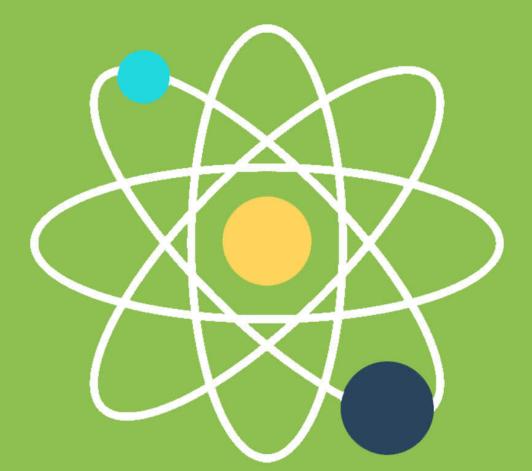


Boost your performance and confidence with these topic-based exam questions


Practice questions created by actual examiners and assessment experts

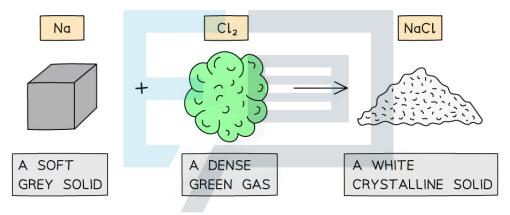
Detailed mark schemes

Suitable for all boards

Designed to test your ability and thoroughly prepare you

1.1 Matter, Chemical Change & the Mole Concept

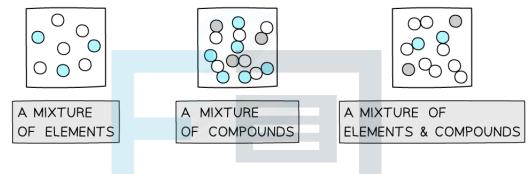
IB Chemistry - Revision Notes


www.exampaperspractice.co.uk

1.1.1 Elements, Compounds & Mixtures

Elements & Compounds

- Elements are substances made from one kind of atom
- Compounds are made from two or more elements **chemically combined**
- Elements take part in chemical reactions in which new substances are made in processes that most often involve an energy change
- In these reactions, atoms combine together in fixed ratios that will give them full outer shells of electrons, producing compounds
- The properties of compounds can be quite different from the elements that form them


The properties of sodium chloride are quite different from sodium and chlorine

Copyright © 2024 Exam Papers Practice

Mixtures

- In a mixture, elements and compounds are interspersed with each other, but are **not** chemically combined
- This means the components of a mixture retain the **same** characteristic properties as when they are in their pure form
- So, for example, the gases nitrogen and oxygen when mixed in air, retain the same characteristic properties as they would have if they were separate
- Substances will burn in air because the oxygen present in the air supports **combustion**

Mixtures at the molecular level

Homogeneous or heterogeneous

- A homogeneous mixture has uniform composition and properties throughout
- A heterogeneous mixture has non-uniform composition, so its properties are not the same throughout
- It is often possible to see the separate components in a heterogeneous mixture, but not in

a homogeneous mixture

© 2024 Exam Papers Practice

1.1.2 Equations

Balancing Equations

- A **symbol** equation is a shorthand way of describing a chemical reaction using **chemical symbols** to show the number and type of each atom in the reactants and products
- A word equation is a longer way of describing a chemical reaction using only words to show the reactants and products

Balancing equations

- During chemical reactions, atoms cannot be created or destroyed
- The number of each atom on each side of the reaction must therefore be the same
 - E.g. the reaction needs to be **balanced**
- When balancing equations remember:
 - Not to change any of the formulae
 - To put the numbers used to balance the equation **in front** of the formulae
 - To balance firstly the carbon, then the hydrogen and finally the oxygen in **combustion** reactions of organic compounds
- When balancing equations follow the following the steps:
 - Write the formulae of the reactants and products
 - Count the numbers of atoms in each reactant and product
 - Balance the atoms one at a time until all the atoms are balanced
 - Use appropriate state symbols in the equation

