Boost your performance and confidence
E with these topic-based exam questions
Practice questions created by actual

EXAM PAPERS PRACTICE examiners and assessment experts
Detailed mark scheme
Suitable for all boards

Designed to test your ability and
thoroughly prepare you

Data Representation

CIE AS & A Level
Computer Science Revision Notes 9618

=

EXAM PAPERS PRACTICE

9618 Syllabus Content:
1.1 Data Representation
Candidates should be able to:

Show understanding of binary magnitudes and the difference between binary
prefixes and decimal prefixes

Show understanding of the basis of different number systems

Show understanding of the basis of different number systems

Describe practical applications where Binary Coded Decimal (BCD) and
Hexadecimal are

used

Show understanding of and be able to represent character data in its internal

binary form,
depending on the character set used
Understand the difference between and use:

o kibi and kilo
o0 mebiand mega
o tebi and tera

Use the binary, denary, hexadecimal number bases and Binary Coded Decimal (BCD) and
one’s and two’s complement representation for binary numbers

Convert an integer value from one number base / representation to another

Using positive and negative binary integers Show understanding of how overflow can occur

Familiar with ASCII (American Standard Code for Information Interchange), extended ASCII
and Unicode. Students will not be expected to memorise any particular character codes.

Denary Number System:

We know decimal or denary number system has (base 10).This uses digits 0 to 9 and has place values below

10000 1000 100 10 units
3 1 4 2 1

Binary number system:

The binary system on computers uses combinations of Os and 1s and has (base 2).

128 64 32 16 8 4 2 1
@) (20 @) (29 (@) () () (29

A typical binary number would be:

1 1 1 0 1 1 1 0

Page 1 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Binary place values

You can also break a binary number down into place-value columns, but each column is

a power of two instead of a power of ten.

For example, take a binary number like 1001. The columns are arranged in multiples of 2

with the binary number written below: PLACE VALUE

By looking at the place values, we can calculate the equivalent denary number.
3210

Thatis: (1x2)+ (0x2)+ (0x2) + (1x2) = 8+0+0+1
Ax8)+O0x4H+0x2)+A1x1)=8+1
=9

Converting binary to denary

To calculate a large binary number like 10101000 we need more place values of
multiples of 2.

72=128
62=064
52=32
42=16
32=38
22=4
12=2
02=1

In denary the sum is calculated as:

76543210

(Ix2)+(0x2)+(1x2)+(0x2)+(1x2)+(0x2)+ (0x2) + (0x2) =168

1Ix128)+(0x64)+(1x32)+0x16)+(1x8)+(O0x4)+0x2)+0x1)=128 +32

+8 =168

The table below shows denary numbers down the left with their equivalent binary

numbers marked out below the base 2 columns. Each individual column in the table

represents a different place value equivalent to the base 2 powers

Page 2 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Convert between denary

Binary pattern

Place | Place | Place | Place | Place | Place | Place | Place
value | value | value | value | value | value | value | value

128 64 ¥2 16 B & 2

—

0 0
1 1
2 T
3 B

4 1 | o | o

4 5 1 0 | 3

c G il

s K K

S BE 1 [o [o | o
9 ol o 1

10 g 10 o
255 1 | 1 [1 | 1 Dlemmimm| 10 1

Converting denary to binary: Method 1

There are two methods for converting adenary (base 10) number to binary (base 2).
This is method one.

Divide by two and use the remainder

Divide the starting number by 2. If it divides evenly, the

if there is a remainder - the binary digit is 1.

A method of converting a denary number to binary

Worked example: Denary number 83

83 + 2 =41 remainder 1
41 + 2 = 20 remainder 1
20 + 2 = 10 remainder ()

10 + 2 = 5 remaind@r

5 + 2 =2remainder 1

2 + 2 =1remainder ()

1+ 2 =0remainder 1

Put the remainders in reverse ... ¢ get the final number: 1010011,

Page 3 of 24

For more help, please visit our website www.exampaperspractice.co.uk

FB

EXAM PAPERS PRACTICE

Converting denary to binary: Method 2

There are two methods for converting adenary (base 10) number to binary (base 2).
This method uses Place Values

64|32|16|8 [4 |2 |1
e

Method:2 - Converting a denary number to binary

Worked example: Denary number 84

We need to check which numbers place values can be added to make 84. We will put 1 under the
numbers to e added and 0 under the numbers which are not added.

