钲
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

1.1 Number \& Algebra Toolkit

1.1.1 Standard Form

Standard Form

Standard form(sometimes called scientific notation or standard index form) gives us a way of writing very big and very small numbers using po wers of 10 .

Why use standard form?

- Some numbers are too big ortoo small to write easily orforyour calculatorto display at all
- Imagine the number 50^{50}, the answer would take 84 digits to write out
- Trytyping 50^{50} into your calculator, you will see it displayed in st and ard form
- Writing very big orvery small numbers in standard form allows us to:
- Write them more neatly
- Compare them more easily
- Carry out calculations more easily
- Exam questions could ask foryour answerto be writteninstandard form

How is standard form written?

- In stand ard form numbers are always written in the form $\boldsymbol{a} \times 10^{k}$ where \boldsymbol{a} and \boldsymbol{k} satis fy the following conditions:
- $1 \leq a<10$
- So there is one non-zero digit before the decimal point
- $k \in \mathbb{Z}$
- So k must be an integer
- $k>0$ forlarge numbers
(c) 2024 Exam How manytimes \boldsymbol{a} is multiplied by 10
- $k<0$ forsmall numbers
- How manytimes \boldsymbol{a} is divided by 10

How are calculations carried out with standard form?

- Your GDC will displaylarge and small numbers in standard form when it is in no rmal mo de
- Your GDC may dis playstandard form as aEn
- For example, 2.1×10^{-5} will be displayed as $2.1 \mathrm{E}-5$
- If so, be careful to rewrite the answer given in the correct form, you will not get marks for co pying directly from your GDC
- Your GDC will be able to carry out calculations in standard form
- If yo u put yo ur GDC into scientific mo de it will auto matic ally convert numbers into standard form
- Beware that your GDC may have more than one mode when in scientific mode
- This relates to the number of significant figures the answer will be displayed in
- Your GDC may add extrazeros to fill spaces if working with a high number of significant figures, you do not need to write these in your answer
- To add or subtract numbers written in the form $\boldsymbol{a} \times 10^{k}$ without your GDC you will need to write them in full form first
- Alternatively you can use 'matching powers of 10', because if the powers of 10 are the same, then the 'number parts' at the start can just be added or subtracted no rmally
- Forexample

$$
\left(6.3 \times 10^{14}\right)+\left(4.9 \times 10^{13}\right)=\left(6.3 \times 10^{14}\right)+\left(0.49 \times 10^{14}\right)=6.79 \times 10^{14}
$$

- Or

$$
\left(7.93 \times 10^{-11}\right)-\left(5.2 \times 10^{-12}\right)=\left(7.93 \times 10^{-11}\right)-\left(0.52 \times 10^{-11}\right)=7.41 \times 10^{-11}
$$

- To multiply or divide numbers written in the form $a \times 10^{k}$ witho ut your GDC you can either write them in full form first or use the laws of indices

O Exam Tip

- Your GDC will give verybig orvery small answers in stand ard form and will have a setting which will allow you to carry out calculations in scientific notation
- Make sure you are familiar with the form that your GDC gives answers in as it may be different to the form you are required to use in the exam

Copyright

© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

Calculate the following, giving your answer in the form $a \times 10^{k}$, where $1 \leq a<10$ and $k \in \mathbb{Z}$.
i) 3780×200

Using GDC: Choose scientific mode. Input directly into $G D C$ as ordinary numbers.

Exam
Copyright

$$
\begin{aligned}
& 3780 \times 200=7.56 \times 10^{5} \\
& \text { CDC will automatically give answer in } \\
& \text { standard form. } \\
& \text { Without GDC: } \\
& \text { Calculate the value: } \\
& 3780 \times 200=756000
\end{aligned}
$$

© 2024 Exam Papers Practice
Convert to standard form:
$756000=7.56 \times 10^{5}$

$$
7.56 \times 10^{5}
$$

ii) $\left(7 \times 10^{5}\right)-\left(5 \times 10^{4}\right)$

Exam Papers Practice

Using GDC: Choose scientific mode. Input directly into GDC

$$
7 \times 10^{5}-5 \times 10^{4}=6.5 \times 10^{5}
$$

This may be
displayed as 6.5 ES
Without GDC:
Convert to ordinary numbers:
$7 \times 10^{5}=700000$
$5 \times 10^{4}=50000$
Carry out the calculation:

$$
700000-50000=650000
$$

Convert to standard form:

$$
650000=6.5 \times 10^{5}
$$

Exam
Copyright

$$
6.5 \times 10^{5}
$$

iii) $\quad\left(3.6 \times 10^{-3}\right)\left(1.1 \times 10^{-5}\right)$

Exam Papers Practice

Input directly into GDC:
(Choose scientific mode).
$\left(3.6 \times 10^{-3}\right)\left(1.1 \times 10^{-5}\right)=3.96 \times 10^{-8}$

$$
3.96 \times 10^{-8}
$$

Copyright
© 2024 Exam Papers Practice

1.1.2 Laws of Indices

Laws of Indices

What are the laws of indices?

