4;

Var

 CalculatedDigit : Integer;

 ISBN : Array[1..13] Of Integer;

 Count : Integer;

Begin

Page 122 of 133

 For Count := 1 To 13

 Do

 Begin

 Writeln('Please enter next digit of ISBN: ');

 Readln(ISBN[Count]);

 End;

 CalculatedDigit := 0;

 Count := 1;

 While Count < 13

 Do

 Begin

 CalculatedDigit := CalculatedDigit + ISBN[Count];

 Count := Count + 1;

 CalculatedDigit := CalculatedDigit + ISBN[Count] * 3;

 Count := Count + 1;

 End;

 While CalculatedDigit >= 10

 Do CalculatedDigit := CalculatedDigit - 10;

 CalculatedDigit := 10 - CalculatedDigit;

 If CalculatedDigit = 10

 Then CalculatedDigit := 0;

 If CalculatedDigit = ISBN[13]

 Then Writeln('Valid ISBN')

 Else Writeln('Invalid ISBN');

 Readln;

End.

VB.Net
Module Module1

 Sub Main()

 Dim CalculatedDigit As Integer

 Dim ISBN(13) As Integer

 Dim Count As Integer

 For Count = 1 To 13

 Console.Write("Please enter next digit of ISBN: ")

 ISBN(Count) = Console.ReadLine()

 Next

 CalculatedDigit = 0

 Count = 1

 While Count < 13

 CalculatedDigit = CalculatedDigit + ISBN(Count)

 Count = Count + 1

 CalculatedDigit = CalculatedDigit + ISBN(Count) * 3

 Count = Count + 1

 End While

 While CalculatedDigit >= 10

 CalculatedDigit = CalculatedDigit - 10

 End While

 CalculatedDigit = 10 - CalculatedDigit

 If CalculatedDigit = 10 Then

 CalculatedDigit = 0

 End If

 If CalculatedDigit = ISBN(13) Then

 Console.WriteLine("Valid ISBN")

 Else

 Console.WriteLine("Invalid ISBN")

 End If

 Console.ReadLine()

 End Sub

End Module

VB6
Private Sub Form_Load()

Page 123 of 133

 Dim CalculatedDigit As Integer

 Dim ISBN(13) As Integer

 Dim Count As Integer

 For Count = 1 To 13

 ISBN(Count) = ReadLine("Please enter next digit of ISBN: ")

 Next

 CalculatedDigit = 0

 Count = 1

 While Count < 13

 CalculatedDigit = CalculatedDigit + ISBN(Count)

 Count = Count + 1

 CalculatedDigit = CalculatedDigit + (ISBN(Count) * 3)

 Count = Count + 1

 Wend

 While CalculatedDigit >= 10

 CalculatedDigit = CalculatedDigit - 10

 Wend

 CalculatedDigit = 10 - CalculatedDigit

 If CalculatedDigit = 10 Then

 CalculatedDigit = 0

 End If

 If CalculatedDigit = ISBN(13) Then

 WriteLine("Valid ISBN")

 Else

 WriteLine("Invalid ISBN")

 End If

End Sub

Alternative answers could use some of the following instead of WriteLine
/ ReadLine:
Console.Text = Console.Text & ...

WriteLineWithMsg

WriteWithMsg

Msgbox

InputBox

WriteNoLine

Python 2
Question 4

if __name__ == "__main__":

 ISBN = [None, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 for Count in range(1, 14):

 print 'Please enter next digit of ISBN: ',

 ISBN[Count] = int(raw_input())

 CalculatedDigit = 0

 Count = 1

 while Count < 13:

 CalculatedDigit = CalculatedDigit + ISBN[Count]

 Count = Count + 1

 CalculatedDigit = CalculatedDigit + ISBN[Count] * 3

 Count = Count + 1

 while CalculatedDigit >= 10:

 CalculatedDigit = CalculatedDigit - 10

 CalculatedDigit = 10 - CalculatedDigit

 if CalculatedDigit == 10:

 CalculatedDigit = 0

 if CalculatedDigit == ISBN[13]:

 print 'Valid ISBN'

 else:

 print 'Invalid ISBN'

Alternative print/input combination:

Page 124 of 133

ISBN[Count] = int(raw_input('Please enter next digit of ISBN: ',))

Python 3
Question 4

if __name__ == "__main__":

 ISBN = [None, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

for Count in range(1, 14):

 print('Please enter next digit of ISBN: '),

 ISBN[Count] = int(input())

 CalculatedDigit = 0

 Count = 1

 while Count < 13:

 CalculatedDigit = CalculatedDigit + ISBN[Count]

 Count = Count + 1

 CalculatedDigit = CalculatedDigit + ISBN[Count] * 3

 Count = Count + 1

 while CalculatedDigit >= 10:

 CalculatedDigit = CalculatedDigit - 10

 CalculatedDigit = 10 - CalculatedDigit

 if CalculatedDigit == 10 :

 CalculatedDigit = 0

 if CalculatedDigit == ISBN[13]:

 print('Valid ISBN')

 else:

 print('Invalid ISBN')

Alternative print/input combination:
ISBN[Count] = int(input('Please enter next digit of ISBN: ',))

Java
public class Question4 {

 AQAConsole2014 console = new AQAConsole2014();

 public Question4() {

 int ISBN[] = new int[14];

 int count;

 int calculatedDigit;

 for (count = 1; count <= 13; count++) {

 ISBN[count] = console.readInteger("Please enter next digit

of ISBN: ");

 }

 calculatedDigit = 0;

 count = 1;

 while (count < 13) {

 calculatedDigit = calculatedDigit + ISBN[count];

 count++;

 calculatedDigit = calculatedDigit + ISBN[count] * 3;

 count++;

 }

 while (calculatedDigit >= 10) {

 calculatedDigit = calculatedDigit - 10;

 }

 calculatedDigit = 10 - calculatedDigit;

 if (calculatedDigit == 10) {

 calculatedDigit = 0;

 }

 if (calculatedDigit == ISBN[13]) {

 console.println("Valid ISBN");

 } else {

 console.println("Invalid ISBN");

 }

 }

Page 125 of 133

 public static void main(String[] args) {

 new Question4();

 }

}

15

(b) ****SCREEN CAPTURE****
Must match code from part (a), including prompts on screen capture matching
those in code. Code for (a) must be sensible.

Mark as follows:
'Please enter next digit of ISBN: ' + user input of 9
'Please enter next digit of ISBN: ' + user input of 7
'Please enter next digit of ISBN: ' + user input of 8
'Please enter next digit of ISBN: ' + user input of 0
'Please enter next digit of ISBN: ' + user input of 0
'Please enter next digit of ISBN: ' + user input of 9
'Please enter next digit of ISBN: ' + user input of 9
'Please enter next digit of ISBN: ' + user input of 4
'Please enter next digit of ISBN: ' + user input of 1

'Please enter next digit of ISBN: ' + user input of 0
'Please enter next digit of ISBN: ' + user input of 6
'Please enter next digit of ISBN: ' + user input of 7
'Please enter next digit of ISBN: ' + user input of 6;
'Valid ISBN ' message shown;

A Alternative output messages if match code for part (a)
A If can only see some of the latter user inputs (e.g. due to first few inputs
scrolling off the top of the console screen) – but must be able to see the last
three digits entered (6, 7, 6)

2

(c) ****SCREEN CAPTURE****
Must match code from part (a), including prompts on screen capture matching
those in code. Code for (a) must be sensible.