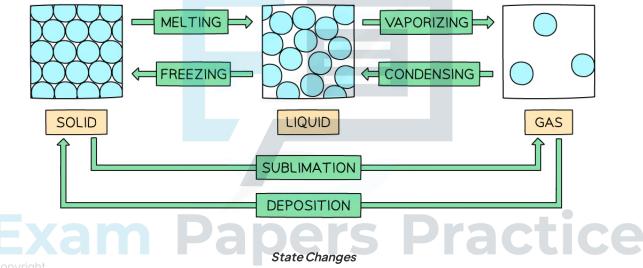
The physical state of reactants and products in a chemical reaction is specified by using state symbols

Copyright (s) solid

© 2024 Exam Papers Practice

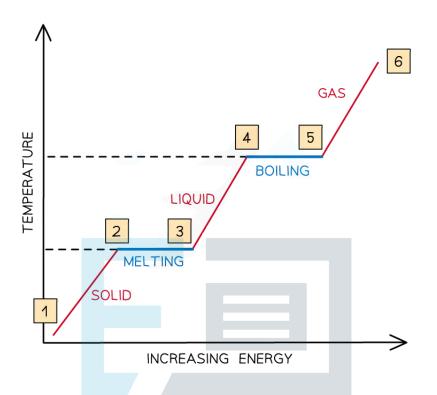
- (g) gas
- (aq)aqueous

lonic equations


- In aqueous solutions ionic compounds dissociate into their ions
- Many chemical reactions in aqueous solutions involve ionic compounds, however only some of the ions in solution take part in the reactions
- The ions that do **not** take part in the reaction are called **spectator ions**
- An **ionic equation** shows **only** the ions or other particles taking part in a reaction, without showing the spectatorions

1.1.3 State Changes

State Changes


- Changes of state are **physical changes** that are reversible
- These changes do not change the chemical properties or chemical makeup of the substances involved
- Vaporisation includes evaporation and boiling
- Evaporation involves the change of liquid to gas, but unlike boiling, evaporation occurs only at the surface and takes place at temperatures below the **boiling point**
- **Boiling** occurs at a specific temperature and takes place when the **vapour pressure** reaches the external atmospheric pressure

Copyright

© 2024 Therelationship between temperature and energy during state changes can be represented graphically

The relationship between temperature and energy during state changes

- Between 1 & 2, the particles are vibrating and gaining kinetic energy and the temperature rises
- Between 2 & 3, all the energy goes into breaking bonds there is **no** increase in **kinetic**
- energy or temperature
- Between 3 & 4, the particles are moving around and gaining in kinetic energy
- Between 4 & 5, the substance is boiling, so bonds are breaking and there is no increase in kinetic

Copyrightenergy or temperature

© 2014 From 5 & 6; the particles are moving around rapidly and increasing in kinetic energy

💽 Exam Tip

Be careful to match the bond breaking or bond making processes to the flow of energy during state changes.

Remember: To **break** bonds, energy is always **needed** to overcome the **forces of attraction** between the particles

1.1.4 The Mole Concept

The Mole

- The Avogadro constant (*N*_A or *L*) is the number of particles equivalent to the relative atomic mass or molecular mass of a substance in grams
 - The Avogadro constant applies to atoms, molecules and ions
 - The value of the Avogadro constant is 6.02 x 10²³ g mol⁻¹
- The mass of a substance with this number of particles is called the **molar mass**
 - One mole of a substance contains the same number of fundamental units as there are atoms in exactly 12.00 g of ¹²C
 - If you had 6.02 x 10²³ atoms of carbon-12 in your hand, you would have a mass of exactly 12.00
 g
 - One mole of water would have a mass of (2x1.01+16.00) = 18.02 g

Worked example

Determine the number of atoms, molecules and the relative mass of 1 mole of:

1.Na 2.H₂

3. NaCl

Answer1:

- The relative atomic mass of Na is 22.99
- Ight Therefore, 1 mol of Na has a mass of 22.99 g mol⁻¹
 - Imol of Na will contain 6.02 x 10²³ atoms of Na (Avogadro's constant)

Answer 2:

- The relative atomic mass of H is 1.01
- Since there are 2 H atoms in H₂, the mass of 1 mol of H₂ is (2 x 1.01) 2.02 g mol⁻¹
- Imol of H₂ will contain 6.02 x 10²³ molecules of H₂
- However, since there are 2 H atoms in each molecule of H₂, 1 mol of H₂ molecules will contain
 1.204 x 10²⁴ H atoms

Answer 3:

- The relative atomic masses of Na and Cl are 22.99 and 35.45 respectively
- Therefore, 1mol of NaCl has a mass of (22.99 + 35.45) 58.44 g mol⁻¹

- Imol of NaCl will contain 6.02 x 10²³ formula units of NaCl
- Since there is both an Na and a Cl atom in NaCl, 1mol of NaCl will contain 1.204 x 10²⁴ atoms in total

1 mole of	Number of atoms	Number of molecules/ formula units	Relative mass
Να	6.02 × 10 ²³	_	22.99
H ₂	1.204 × 10 ²⁴	6.02 × 10 ²³	2.02
NaCl	1.204 × 10 ²⁴	6.02 × 10 ²³	58.44

Exam Papers Practice

© 2024 Exam Papers Practice

Relative Mass

Relative atomic mass, A_r

- The **relative atomic mass** (*A_r*) of an element is the weighted average mass of one atom compared to one twelfth the mass of a carbon-12 atom
- The relative atomic mass is determined by using the weighted average mass of the **isotopes** of a particular element
- The A_r has **no units** as it is a ratio and the units cancel each other out

 $A_r = \frac{weighted \ average \ mass \ of \ one \ atom \ of \ an \ element}{\frac{1}{12} mass \ of \ one \ atom \ of \ carbon-12}}$

Relative isotopic mass

- The relative isotopic mass is the mass of a particular atom of an isotope compared to one twelfth the mass of a carbon-12 atom
- Atoms of the same element with a different number of neutrons are called isotopes
- Isotopes are represented by writing the mass number as ²⁰Ne, or neon-20 or Ne-20
 - To calculate the average atomic mass of an element the percentage abundance is taken into account
 - Multiply the atomic mass by the percentage abundance for each isotope and add them all together
 - Divide by 100 to get average relative atomic mass
 - This is known as the **weighted average** of the masses of the isotopes

Copyright **Relative atomic mass =** © 2024 Exam Papers Practice

100

 Σ (isotope abundance imes relative isotopic mass

Relative molecular mass, M_r

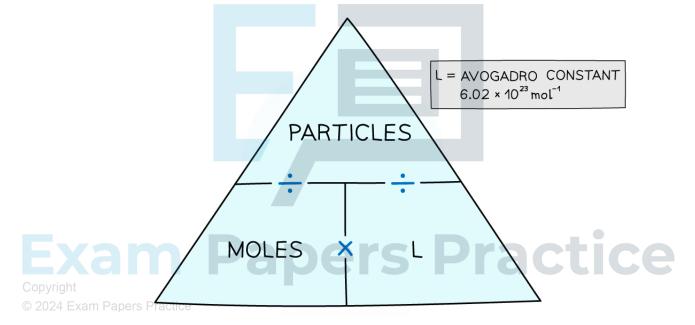
- The **relative molecular mass** (*M*_r) is the weighted average mass of a molecule compared to one twelfth the mass of a carbon-12 atom
- The M_r has no units

 $M_r = \frac{weighted \ average \ mass \ of \ one \ molecule \ of \ a \ compound}{\frac{1}{12} mass \ of \ one \ atom \ of \ carbon-12}}$

- The M_r can be found by adding up the **relative atomic masses** of all atoms present in one molecule
- When calculating the *M*_r the **simplest formula** for the compound is used, also known as the formulaunit
 - E.g. Silicon dioxide has a giant covalent structure, but the simplest formula (the formula unit) is SiO₂