- Laws of indices (orindex laws) allow you to simplify and manipulate expressions involving exponents
- An exponent is a power that a number (called the base) is raised to
- Laws of indices can be used when the numbers are written with the same base
- The index laws you need to know are:
- $(x y)^{m}=X^{m} y^{m}$
- $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$
- $X^{m} \times X^{n}=X^{m+n}$
- $X^{m} \div X^{n}=X^{m-n}$
- $\left(X^{m}\right)^{n}=X^{m n}$
- $x^{1}=x$
- $X^{0}=1$
- $\frac{1}{X^{m}}=X^{-m}$

$=\frac{1}{\frac{n}{n}}=\sqrt[n]{\boldsymbol{m}}$
$\boldsymbol{X}^{\frac{m}{n}}=\sqrt[n]{X^{m}}$
- These laws are not in the formula booklet so you must remember them

Howare laws of indices used?

- You will need to be able to carry out multiple calculations with the laws of indices
- Take yo ur time and apply each law individually
- Work with numbers first and then with algebra
- Index laws only work with terms that have the same base, make sure you change the base of the term before using any of the index laws
- Changing the base means rewriting the number as an exponent with the base you need
- For example, $9^{4}=\left(3^{2}\right)^{4}=3^{2 \times 4}=3^{8}$
- Using the above can them help with pro blems like $9^{4} \div 3^{7}=3^{8} \div 3^{7}=3^{1}=3$

Exam Papers Practice

Worked example

Simplify the following equations:
i)

$$
\frac{\left(3 x^{2}\right)\left(2 x^{3} y^{2}\right)}{\left(6 x^{2} y\right)}
$$

Apply each Law separately:

$$
\frac{\left(3 x^{2}\right)\left(2 x^{3} y^{2}\right)}{6 x^{2} y}=x^{3} y
$$

Exam
Copyright
© 2024 Exam Papers Practice
ii)

$$
\left(4 x^{2} y^{-4}\right)^{3}\left(2 x^{3} y^{-1}\right)^{-2}
$$

Exam Papers Practice

© 2024 Exam Papers Practice

1.1.3 Partial Fractions

Partial Fractions

What arepartial fractions?

- Partial fractions allow us to simplifyrational expressions into the sum of two ormore fractions with constant numerators and linear denominators
- This allows forintegration of rational functions
- The metho d of partial fractions is essentially the reverse of adding or subtracting fractions
- When adding fractions, a common denominator is required
- In partial fractions the common denominator is split into parts (factors)
- If we have a ratio nal function with a quadratic on the denominator partial fractions can be used to rewrite it as the sum of two rational functions with linear denominators
- This works if the non-linear deno minatorcan be factorised into two distinct factors
- For example: $\frac{a x+b}{(c x+d)(e x+f)}=\frac{A}{c x+d}+\frac{B}{e x+f}$
- If we have a rational function with a linear numerator and denominator partial fractions can be used to rewrite it as the sum of a constant and a fraction with a linear denominator
- The linear deno minatordoes not need to be factorised
- For example: $\frac{a x+b}{c x+d}=A+\frac{B}{c x+d}$

Howdo Ifind partial fractions if the denominator is a quadratic?

- STEP 1

Factorise the deno minato rinto the product of two linear factors

- Check the numerator and cancel out anycommon factors
- e.g. $\frac{5 x+5}{x^{2}+x-6}=\frac{5 x+5}{(x+3)(x-2)}$
- STEP 2

Split the fraction into a sum of two fractions with single linear deno minators each having unknown constant numerators

- Use A and B to represent the unknown numerators
- e.g. $\frac{5 x+5}{(x+3)(x-2)} \equiv \frac{A}{x+3}+\frac{B}{x-2}$
- STEP 3

Multiply through by the d enominatorto eliminate fractions

- Eliminate fractions bycancelling all common expressions
- e.g. $5 x+5 \equiv A(x-2)+B(x+3)$
- STEP 4

Substitute values into the id entity and solve for the unknown constants

- Use the root of each linear factor as a value of to find the unknowns
- e.g. Let $x=2: 5(2)+5 \equiv A((2)-2)+B((2)+3)$ etc
- An alternative method is comparing coefficients
- e.g. $5 x+5 \equiv(A+B)_{x}+(-2 A+3 B)$
- STEP 5

Write the original as partial fractions

- Substitute the values you found for A and B into your expression from STEP 2
- e.g. $\frac{5 x+5}{x^{2}+x-6}=\frac{2}{x+3}+\frac{3}{x-2}$

How dol find partial fractions if the numerator and denominator are both linear?

