铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.1 Number Toolkit

AA SL

1.1.1 Standard Form

Standard Form

Standard form(sometimes called scientific notation or standard indexform) gives us a way of writing very big and very small numbers using po wers of 10 .

Why use standard form?

- Some numbers are too big ortoo small to write easily orforyour calculatorto display at all
- Imagine the number 50^{50}, the answer would take 84 digits to write out
- Trytyping 50^{50} into your calculator, you will see it displayed in st and ard form
- Writing very big orvery small numbers in standard form allows us to:
- Write them more neatly
- Compare them more easily
- Carry out calculations more easily
- Exam questions could ask foryour answerto be writteninstandard form

How is standard form written?

- In stand ard form numbers are always written in the form $\boldsymbol{a} \times 10^{k}$ where \boldsymbol{a} and \boldsymbol{k} satis fy the following conditions:
- $1 \leq a<10$
- So there is one non-zero digit before the decimal point
- $k \in \mathbb{Z}$
- So k must be an integer
- $k>0$ forlarge numbers
(c) 2024 Exam How manytimes \boldsymbol{a} is multiplied by 10
- $k<0$ forsmall numbers
- How manytimes \boldsymbol{a} is divided by 10

How are calculations carried out with standard form?

- Your GDC will displaylarge and small numbers in standard form when it is in no rmal mode
- Your GDC may dis playstandard form as aEn
- For example, 2.1×10^{-5} will be displayed as $2.1 \mathrm{E}-5$
- If so, be careful to rewrite the answer given in the correct form, you will not get marks for co pying directly from your GDC
- Your GDC will be able to carry out calculations in standard form
- If you put yo ur GDC into scientific mo de it will auto matic ally convert numbers into standard form
- Beware that your GDC may have more than one mode when in scientific mode
- This relates to the number of significant figures the answer will be displayed in
- Your GDC may add extrazeros to fill spaces if working with a high number of significant figures, you do not need to write these in your answer
- To add or subtract numbers written in the form $\boldsymbol{a} \times 10^{k}$ without your GDC you will need to write them in full form first
- Alternatively you can use 'matching powers of 10 ', bec ause if the powers of 10 are the same, then the 'number parts' at the start can just be added or subtracted no rmally
- Forexample

$$
\left(6.3 \times 10^{14}\right)+\left(4.9 \times 10^{13}\right)=\left(6.3 \times 10^{14}\right)+\left(0.49 \times 10^{14}\right)=6.79 \times 10^{14}
$$

- Or

$$
\left(7.93 \times 10^{-11}\right)-\left(5.2 \times 10^{-12}\right)=\left(7.93 \times 10^{-11}\right)-\left(0.52 \times 10^{-11}\right)=7.41 \times 10^{-11}
$$

- To multiply or divide numbers written in the form $a \times 10^{k}$ witho ut your GDC you can either write them in full form first or use the laws of indices

O Exam Tip

- Your GDC will give very big orvery small answers in stand ard form and will have a setting which will allow you to carry out calculations in scientific notation
- Make sure you are familiar with the form that your GDC gives answers in as it may be different to the form you are required to use in the exam

Copyright

© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

Calculate the following, giving your answer in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.
i) 3780×200

Using GDC: Choose scientific mode. Input directly into GDC as ordinary numbers.

$$
\begin{aligned}
& \quad 3780 \times 200=7.56 \times 10^{5} \\
& \text { GDC will automatically give answer in } \\
& \text { standard form. } \\
& \text { Without GDC: } \\
& \text { Calculate the value: } \\
& 3780 \times 200=756000 \\
& \text { Convert to standard form: } \\
& 756000=7.56 \times 10^{5}
\end{aligned}
$$

Exam
Copyright
© 2024 Exam Papers Practice

```
7.56\times1\mp@subsup{0}{}{5}
```

ii) $\left(7 \times 10^{5}\right)-\left(5 \times 10^{4}\right)$

Exam Papers Practice

Using GDC: Choose scientific mode. Input directly into GDC

$$
7 \times 10^{5}-5 \times 10^{4}=6.5 \times 10^{5}
$$

This may be
displayed as 6.5 ES
Without GDC:
Convert to ordinary numbers:
$7 \times 10^{5}=700000$
$5 \times 10^{4}=50000$
Carry out the calculation:

$$
700000-50000=650000
$$

Convert to standard form:

$$
650000=6.5 \times 10^{5}
$$

Exam
Copyright

$$
6.5 \times 10^{5}
$$

iii) $\left(3.6 \times 10^{-3}\right)\left(1.1 \times 10^{-5}\right)$

Exam Papers Practice

Input directly into GDC:
(Choose scientific mode).
$\left(3.6 \times 10^{-3}\right)\left(1.1 \times 10^{-5}\right)=3.96 \times 10^{-8}$
3.96×10^{-8}

Exam Papers Practice
Copyright
© 2024 Exam Papers Practice

1.1.2 Laws of Indices

Laws of Indices

What are the laws of indices?

- Laws of indices (orindexlaws) allow youto simplify and manipulate expressions involving exponents
- An exponent is a power that a number (called the base) is raised to
- Laws of indices can be used when the numbers are written with the same base
- The index laws you need to know are:
- $(x y)^{m}=x^{m} y^{m}$
- $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$
- $X^{m} \times X^{n}=X^{m+n}$
- $x^{m} \div x^{n}=x^{m-n}$
- $\left(x^{m}\right)^{n}=X^{m n}$
- $x^{1}=x$
- $x^{0}=1$
- $\frac{1}{X^{m}}=x^{-m}$

- $X^{\frac{1}{n}}=\sqrt[n]{x}$

- $X^{\frac{m}{n}}=\sqrt[n]{X^{m}}$
- These laws are not in the formulabooklet so you must remember them

How are laws of indices used?

- You will need to be able to carry out multiple calculations with the laws of indices
- Take yo ur time and apply each law individually
- Work with numbers first and then with algebra
- Indexlaws only work with terms that have the same base, make sure you change the base of the term before using any of the index laws
- Changing the base means rewriting the number as an exponent with the base you need
- For example, $9^{4}=\left(3^{2}\right)^{4}=3^{2 \times 4}=3^{8}$
- Using the above can them help with problems like $9^{4} \div 3^{7}=3^{8} \div 3^{7}=3^{1}=3$

- Exam Tip

- Indexlaws are rarely a question on their own in the exam but are often needed to help you solve other problems, es pecially when working with lo garithms or polyno mials
- Look out for times when the laws of indices can be applied to help you solve a problem algebraic ally

Exam Papers Practice

Worked example

Simplify the following equations:
i) $\frac{\left(3 x^{2}\right)\left(2 x^{3} y^{2}\right)}{\left(6 x^{2} y\right)}$.

Apply each Law separately:

ii)

$$
\left(4 x^{2} y^{-4}\right)^{3}\left(2 x^{3} y^{-1}\right)^{-2} .
$$

Exam Papers Practice

Exam Papers Practice
Copyright
© 2024 Exam Papers Practice