Mark as follows:
'Please enter next digit of ISBN: ' + user input of 9
'Please enter next digit of ISBN: ' + user input of 7
'Please enter next digit of ISBN: ' + user input of 8
'Please enter next digit of ISBN: ' + user input of 1
'Please enter next digit of ISBN: ' + user input of 8
'Please enter next digit of ISBN: ' + user input of 5
'Please enter next digit of ISBN: ' + user input of 7
'Please enter next digit of ISBN: ' + user input of 0

'Please enter next digit of ISBN: ' + user input of 2
'Please enter next digit of ISBN: ' + user input of 8
'Please enter next digit of ISBN: ' + user input of 8
'Please enter next digit of ISBN: ' + user input of 9
'Please enter next digit of ISBN: ' + user input of 4
'Invalid ISBN ' message shown;

A Alternative output messages if match code for part (a)
A If can only see some of the latter user inputs (e.g. due to first few inputs
scrolling off the top of the console screen) – but must be able to see the last
three digits entered (8, 9, 4)

1

Page 126 of 133

[18]

Page 127 of 133

Examiner reports

Q1.
This question was about reverse Polish notation (RPN) and stacks. It was about the

contents of a stack frame. Sometimes answers were too vague to be awarded a mark,
“values” was a commonly-seen answer that was too imprecise to be creditworthy.

Q2.
In previous years there have been questions asking students to complete an adjacency
matrix based on a diagram of a graph and most students were able to answer question (a)
this year. This was the first time that an adjacency matrix for a weighted graph had been
asked for and some students had clearly not seen this type of question before and only
included an indicator that there was an edge between two nodes rather than the weight of
the edge between the two nodes; this meant they only got one of the two marks available
for this question.

Questions (b)-(d) were about graph theory. Question (c) was well-answered with students

identifying that it was not a tree because there were cycles. The most common incorrect
answer was to say that it wasn’t a tree because the edges have weights associated with
them. Question (d) was also well-answered. Answers to (b) often showed that students
were not as familiar with adjacency lists as they are with adjacency matrices.

For question (e) students had to complete a trace of Djikstra’s Algorithm. This topic was
not on the previous A-level specification and was often poorly answered suggesting many
students had not tried to complete a trace for the algorithm before. For question (f) many
students gave an answer that explained the point of Djikstra’s Algorithm (find the shortest
route from a node to each other node) rather than what the specific output in the algorithm
given in the question would be (the distance of the shortest route from node 1 to node 6).

Q3.
Most students were able to get some marks on this programming question with about a

third producing fully-working code. Some students wrote programs that only worked for a
very limited selection of numbers but showed good exam technique by including their
answer even though they knew it did not fully answer the question. A common error was
to write the code in such a way that the number 1 was counted as being a prime number.

Q5.
An error on the paper meant that it was not possible for students using the Java
programming language to provide an answer for question (a). All students (for all
languages) were awarded this mark irrespective of what they wrote for their answer.

Question (b) asked students to identify a local variable in a method in the QueueOfTiles

class. There were a number of potential correct answers with Item being the most

commonly seen. Some students gave an example of a private attribute belonging to the
class rather than a local variable in a method in the class.

Questions (c)-(e) were about circular and linear queues. Some students stated that a rear
pointer would be needed for a circular queue which is true but does not answer question
(e) as the rear pointer was already present in the Skeleton Program. Some answers for (c)
talked, incorrectly, about circular queues being a dynamic data structure and linear
queues as being a static data structure. Good answers for (d) made it clear that with the

Page 128 of 133

queue only being very small in size the overhead of moving all items in the queue up one
after deleting an item was negligible.

Most answers for question (f) and (g) showed some understanding of suitable approaches
that could be taken but were rarely precise enough for full marks to be awarded. Some
students gave answers for question (f) that changed the values of some of the tiles
despite the question stating that this should not be done.

Q6.
(a) This was the first of the questions that required modifying the Skeleton Program. It

was a simple question that over 80% of students were able to answer correctly.
When mistakes were made this was normally because tiles other than just J and X
were also changed to be worth 4 points.

(b) Like question (a), this question was normally well-answered with almost all student
getting some marks and about 75% obtaining full marks. Where students didn’t get
full marks this was normally due to the conditions on the loop being incorrect which
prevented the values of 1 and / or 20 from being valid.