1. We select Place value 64 so we put 1 under it.

2. We select place value 16 and put 1 under it
3. We selected place value 4 and put 1 under it.
4. Adding 64+16+4 gives us 84 so our number becomes:

64 32 16 8 4 2 1
1 0 1 0 1 0 0
Result:

84 in denary is equivalent to 1010100 in binary.
Bits and binary:

Computers use binary - the digits 0 and 1 - to store data. A binary digit, or bit, is the smallest
unit of data in computing. It is represented by a O or a 1. Binary numbers are made up of
binary digits (bits), e.g. the binary number 1001.

The circuits in a computer's processor are made up of billions of transistors. A transistor is a

tiny switch that is activated by the electronic signals it receives.
The digits 1 and 0 used in binary reflect the on and off states of a transistor.

Page 4 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

All software, music, documents, and any other information that is processed by a computer, is
also stored using binary.

Microprocessor a m
.
e P
o 0011111001100011
e 11090909010 1004 ’ 2 I
bl 001104 1010000014 TF ..

11010901 11100000
00101 1111100001
09100101 10001110
1110110100 100010

Inputs %
#-

oot O T

[ouse |
Bits and bytes

Bits can be grouped together to make them easier to work with. A group of 8 bits is
called a byte.

Other groupings include:

Nibble - 4 bits (half a byte)

Byte - 8 bits

10 Kilobyte (KB) - 1024 bytes (or 1024 x 8 bits) = 2
20 Megabyte (MB) - 1024 kilobytes (or 1048576 bytes) = 2
30 Gigabyte (GB) - 1024 megabytes = 2

40 Terabyte (TB) - 1024 gigabytes = 2

50 Petabyte (PB) -1024 Terabytes = 2

60 Exabyte (EB) -1024 Petabytes = 2

70 Zettabyte (ZB)- 1024 Exabytes = 2

80 Yottabyte (YB) 1024 Zettabytes = 2
The IEC convention for computer internal memories (including RAM) becomes:
1 kilobyte = 1000 byte
1 megabyte = 1000000 bytes
1 gigabyte = 1000000000 bytes
1 terabyte = 1000000000000 bytes and so on.
VS
1 kibibyte (1 KiB) = 1024 bytes
1 mebibyte (1 MiB) = 1048576 bytes
1 gibibyte (1 GiB) = 1073741824 bytes
1 tebibyte (1 TiB) = 1099511627776 bytes and so on.

Page 5 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

However, the IEC terms are not universally used and we still use the more conventional
terms shown above. This also ties up with the Cambridge International Examinations
computer science syllabus which uses the same terminology as in example above.

Binary Addition (unsigned number)

Adding binary numbers is similar to adding denary numbers.

Example: Adding the binary numbers 011 and 10

Write the numbers out using the column method. Start from the right, and simply add the
numbers.

011
+100

111

111 is 7 if converted back to denary.

Example: Adding two 1s in the same colum

Sometimes a binary addition will require you to carry over values into the next highest
place- value column, eg when finding the sum of the binary numbers 0010 and 0111:

There is a clash when adding two ones in the same column. In binary, 1+1 is 10 - it has to
become 0 with 1 carried over.

0010
+0,1,11

1001

1001 is 9 if converted back to denary. 2 + 7 =9 in denary.

+ve and —-ve binary numbers (signhed numbers)

When computer stores binary numbers, we have to differentiate +ve binary numbers
from —ve binary numbers. Unfortunately (-) or (+) sign cannot be displayed rather only
0/1 can be used in binary.

Rules of +ve and -ve binary numbers
@ Positive binary number always starts with 0 in MSB (Most significant bit)
@ Negative binary number always starts with 1 in MSB (Most significant bit)

Page 6 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

e.g +ve number: 01010010
-ve number: 10010110
-128 64 3216 84 2 1 Place Values

Number becomes 010212001 0sonumberis 0+64+16+2 =82

\4
Sign bit +ve part of number

Negative binary number always starts with 1 in MSB (Most significant bit)

-128 64 3216 8 4 2 1 Place Values
Number becomes100104110sonumberis

v 7

Sign bit +ve part of number

-128+16+4+2 =-106

Conversion of —Ve Denary nhumber to Binary:

What is - 65 in binary?
10
Two’s complement allows us to represent signed negative values in binary,

so here is an introductory demonstration on how to convert a negative
decimal value to its negative equivalent in binary using two’s complement.