- If the denominator is not a quadratic expression you will be given the form in which the partial fractions should be expressed
- For example express $\frac{12 x-2}{3 x-1}$ in the form $A+\frac{B}{3 x-1}$
- STEP 1

Multiply through by the deno minator to eliminate fractions

- e.g. $12 x-2 \equiv A(3 x-1)+B$
- STEP 2

Expand the expression on the right-hand side and compare coefficients

- Compare the coefficients of xand solve for the first unknown
- e.g. $12 x=3 A x$
- therefore $A=4$
- Compare the constant coefficients and solve for the second unknown
- e.g. $-2=-A+B=-4+B$
- therefore $B=2$
- STEP 3

Write the original as partial fractions

- $\frac{12 x-2}{3 x-1}=4+\frac{2}{3 x-1}$

How do I find partial fractions if the denominat or has a squared linear term?

- A squared linear factor in the denominator actually represents two factors rather than one
- This must be taken into account when the rational function is split into partial fractions
- Forthe squared linear denominator $(a x+b)^{2}$ there will be two factors: $(a x+b)$ and $(a x+b)^{2}$
- So the rational expression $\frac{p}{(a x+b)^{2}}$ becomes $\frac{A}{a x+b}+\frac{B}{(a x+b)^{2}}$
- In IB you will be given the form into which you should split the partial fractions
- Put the rational expression equal to the given form and then continue with the steps above
- There is more than one way of finding the missing values when working with partial fractions
- Substituting values is usually quickest, however you should look at the number of times a bracket is repeated to help you decide which method to use

© Exam Tip

- An exam question will often have partial fractions as part (a) and then integration or using the binomial theo rem as part (b)
- Make sure you use your partial fractions found in part (a) to answer the next part of the question

Exam Papers Practice
© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

a)

$$
\begin{aligned}
& \text { Express } \frac{2 x-13}{x^{2}-x-2} \text { in partial fractions. } \\
& \frac{2 x-13}{x^{2}-x-2}=\frac{2 x-13}{(x+1)(x-2)} \\
& \text { The denominator is a quadratic } \\
& \text { so factorise first. }
\end{aligned}
$$

$$
\frac{2 x-13}{(x+1)(x-2)} \equiv \frac{A}{x+1}+\frac{B}{x-2}
$$

Multiply through by the denominator to eliminate fractions
$2 x-13 \equiv A(x-2)+B(x+1)$
Choose values of x to substitute into the identity that will eliminate each constant:
Let $x=2: 2(2)-13=A((2)-2)+B((2)+1)$

$$
\begin{array}{rlrl}
x-2 & =0 & -9 & =3 B \\
x & =2 & B & =-3
\end{array}
$$

Exa

b)

$$
\text { Express } \frac{x(3 x-13)}{(x+1)(x-3)^{2}} \text { in the form } \frac{A}{(x+1)}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}} .
$$

Multiply through by the denominator:

$$
\frac{x(3 x-13)}{(x+1)(x-3)^{2}}=\frac{A(x-3)^{2}+B(x+1)(x-3)+C(x+1)}{(x+1)(x-3)^{2}}
$$

Eliminate fractions and expand:
$x(3 x-13)=A\left(x^{2}-6 x+9\right)+B\left(x^{2}-2 x-3\right)+C x+C$
$3 x^{2}-13 x=(A+B) x^{2}+(-6 A-2 B+C) x+9 A-3 B+C$
$\tau_{\text {coefficient of }} x^{2}$ coefficient of x
Compare coefficients:

$$
\begin{align*}
& A+B=3 \quad(1) \quad \text { (coefficients of } x^{2} \text {) } \\
&-6 A-2 B+C=-13 \quad(2) \text { (coefficients of } x \text {) } \\
& 9 A-3 B+C=0 \quad \text { (constant terms) } \\
& \text { Rearrange (1) and substitute into (2) and (3) } \\
& A=3-B \Rightarrow-6(3-B)-2 B+C=-13 \\
&-18+6 B-2 B+C=-13 \\
& 4 B+C=5 \\
& \Rightarrow \quad 9(3-B)-3 B+C=0 \\
& 27-9 B-3 B+C=0 \\
& 12 B-C=27 \tag{3}
\end{align*}
$$

Solving (2) and (3):
© 2024 Exam Paper
Substitute into (1): $A=3-B=3-2=1$

$$
\frac{x(3 x-13)}{(x+1)(x-3)^{2}}=\frac{1}{(x+1)}+\frac{2}{(x-3)}-\frac{3}{(x-3)^{2}}
$$