(c) For this question students had to replace the linear search algorithm used to check if
a word is in the list of allowed words with a binary search algorithm. An example of
how a binary search algorithm works was included on the question paper but if a
similar question is asked in the future that may not be done. A mixture of iterative
and recursive solutions were seen. The most common error made by students who

didn’t get full marks but made a good attempt at answering the question was to miss
out the condition that terminates the loop if it is now known that the word is not in
the list.

(d) Students found question (d) easier than questions (c) and (e). Better answers made
good use of iteration and arrays / lists, less efficient answers which used 26
variables to store the different letter counts could also get full marks. Some students
added code in their new subroutine to read the contents of the text file rather than
pass the list as a parameter to the subroutine; this was not necessary but was not
penalised.

(e) Question (e) asked students to create a recursive subroutine. If students answered
the question without using recursion they could still get 9 out of the 12 marks
available.

It was disappointing that many students did not include any evidence of their attempt

to answer the question. Good exam technique would be to include some program
code that answers some part or parts of the question. For instance, in question (e)
students could get marks for creating a subroutine with the specified name and
calling that subroutine – even if the subroutine didn’t do anything. There are many
examples of subroutines and subroutine calls in the Skeleton Program that students
could have used to help them obtain some marks on this question.

A number of very well-written subroutines were seen that made appropriate use of
recursion and string handling. Some good recursive answers did not get full marks
because they did not include a check that the word / prefix passed as a parameter
was valid before the tile points included in the word were used to modify the score,
this meant that all prefixes would be included in the score and not just the valid
prefixes. Another frequent mistake came when students wrote their own code to

calculate the score for a prefix rather than use the existing subroutine included in the
Skeleton Program that calculated the score for a word – if done correctly full marks
could be obtained by doing this but a number of students made mistakes when

Page 129 of 133

writing their own score-calculating code.

Q7.
Most students could explain what was meant by a recursive subroutine though some
answers showed that the difference between iteration and recursion was not always
understood. The trace was reasonably well done with the most common error being to
include additional function calls or outputs in the table.

Q8.
(a) This was, for most students, the easiest of the programming questions on the paper

with about half obtaining full marks. Less confident programmers often had the
wrong logic in their conditions (either getting AND/OR mixed-up or </>). Some

students did not write code to get the validation condition to continually repeat until a
valid value was entered. A significant minority of students did not add the validation
routine to the InputCoordinate routine and instead tried to add it the constructor

for the Simulation class.

Some students used recursion instead of iteration and full marks could be obtained
from using this method if it was done correctly however many of these students did

not return the value from the recursive call to the calling routine in a way that it could
then be used by the rest of the program.

(b) The majority of students were able to get at least half the marks on this question
and were clearly familiar with how to create a method that overrides a method in a
base class in the programming language they were using. A significant minority of
students did not attempt this question and had clearly not prepared for answering
questions using OOP within the Skeleton Program.

A number of students did not identify the correct variable to use and wrote code that
tried to change the default probability instead of the protected attribute inherited
from the Animal class storing the probability for that animal.

Some students did not call the overridden method in the base class even though the
question specified this should be done. The equivalent functionality could be
obtained by copying the code in the CalculateNewAge method in the Animal class

into the new CalculateNewAge method in the Rabbit class but this is poor

programming practice as the original code would now be in two places in the
program rather than reusing the existing code.

(c) One fifth of students did not provide any evidence of their attempt to answer this
question. All students should be encouraged to include any program code they have
written as it may be worth some marks even if it doesn’t work correctly.

The most common mistake in reasonable attempts at the tasks in this question was

to have the incorrect logic (for example, getting muddled between AND/OR) when

writing the code to prevent a warren/fox being placed in a river.

(d) Many students came up with creative answers to this question that showed a
high-level of programming and problem-solving skill. However, a large number of
students did not include any evidence of their attempt at writing the program code.
Some students showed good exam technique by including a very limited answer
which they knew was nowhere near correct but would allow them to get some marks
(most frequently for creating a new subroutine with the name specified in the
question).