Binary addition and subtraction
Up until now we have assumed all binary numbers have positive values. There are a
number of methods to represent both positive and negative numbers. We will consider:

One’s complement
Two’s complement.

In one’s complement, each digit in the binary number is inverted (in other words, 0

becomes land 1 becomes 0). For example,
Step 1
65 =01000001 in binary

Step 2: invert 1 to 0 and 0 to 1 we get: 01000001 to its one’s complement as below:
01000001 = 10111110
In two’s complement,binary digit 1 is added to one’s compliment

Step 3: Convert 10111110 Binary to its two’s complement by

adding 1 to the one’s complement.

Page 7 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

10111110
+1

10111111 = Two's complement
Two’s compliment of a positive number will make it a negative number

-128 64 3216 84 2 1 Place values
10111111=Two'scomplement

=-128 + 32 +16+8+4+2+1 =- 65

10111111 is - 65 in binary. We know this it true because if we add

01000001 (+65) to 10111111b (-65) and ignore the carry bit, the sum is O,
which is what we obtain if we add +65 + (-65) = 0.

01000001 +65
+10111111 - 65

100000000 denary
A

IgnoreT the carry bit. What matters is that original number of bits (D7-DO0) are all 0.

Two's complement sum

Using two's complement, the CPU can perform arithmetic using binary addition. For example:

-7 +7 in two's complement binary would be calculated as:

1.0 01
+ 1[I|1'!1“I1“I

0000

In two's complement, if the final resultoverflows the remaining carry number is simply
discarded. For example:

-3+ 4in two's complement binary would be calculated as:

1101
+.,0100

0001

Page 8 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Methods for converting a negative number expressed in two'’s
complement form to the corresponding denary number

Consider the two’s complement binary number 10110001.

Method 1:
Convert to the 1’s compliment gives 01001110 and keep the minus sign with it
Converting to two’s complement gives us 01001111.

You ignore the leading zero in MSB as it is not a positive number and apply one of the
methods to convert the remaining binary to denary which gives 79.

You add the minus sign to give —-79.

Method 2: Sum the individual place values but treat the most significant bit as a negative

value
You follow the approach illustrated in Table 1.02 to convert the original binary number
10110001 as follows:

Place ZTRLZ L e W O 2 | ?
L -128 | &4 32 16 8 4 2 1
Digit 1 0 1 1 0 0 0 1
Product -128 | o0 32 16 0 0 0 1

You now add the values in the bottom row to get -79.

Binary Subtraction:

What is Binary Subtraction?

Subtraction of binary numbers is an arithmetic operation similar to the subtraction of decimal
numbers or base 10 numbers. For example, 1 +1+1=3inbase10and1+1+1=11
in binary number system.

When you add and subtract binary numbers, you will need to be careful when borrowing as
these will take place more often.

When you subtract several columns of binary digits, you must take into account the

borrowing. When 1 is to be subtracted from 0, the result is 1 where 1 is borrowed from the next
highest order bit or digit.

Method 1: Binary subtraction using binary numbers

Page 9 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Binary Subtraction Table

The subtraction of binary numbers is given by:

Binary Number Subtraction Value

0-0 0

1-0 1

0-1 1 (Borrow 1 from next high order digit)

=i 0

Procedure to do Binary Subtraction:

Example 1:

0011010 - 001100

Solution: 2-1=1(denary)

10 Borrow
0o ~ N after borrow its 10 — 1 = 1 (binary)
00111010 /
(-)0001100
0oo01110

Decimal Equivalent :

0011010=26

0001100=12

Therefore, 26 - 12 =14

The binary resultant 0001 1 1 0 is equivalent to the 14

Example 2:

0100010 — 0001010

Solution:

1 Borrow 10 = (2 in denary) sg:l.o-:l.::l.
011010010=3410 + ./ »
(-)0001010=1010

0011000=2410

Page 10 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Method 2: Binary subtraction converting denary numbers to binary numbers

1 Convert the two numbers into binary:
95=01011111

68=01000100
2 Find the two's complement of 68:

invert the digits: 1S (A s [0 B [|
add 1: 1
which gives: 1 0 1 1 1 1 0 0 =-68
3 Add 95 and -68:
—128 64 32 16 8 4 2 1
0 1 0 1 1 1 1 1
+
1 0 1 1 1 1 0 0
1 0 0 0 1 1 (0] 1 1

The additional ninth bit is simply ignored leaving the binary number 000 11 0 1 1 (denary equivalent of 27, which is
the correct result of the subtraction).