Substance	Atoms present	Mr
Hydrogen (H ₂)	2 × H	(2 × 1.01) = 2.02
Water (H ₂ O)	(2 × H) + (1 × 0)	(2 × 1.01) + 16.00 = 18.02
Potassium Carbonate (K ₂ CO ₃)	(2 × K) + (1 × C) + (3 × O)	(2 × 39.10) + 12.01 + (3 × 16.00) = 138.21
Calcium Hydroxide (Ca(OH) ₂)	(1 × Ca) + (2 × O) + (2 × H)	40.08 × (2 × 16.00) + (2 × 1.01) = 74.10
Ammonium Sulfate ((NH ₄) ₂ SO ₄) 2024 Exam Papers Practice	(2 × N) + (8 × H) + (1 × S) + (4 × O)	(2 × 14.01) + (8 × 1.01) + 32.07 + (4 × 16.00) = 132.17

Relative formula mass, M_r


- The relative formula mass (M_r) is used for compounds containing ions
- It has the same units and is calculated in the same way as the relative molecular mass
- In the table above, the *M_r* for potassium carbonate, calcium hydroxide and ammonium sulfate are relative formula masses

1.1.5 Moles-Mass Problems

Moles, Particles & Masses

- Since atoms are so small, any sensible laboratory quantity of substance must contain a huge number of atoms
- Such numbers are not convenient to work with, so using **moles** is a better unit to deal with the sort of quantities of substance normally being measured
- When we need to know the number of particles of a substance, we usually count the number of **moles**
- The number of **moles** or particles can be calculated easily using a formula triangle

The moles and particles formula triangle – cover with your finger the one you want to find out and follow the directions in the triangle

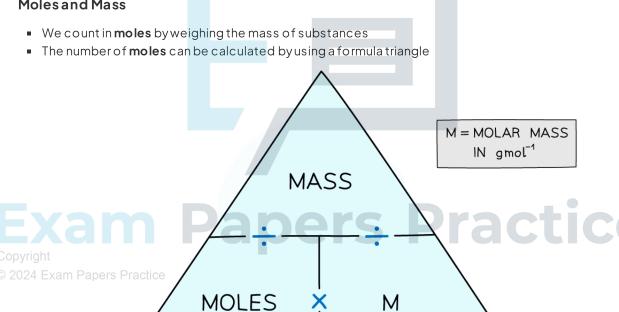
Worked example

How many hydrogen atoms are in 0.010 moles of CH_3CHO ?

Answer:

- There are 4 H atoms in 1 molecule of CH₃CHO
- So, there are 0.040 moles of H atoms in 0.010 moles of CH₃CHO

- The number of H atoms is the **amount in moles x L**
- This comes to 0.040 x (6.02 x 10²³) = 2.4 x 10²² atoms


Worked example

How many moles of hydrogen atoms are in 3.612×10^{23} molecules of H₂O₂?

Answer:

- $\ln 3.612 \times 10^{23}$ molecules of H₂O₂ there are $2 \times (3.612 \times 10^{23})$ atoms of H
- So, there are 7.224 x 10²³ atoms of H
- The number of moles of H atoms is the **number of particles** ÷ L
- This comes to 7.224 x 10²³ ÷ (6.02 x 10²³) = **1.20 moles of H atoms**

Moles and Mass

The moles and mass formula triangle - cover with your finger the one you want to find out and follow the directions in the triangle

Worked example

What is the mass of 0.250 moles of zinc?

Answer:

- From the periodic table the relative atomic mass of Zn is 65.38
- So, the molar mass is 65.38 g mol⁻¹
- The mass is calculated by **moles x molar mass**
- This comes to 0.250 mol x 65.38 g mol⁻¹ = 16.3 g

Worked example

How many moles are in 2.64 g of sucrose, $C_{12}H_{11}O_{22}$ (*M_r*=342.3)?

Answer:

- The molar mass of sucrose is 342.3 g mol⁻¹
- The number of moles is found by mass ÷ molar mass
- This comes to 2.64 g ÷ 342.3 g mol⁻¹ = 7.71 x 10⁻³ mol

💽 Exam Tip

Always show your workings in calculations as its easier to check for errors and you may pick up credit if you get the final answer wrong.

Copyright © 2024 Exam Papers Practice