Assembly Language Instruction Set

Data transfer operations

Instruction
LDR R, M

STR R, M

MOV R, #V

The # refers to immediate addressing ie the value is the data.

Description

Value in main memory
address M loaded into
register R

Value in register R stored in
main memory address
location M

Copy data value #V register R

Arithmetic operations

ADD Ra,

SUB Ra,

Example
LDR R1

STR R1

MOV R1

Instruction Description
Rb, <operand> Add values in
registers in Rb and
operand and load
result in register Ra
Rb, <operand> Subtract value in

perand from register
Rb load result in

register Ra

Example description
» 100 Load value at memory location 100 into register
R1
» 100 Store value in R1 into main memory location 100
, #12 Copy the number 12 into register R1.

Example Example description

ADD R1, R1, #102 Add 102 to the value in
register R1 and store the

ADD RI, RI, R2 value in register R1
Add the value stored in R2 and
add to the value stored in R1
and output the result.

SUB R2, R1, #102 Subtract 102 from the value in

SUB R2, R1l, R3 register R1 and store the

result in register R2

subtract the value stored in R3
from the value in R1 and store
the result in R2

The <operand> can be a register or a data value. The register is indicated by R and a data value is preceded by a #.

Logical shift operations

LSL Ra,

LSR Ra,

Instruction Description

Rb, <operand> Logical shift left value
in register Ra by
<operand> value
and store in register
Ra

Rb, <operand> Logical shift left value

in register Ra by
<operand> value
and store in register

Ra

Eg 310 << 210; 310 =0112; 011002 = 1210

Example Example description

LSL R1, R1, #2 Logical shift left value in R1 by
2 and store in register R1

LSL R1, R1l, R2 Logical shift left value in R1
by value in R2 and store in
register R1

LSR R1, R1, #2 Logical shift right value in R1 by
2 and store in register R1

LSR R1, R1l, R2

Logical shift right value in R1 by
value in R2 and store in
register R1

Logical operations

Instruction

AND Ra, RbDb,

ORR Ra,

Rb,

EOR Ra,

Rb,

MVN R, <operand>

Control

Instruction
CMP R, <operand>
B <label>
BEQ <label>

BNE <label>

BGT <label>

BLT <label>
HALT

Examples

Selection (if ...)

MOV R1,
CMP R1,
BNE end
MOV R2,
end:
HALT

#10
#10

#20

<operand>

<operand>

<operand>

Description

Bitwise AND operation
between value in
register Rb and
<operand> and
store result in Ra
Bitwise OR operation
between value in
register Rb and
<operand> and
store result in Ra
Bitwise XOR operation
between value in
register Rb and
<operand> and
store result in Ra
Bitwise NOT operation
on <operand> and
storein R

Branch to position <label>

Example
AND R1,

ORR R1,

EOR R1,

MVN R1,

R1, #8

R1, #8

R1, #8

#8

Description
Compare value in register R with <operand> value

Example description
Bitwise AND operation between
value in R1 and 810 (000010002)

and store result in R1

Bitwise OR operation between
value in R1 and 810 (000010002)

and store result in R1

Bitwise XOR operation between
value in R1 and 810 (000010002)

and store result in R1

Bitwise NOT operation on 810
(000010002) and store result in
R1(11110111)

Branch to position <label> if result of last comparison between R and <operand>

was equal

Branch to position <label> if result of last comparison was not equal between R and

<operand>

Branch to position <label> if R was greater than <operand> in the last comparison

comparison

Branch to position <label> if R was less than <operand> in the last comparison

Terminate execution of program

Selection (if .. else ..)

#10
#10

MOV R1,
CMP R1,
BEQ IF
MOV R2,
B ELSE
IF:
MOV R2,
ELSE:
HALT

#20

#30

Iteration

MOV RO, #0
loop:

ADD RO RO #1
CMP RO #4
BNE loop
HALT