Overflow
A CPU with a capacity of 8 bits has a capacity of up to 11111111 inbinary. If one more bit
was added there would be an overflow error.

Sorry, this clip is not available in your region or territory.

An explanation of binary overflow errors

Example: 8-bit overflow

An example of an 8-bit overflow occurs in the binary sum 11111111 + 1 (denary: 255 + 1).
11 £1101 1
00000001

B Mt s B it Bt Ml B

100000000

The total is a number bigger than 8 digits, and when this happens theCPU drops the overflow
digit because the computer cannot store it anywhere, and the computer thinks 255 +1 = 0.

Page 11 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

11111111
BO000001
0000000

Overflow errors happen when the largest number that a register can hold is exceeded. The
number of bits that it can handle is called the word size.

Most CPUs use a much bigger word size than 8 bits. Many PCs have a 64-bit CPU. A 64-bit
CPU can handle numbers larger than 18 quintillion (18,446,744,073,709,551,615 to be precise).

Negative numbers: Sign and magnitude

Computers sometimes need to work with negative numbers.

Integers can be encoded so that they can be positive or negative numbers. Integers that can be
either positive or negative are signednumbers.

One way to represent negative numbers is through sign and magnitude. In this method,

the bit at the far left of the bit pattern - the sign bit - indicates whether the number is positive or
negative. The rest of the bits in the pattern store the size of the number (called its magnitude).
For example, with an 8-bit pattern, the first bit would be used to indicate positive or

negative.0 can indicate a positive number and a 1 can indicate a negative number. The other
seven bits would be used to store the actual size of the number.

For example, 10001001 could represent -9:
I the first bit, , indicates a negative number

the other seven bits indicate the number, 0001001 =9
The smallest possible number using this method of representation is -127 (or 11111111) and the
largest possible number is +127 (or 01111111).
Negative numbers: Two's complement

Another method of representing signed numbers is two's complement. Most computers use this
method to represent negative numbers. This method can be more effective when performing
mathematical operations like adding and subtracting.

With two's complement, the bit at the far left of the bit pattern - the most significant

bit or MSB - is used to indicate positive or negative and the remaining bits are used to
store the actual size of the number. Positive numbers always start with a O.

Page 12 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Four-bit, positive, two's complement numbers would be 0000 = 0, 0001 = 1, up to 0111 =
7. The smallest positive number is the smallest binaryvalue.

Negative numbers always start with a 1. The smallest negative number is the largest
binary value. 1111 is -1, 1110 is -2, 1101 is -3, etc down to 1000 which represents -8.

Using two's complement for negative numbers

1. Find the positive binary value for the negative number you want to represent.
2. Add a0 to the front of the number, to indicate that it is positive.
3. Invert or find the complement of each bit in the number.
4. Add 1 to this number.
Examples

Find -1 using two's complement numbers
1. 1=001

2. Adding @he front becomes

3. 'Inverted' becomes (one’s 1110 compliment)
4. Add1=1111-8+4+2+1=-1)

Find -4 using two's complement numbers

Adding 0 to the front becomes (1
'Inverted' becomes 1011
Add1=1100 (-8 +4 =-4)

BN

This table shows the two's complement set for 4-bit numbers.

Denary 4-bit binary
-8 1000
-7 1001
-6 1010
-5 1011
4 1100
3 1101
-2 1110

Page 13 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Denary 4-bit binary
q 1111
0 0000
1 0001
) 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Hexadecimal Number System:

We often have to deal with large positive binary numbers. For instance, consider
that computers connect to the Internet using a Network Interface Card (NIC).
Every NIC in the world is assigned a unique 48-bit identifier as an Ethernet
address. The intent is that no two NICs in the world will have the same address.
A sample Ethernet address might be:
000000000100011101011110011111111001001000110110

Fortunately, large binary numbers can be made much more compact—

and hence easier to work with—if represented in base-16, the so-called
hexadecimal number system.
You may wonder: Binary numbers would also be more compact if
represented in base-10—why not just convert them to decimal?
The answer, as you will soon see, is that converting between binary and
hexadecimal is exceedingly easy—much easier than converting between
binary and decimal.