Page 130 of 133

The most challenging part of the question was to make sure that the solution worked
irrespective of the relative position of the fox and the warren with a number of
solutions working if the fox was to the left of and above the warren but not if it was to
the right of and below the warren.

Q12.
This question was about abstraction, object-oriented programming and linked lists.

For part (a) candidates had to explain how the LinkedList class was a form of abstraction.
Many gave a definition of abstraction but failed to apply this to the LinkedList class and so

did not achieve a mark. Good responses made clear that the LinkedList class was an
example of abstraction because it allowed a programmer to manipulate items in a linked
list without having to be concerned about how the linked list was implemented.

For part (b) candidates had to explain why the functions and procedures in the class were
public whilst the data items were not. Many candidates were able to obtain a mark for the
former, but few did so for the latter. Good responses made clear that the functions and
procedures were public as they would need to be called from outside of the class to
implement the game, and the data items were private so that their values could only be
modified in a controlled way from outside of the class, by calling the procedures of the
class. It was not sufficient to state that the data items were private because they were only
used by the class or because they should not be changed.

Candidates had to write an algorithm for deleting an item from a linked list for part (c). A

question was asked in a previous year about inserting an item into a linked list and the
standard of responses to this question was notably better than was the case in the
previous year. The majority of candidates had at least a good attempt at writing the part of
the algorithm that would find the correct item to delete and many were then able to
change the pointers to delete the item. Common mistakes and omissions were to fail to
keep track of the pointer to the previous item when searching, to release the item to delete
back to the heap before changing the pointer around it or to increase the current pointer
by the fixed value of 1 on each iteration of a search loop. Few candidates scored all eight
marks. If a candidate achieved seven but not eight marks this was usually because the
algorithm did not take account of the fact that the item to delete might be the first item in
the list, in which case the start pointer would need to be changed.

Q13.

This question was about the use of hashing.

In part (a) candidates had to compare the efficiency of searching a hash table with
searching an unordered list. There were many good responses to this which explained
that a slow linear search would be required for an unordered list but a fast calculation of a
hash value is all that would be needed for the hash table implementation, and using this
the location of the translation could be directly found.

For part (b) candidates had to explain what a collision was and how it could be dealt with.
The majority of candidates appeared to understand both of these but some failed to
achieve marks by not stating points explicitly. For example, too many candidates failed to
explain the basic point that if two items hashed to the same value then they would be
stored at the same location, and the second value would overwrite the first. Various
sensible methods of dealing with a collision were well described.

Part (c) required candidates to explain why the English word had to be stored in addition
to the French word. Some correctly identified that when performing English to French
translation, if two English words had hashed to the same value, it would not be possible to

Page 131 of 133

tell which the correct translation was unless the English word was stored. A small number
of candidates incorrectly believed that the translation was being done in reverse (French
to English) and explained that the hash function would be one-way, which whilst true was
not a correct answer to the question that had been asked.

Q28.
Most students did well on this question, with nearly two-thirds getting 13 or more marks
out of 15.

Some answers were seen where, as in previous years, students simply copied parts of the

algorithm into their program code eg trying to use a keyword of OUTPUT or students using

VB.Net adding the word DO to their WHILE loops. These were generally less able students

who generally struggled on the Section D programming as well.

A common mistake that prevented students from getting full marks was to either miss out
the code to increment the variable Count2 or to place this line outside the WHILE loop.

Q29.
Answers to Section C were often of poor quality and very few students achieved good
marks on this question. A number of students are still including additional code when

asked for the name of an identifier (parts (a) – (c), though there were fewer students this
year who were doing this. This means that they are not getting the marks for these
questions as they have not made it clear which entity is the identifier (sometimes there is
more than one identifier in the lines of code that they have copied from the Skeleton
Program).

Parts (d) – (f) were not well answered. Many students could find one error in the decision
table for part (f) but few could find more than one. Answers to parts (d) and (e) were often
vague with many students providing answers that were about different parts of the
Skeleton Program from the ones asked for in these questions.

