
Assembly Language Instruction Set

Data transfer operations
Instruction Description Example Example description
LDR R, M Value in main memory

address M loaded into
register R

LDR R1, 100 Load value at memory location 100 into register
R1

STR R, M Value in register R stored in
main memory address
location M

STR R1, 100 Store value in R1 into main memory location 100

MOV R, #V Copy data value #V register R MOV R1, #12 Copy the number 12 into register R1.

The # refers to immediate addressing ie the value is the data.

Arithmetic operations

Instruction Description Example Example description

ADD Ra, Rb, <operand> Add values in
registers in Rb and
operand and load
result in register Ra

ADD R1, R1, #102

ADD R1, R1, R2

Add 102 to the value in
register R1 and store the

value in register R1

Add the value stored in R2 and
add to the value stored in R1
and output the result.

SUB Ra, Rb, <operand> Subtract value in
perand from register
Rb load result in
register Ra

SUB R2, R1, #102
SUB R2, R1, R3

Subtract 102 from the value in
register R1 and store the

result in register R2

subtract the value stored in R3
from the value in R1 and store
the result in R2

The <operand> can be a register or a data value. The register is indicated by R and a data value is preceded by a #.

Logical shift operations

Instruction Description Example Example description
LSL Ra, Rb, <operand> Logical shift left value

in register Ra by

<operand> value

and store in register
Ra

LSL R1, R1, #2

LSL R1, R1, R2

Logical shift left value in R1 by

2 and store in register R1

Logical shift left value in R1

by value in R2 and store in

register R1

LSR Ra, Rb, <operand> Logical shift left value

in register Ra by

<operand> value

and store in register
Ra

LSR R1, R1, #2

LSR R1, R1, R2

Logical shift right value in R1 by

2 and store in register R1

Logical shift right value in R1 by

value in R2 and store in

register R1

Eg 310 << 210; 310 = 0112; 011002 = 1210

Logical operations

Instruction Description Example Example description

AND Ra, Rb, <operand> Bitwise AND operation
between value in
register Rb and

<operand> and

store result in Ra

AND R1, R1, #8 Bitwise AND operation between
value in R1 and 8

10
 (00001000

2
)

and store result in R1

ORR Ra, Rb, <operand> Bitwise OR operation
between value in
register Rb and

<operand> and

store result in Ra

ORR R1, R1, #8 Bitwise OR operation between
value in R1 and 8

10
 (00001000

2
)

and store result in R1

EOR Ra, Rb, <operand> Bitwise XOR operation
between value in
register Rb and

<operand> and

store result in Ra

EOR R1, R1, #8 Bitwise XOR operation between
value in R1 and 8

10
 (00001000

2
)

and store result in R1

MVN R, <operand> Bitwise NOT operation
on <operand> and

store in R

MVN R1, #8 Bitwise NOT operation on 8
10

(00001000
2
) and store result in

R1 (11110111
2
)

Control

Instruction Description
CMP R, <operand> Compare value in register R with <operand> value
B <label> Branch to position <label>
BEQ <label> Branch to position <label> if result of last comparison between R and <operand>

was equal
BNE <label> Branch to position <label> if result of last comparison was not equal between R and

<operand>
BGT <label> Branch to position <label> if R was greater than <operand> in the last comparison

comparison
BLT <label> Branch to position <label> if R was less than <operand> in the last comparison
HALT Terminate execution of program

Examples

Selection (if …)

MOV R1, #10

CMP R1, #10

BNE end

MOV R2, #20

end:

HALT

Selection (if .. else ..)

MOV R1, #10

CMP R1, #10

BEQ IF

MOV R2, #20

B ELSE

IF:

MOV R2, #30

ELSE:

HALT

Iteration

MOV R0, #0

loop:

ADD R0 R0 #1

CMP R0 #4

BNE loop

HALT