Page 14 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

The Hexadecimal Number System

The base 16 hexadecimal has 16 digits (0, 1, 2, 3,4,5,6, 7, 8,9, A, B, C, D, E and F). Note that
the single hexadecimal symbol A is equivalent to the decimal number 10, the single

Just as with decimal notation or binary notation, we again write a number as a string

of symbols, but now each symbol is one of the 16 possible hexadecimal digits (O
through F). To interpret a hexadecimal number, we multiply each digit by the power of
16 associated with that digit's position.

For example, consider the hexadecimal number 1A9B. Indicating the values
associated with the positions of the symbols, this number is illustrated as:

Hexadecimal Place value:

The hexadecimal system 1s very closely related to the binary system. Hexadecimal (sometimes referred to as simply hex) 1s a base 16
system with the weightings:

1048576 65536 4096 256 16 1
(165) (164) (163) (162) (161) (169)
Because 1t 15 a system based on 16 different digits, the numbers 0 to 9 and the letters A to F are used to represent hexadecimal digits.
A=10B=11,C=12D=13. E=4andF =13
The one main disadvantage of binary numbers is that the binary string

equivalent of a large decimal base -10 number, can be quite long.

When working with large digital systems, such as computers, it is common
to find binary numbers consisting of 8, 16 and even 32 digits which makes it
difficult to both read and write without producing errors especially when
working with lots of 16 or 32-bit binary numbers.

One common way of overcoming this problem is to arrange the binary
numbers into groups or sets of four bits (4-bits).

hese groups of 4-bits use another type of numbering system also commonly
used in computer and digital systems called Hexadecimal Numbers.

REPRESENTING INTERGERS AS HEXADECIMAL NUMBERS:

The base 16 notational system for representing real numbers. The digits used to
represent numbers using hexadecimal notation are 0, 1, 2, 3,4,5,6, 7, 8,9, A, B,
C,D, E,and F.

—H denotes hex prefix.

Page 15 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Examples:

10
(()2816=28H=2x16 +8x16=40

=32+8=40

(i) 2F16=2FH=2x16+15 x 1=47
(iii) 32 ,1x16142x16°=
H) BC1216=BC12 =11x16 +12x16 T1x167 +2x16 " =48146

Hexadecimal Numbers in Computing

There are two ways in which hex makes life easier.

O The first is that it can be used to write down very large integers in a compact form.O

O For example, (A D 4 5)16 is shorter than its decimal equivalent

(44357)10 and as values increase the difference in length
becomes even more pronounced.[

Converting Binary Numbers to Hexadecimal Numbers.

Let’s assume we have a binary number of: 01010111
The binary number is 01010111

We will break number into 4 bits each as

0101 0111

Then we will start with the right side 4 bits

Starting from extreme right number

for 0101 for 0111

3210 3210
0X2 +1X2 +0X2 +1X2 0X2 +1X2 +1X2 +1X2

0X8+1X4+0X2+1X1 0X8+1X4+1X2+1X1 0+4+0+1=5 0+4+2+1=7
57

So Hexadecimal number is 57

Page 16 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Converting Hexadecimal Numbers to Binary Numbers
To convert a hexadecimal number to a binary number, we reverse the above
procedure. We separate every digit of hexadecimal number and find its
equivalent binary number and then we write it together.

Example 1.2.4

To convert the hexadecimal number 9F216 to binary, each hex digit is
converted into binary form.

9 F 2 16 = (1001 11112
0010) 9 =1001 F=1111
2=0010

So Binary equivalent of Hexadecimal number is: 9F2= 100111110010
Problems 1.2.6
Convert hexadecimal 2BF9 to its binary equivalent.

Convert binary 110011100001 to its hexadecimal equivalent. (Below is working
area)

Converting a Hexadecimal Number to a (Denary) Decimal Number

To convert a hexadecimal number to a decimal number, write the hexadecimal number as a
sum of powers of 16. For example, considering the hexadecimal number 1A9B above, we
convert this to decimal as:

1 A 9 B

16° 16° 16 16°

%498 21(16) + A (16) + 9(16) + B (16)
= 4096 + 10(256) + 9(16) + 11(1) = 6811

So 1A9B16 = 681110

Converting a (Denary) Decimal Number into Hexadecimal Number

The easiest way to convert from decimal to hexadecimal is to use the same
division algorithm that you used to convert from decimal to binary, but repeatedly
dividing by 16 instead of by 2. As before, we keep track of the remainders, and the
sequence of remainders forms the hexadecimal representation.