Q30.
This was a fairly straightforward programming question with most students getting good

marks. Some students did not read the question carefully and added the line to increment
NoOfMoves inside the loop that checked for an invalid move − this would result in

NoOfMoves being incremented even if the move entered was illegal.

Q31.
For question part (a) students had to explain what a model was. Good responses
explained that, in the context of simulation, a model was an abstracted representation of
reality. Common mistakes were to explain what a physical model was and to confuse a
model with a prototype.

For part (b) students had to explain why a queue was an appropriate data structure to

represent a siding. Most students correctly explained that a stack was a first in last out
structure, which was worth one mark. Fewer went on to successfully explain how this
corresponded to the organisation of a siding. Students occasionally lost marks by using
terms such as “in front of” in relation to the wagons, when it was not clear which end of a
siding this related to.

For part (c) students had to write an algorithm for popping an item off a stack. A good
range of responses was seen, with approximately half of students achieving at least two

Page 132 of 133

marks and a quarter achieving all four marks. The error that had to be dealt with was a
potentially empty stack. Appropriate methods of dealing with this included displaying an
error message or returning a rogue value. Some students made the mistake of using the
pop operation within the algorithm that was supposed to define it.

This question part (d), drawing an inheritance diagram, was very well answered, with
almost all students getting two marks and over half achieving all three. The most common
mistake was to represent the relationships between the classes correctly but to fail to style
the diagram appropriately.

For part (e) students had to define a class. This was well answered, with over half of

students achieving at least three of the four marks. It is clear that students’ understanding
of this topic has improved significantly over the last few years. The two most frequently
made errors were to fail to express the relationship between the ClosedWagon and
Wagon classes and to forget to override the CreateWagon procedure.

Q32.
This question was about the use of BNF to recognise language syntax. Slightly over half
of students achieved the mark for part (a).

For part (b), just under half of students achieved the mark. Good responses recognised
that an integer could contain an unlimited number of digits and that as BNF does not
support iteration, recursion had to be used to achieve this. Responses that stated that
more than one digit might be used were not enough for a mark as they did not make clear

that the number of digits was unlimited.

For part (c) students had to explain why a For loop that met the BNF syntax definition
might produce an error during compilation. Just under half of students achieved a mark for
this, with good responses including that the number used for the first limit might be higher
than the second, that the count variable might not have been declared or might be an
inappropriate type, or that count might be a reserved word in the language.

Q33.
The topics covered by this question were generally well-understood. Most students were
able to answer parts (a)-(b) and (e)-(f) well, though a number of students gave an answer
of 74 instead of -74 as the answer for part (b). For part (c), most students were not able to
state the correct range with the most common wrong answer being an upper limit of 128
(rather than 127). Many students did not read the question carefully for part 4 and

assumed that four bits were being used before the binary point when the question said
three bits before the binary point. A number of students also did not read the question
carefully for part 7 and gave answers involving the use of binary addition.

Q34.
The definitions of algorithm were normally worth one mark, with only a few students going
on to make a second creditworthy point. The decision table in part (b) was answered well,
and most students were able to get some marks on part (c). Even when students had
successfully completed part (c) they were often unable to work out what the purpose of
the algorithm was – a number of students were clearly guessing with calculating prime
numbers (an answer to a dry run question on a previous COMP1 exam), binary numbers
and Hamming code being commonly-seen incorrect answers.

Q35.

Page 133 of 133

Most students did well on this question, with well-over half getting 15 or more marks out of
18.

Students need to be aware that an algorithm is not the same as a program and that simply
copying the algorithm into their development environment will not result in a working
program in any of the COMP1 programming languages – the pseudo-code needs to be
adapted to match the syntax of the programming language they are using. As in previous
years, a number of students simply copied parts of the algorithm into their program code
eg trying to use a keyword of OUTPUT or students using VB.Net adding the word DO to
their WHILE loops. These appeared to be less able students who generally struggled on

the Section D programming as well.

Students who found this question difficult were often unable to create an array in the
programming language they were using.