For example, to convert the decimal number 746 to hexadecimal, we proceed as follows:

Page 17 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

* Remainder

16| 746

[4610=A
214 =E
02

We read the number as last is first and first is last.
2EA

So, the decimal number 746 = 2EA in hexadecimal

BCD Binary Coded Decimals:

In computing and electronic systems, binary-coded decimal (BCD) is a class
of binary encodings of decimal numbers where each decimal digit is
represented by a fixed number of bits, usually four or eight. Special bit
patterns are sometimes used for a sign or for other indications (e.g., error or
overflow).

0000=0 0101=5
0001=1 0110=6
0010=2 0111=7
0011=3 1000=28
0100=4 1001=9

BCD was used in many early decimal computers, and is implemented in the
instruction set of machines such as the IBM System/360 series and its
descendants

and Digital's VAX. Although BCD per se is not as widely used as in the past

and is no longer implemented in computers' instruction sets
decimal fixed-point and floating-point formats are still important and
continue to be used in financial, commercial, and industrial computing

As most computers deal with data in 8-bit bytes, it is possible to use one of the
following methods to encode a BCD number:

Page 18 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

Unpacked: each numeral is encoded into one byte, with four bits
representing the numeral and the remaining bits having no significance.

Packed: two numerals are encoded into a single byte, with one numeral in the least
significant nibble (bits 0 through 3) and the other numeral in the most significant nibble
The Denary number 8 5 0 3 could be represented by one BCD digit per

byte

00001000 00000101 00000000 000000011 (Unpacked)Denary

Number 8 5 0 3 represented by One BCD per nibble

1000 0101 0000 0011 (Packed)

e.g.398602 in BCD

Answer: 3 =00119 =1001 8 = 1000 6 = 0110 0 = 0000 2 = 0010 So
398602 = 001110011000011000000010 (in BCD)

Method 1: four single bytes

0|0 |0 [0 (0 (0 |1 |1 3

0 |0 |0 (00 [0 [0 |1 1

O |8 (0|6 [[T |1 (O 6

0 [o” Al I XD 1 5
Method 2: two bytes

& 8 1 (1 (9 [@ & (2 3 1
B 1 |1 (@ (& (% (@ [} 6 5

Note: All the zeros are essential otherwise you can’t read it back.

But do not get confused, binary coded decimal is not the same as

hexadecimal. Whereas a 4-bit hexadecimal number is valid up to F16
representing binary 11112, (decimal 15), binary coded decimal numbers
stop at 9 binary 10012

Page 19 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

There are a number of applications where BCD can be used.

The obvious type of application is where denary digits are to be displayed,
for instance on the screen of a calculator or in a digital time display.

A somewhat unexpected application is for the representation of currency values. When a

currency value is written in a format such as $300.25 it is as a fixed-point decimal
number (ignoring the dollar sign). It might be expected that such values would be stored
as real numbers but this cannot be done accurately.

ASCII code:

If text is to be stored in a computer it is necessary to have a coding scheme that
provides a unique binary code for each distinct individual component item of the
text.

Such a code is referred to as a character code.

The scheme which has been used for the longest time is the ASCII (American
Standard Code for Information Interchange) coding scheme.
This is an internationally agreed standard. There are some variations on
ASCII coding schemes but the major one is the 7-bit code. It is customary to
present the codes in a table for which a number of different designs have
been used.
The full table shows the 27 (128) different codes available for a 7-bit code.
You should not try to remember any of the individual codes but there are
certain aspects of the coding scheme which you need to understand.

Computers store text documents, both on disk and in memory, using ASCII

codes. For example, if you use Notepad in Windows OS to create a text file

containing the words, "Four score and seven years ago," Notepad would use

1 byte of memory per character (including 1 byte for each space character
between the words

It is worth emphasizing here that these codes for numbers are exclusively for
use in the context of stored, displayed or printed text.

All of the other coding schemes for numbers are for internal use in a
computer system and would not be used in a text.

Page 20 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

There are some special features that make the coding scheme easy to use
in certain circumstances.

o The first is that the codes for numbers and for letters are in sequence

in each case so that, for example,
o if 1 is added to the code for seven the code for eight is produced.
0 The second is that the codes for the upper-case letters differ from the
codes for the corresponding lower-case letters only in the value of bit
6.
o This makes conversion of upper case to lower case, or the reverse, a
simple operation.

Dec Hex Char Dec Hex Char Dec Hex Char

32 20 <SPACE> |64 40 @ 96 60 ;

33 21 ! 65 41 A 97 61 a

34 22 . 66 42 B 98 62 b

35 23 # 67 43 C 99 63 c

36 [24 $ 68 4é D 100 64 d

37 25 % 69 45 E 101 65 e

38 | 26 & 70 46 F 102 66 f

39 | 27 ! 71 47 6 103 67 g

40 28 (72 48 H 104 68 h

£ [20) 73 49 1 105 69 i

42 | 2A % 74 4A J 106 6A j

43 | 28 + 75 4B K 107 68 k

44 |2C ; 76 4C L 108 6C l

45 | 2D - 77 4D M 109 6D m

46 |2E . |78 |4E [N [110 |6E |n

41 | 2F / 79 |4F 0 111 | 6F 0
Notice the storage of characters with uppercase and lowercase. For example:
a IR R IO EL D)% hex 61 (lower case)
A 1 0 0 0 0 0 1 hex 41 (upper case)
y 1 11 1 0 0 1 hex 79 (lower case)
Y 1 01 1 0 0 1 hex 59 (uppercase)

Despite still being widely used, the ASCII codes are far from adequate
for many purposes.
Unicode is an international encoding standard for use with different

languages and scripts. Page 21 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

It works by providing a unique number for every character, this creates a
consistent encoding, representation, and handling of text.

Basically Unicode is like a Universal Alphabet that covers the majority

of different languages across the world, it transforms characters into
numbers.

It achieves this by using character encoding, which is to assign a
number to every character that can be used.

What’s an example of a Unicode?

Unicode has its own special terminology. For example, a character code is
referred to as a 'code point'.

In any documentation there is a special way of identifying a code point. An

example is U+0041 which is the code point corresponding to the alphabetic
character A.

The 0041 are hexadecimal characters representing two bytes. The

interesting point is that in a text where the coding has been identified as
Unicode it is only necessary to use a one-byte representation for the 128
codes corresponding to ASCII. To ensure such a code cannot be
misinterpreted, the codes where more than one byte is needed have
restrictions applied.

L [(
FEED FEBE FER1 FEE2
(- - - (G-
- - L 2 L]
FESF FE91 FE92 FE90
& 3 T &
FB56 Fb58 FB59 FB57

Page 22 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

G000 | GOLO | OOF0 | 0141 |04z |0 a0 | 1en | 000D | QOFD | Q003 (OO0 | GODE | GOFE | Q000 | 0170 | 01 7E
3 ¥ I =

plolL|t|s|E[Y]y blb| |Z]2

QoD j0o01e | 0002 10015 {0014 | 008D | DOBC | O0BS | 00BE | 0065 | 0082 [DOAG | 2202 | 00DT | O01E | GO1F
1 1 1 2 l
Ya|Va |2 i = X

DOZ0 | D021 | 0022 | D02Z | 0024 | D025 | 0026 | 0D27 | 0028 | 005 |00ZA | DO2B | DDZC | 0020 | 002E | 00w

| e 1 g i
LI #3|% | & Gl e e
00 | 0O0%1 | 0032 | 0022 | O0E4 | O0=S | 00ZE | 0027 | 0022 | 0023 |O0Z4A | O0OZR | O03C | O0Z[EI'I'EQ: [N
ol1]2[3[4]5]6[7]8[9]:];|<[=]>]7
OO0 10041 | 0042] 0042 | 0044 | 0045 | 0046 | D047 | 002 | 0043 0044 | 0048 | 020 | 0030 | 0098 {0047
@ A|B|C|/ID|E|F|[G|H|I |)J|K|L|M|N
D050 | 0051 | 0052 | 0052 | 0054 | 0055 | D056 | 0057 | 005 | 0059 | 0054 | 00SB | 005C | 0050 | 00SE | 005
PO RISLELILA WX LA L LT) A
DOS0 | 0051 | DOG2 | OO | 0DS4 | D055 | DOEE | 0067 | D052 | 0055 | 0054 | DDEE | DOAE | 006D | DOEE | D0er

"la|b|€fd|e|f|glhli jk lm|n|o
OO0 | DOFE | 0072 | 0075 | 0074 | DOTS ..-'_J.':'C'...J'J.'.'__E"'ff..l.'.:'.'-'?? O | OO TFE | OOWE) 00D) O0VE | DOVF

pqrstuvwxjyz{|}~

i

Q0C4 :I:I:S: DOCT | 00CS | 000 | OO0 | O l:: J0E1 .DDEE QOEZ | COE+ | DOES JOES | OOEF :IZIII'.:' OOESR
& o | L =l Y o . | [ad N o I "-6-“" | ,]
AAICIEIN|IO|U|lalala|a|a|@|c|e|e

COOEs | O0EE | O0ED: | O0EC | OQEE | OOEF | 00F: [OOFZ § OOF2 {O0Fd | GoFé | OOFS | O0FA& | DOF3 | OOFE | DOFC

b -.| - L3 -

alé| il PINYT | AFISRSRES

L1120 IED | O &Y | DOES TO0E § | Ae0 | DER MILE DUAE (UDA= [£ 28 G | UL AR =] DS | L J5
-] = # e

T ¢|(L£|G(M0 (B|®|©™ + | /£ | D

ZZIE | ODB1 | 2264 | 2265 |00AS | 0085 | 2202 | 2211 | 220F | 0300 | 2228 | 0DAA | 00BA | 03A7 | 00E6 | 00FS

@ £| <|> X |phalaEm| [%) o=

|

L : T ! — e e - E W E———

COEF J00AT | 00AC | 2214 Ir'l V2 | F248 | 2206 |00 AR | DOEE | 20@& | D0A0 | O0OC0 | DOGE | 00DS NMEARES
1 1 Y - -

ilil=l | f|=|Ala]»]... AlAO|Ec

A = 65

A=923
At its core, Unicode is like ASCII: a list of characters that people want to type
into a computer. Every character gets a numeric codepoint, whether it’s
capital A, lowercase or lambda.

So Unicode says things like, —Allright, this character exists, we assigned it an
official name and a codepoint, here are its lowercase or uppercase equivalents
(if any), and here’s a picture of what it could look like. Font designers, it’s up to
you to draw this in your font if you want to.

Just like ASCII, Unicode strings (imagine —codepoint 121, codepoint 111...||)
have to be encoded to ones and zeros before you can store or transmit them.
But unlike ASCII, Unicode has more than a million possible codepoints, so

they can’t possibly all fit in one byte. And unlike ASCII, there’s no One True

Way to encode it.
Page 23 of 24

For more help, please visit our website www.exampaperspractice.co.uk

7=

EXAM PAPERS PRACTICE

What can we do? One idea would be to always use, say, 3 bytes per
character. That would be nice for string traversal, because the 3rd codepoint
in a string would always start at the 9th byte. But it would be inefficient when
it comes to storage space and bandwidth.Instead, the most common solution
is an encoding called UTF-8.

UTF-8:
UTF-8 gives you four templates to choose from: a one-byte template, a
two-byte template, a three-byte template, and a four-byte template.

0X0OXXXX

110xxXXX LOXXXXXX

1110xxxX 10X0XXX LOXXXXXX
11130xxX LOXXXXXX LOXXXXXX 1OXXXXXX

Each of those templates has some headers which are always the same

(shown here in red) and some slots where your code point data can go
(shown here as black).

The four-byte template gives us 21 bits for our data, which would let us
represent 2,097,151 different values. There are only about 128,000
codepoints right now, so UTF-8 can easily encode any Unicode codepoint

for the foreseeable future.Unicode to represent any possible text in code
form.

Unicode is a computing industry standard for the consistent

encoding, representation, and handling of text expressed in most of
the world's writing systems.

Developed in conjunction with the Universal Coded Character Set (UCS)

standard and published as The Unicode Standard, the latest version of
Unicode contains a repertoire of more than 128,000 characters covering
135 modern and historic scripts, as well as multiple symbol sets..

As of June 2016, the most recent version is Unicode 9.0. The standard is
maintained by the Unicode Consortium.
Unicode's success at unifying character sets has led to its widespread and

predominant use in the internationalization and localization of computer
software. The standard has been implemented in many recent technologies,
including modern operating systems, XML, Java (and other programming
languages), and the .NET Framework

Page 24 of 24
For more help, please visit our website www.exampaperspractice.co.uk

