

Mark Scheme (Results)

Summer 2025

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com (some pearson, the UK's largest awarded by Pearson, the UK's largest

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025
Question Paper Log Number P78903
Publications Code 4MA1_1H_2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent

- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown. If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another

International GCSE Mathematics

Values in quotation marks must come from a correct method previously seen unless clearly stated otherwise.

Q	Working	Answer	Mark	Notes
1 (a)		5 < d ≤ 10	1	B1 allow $5 - 10$ or 5 to 10 or $5 < d < 10$ or $5 \le d \le 10$ or $5 \le d < 10$
(b)	2.5 × 26 + 7.5 × 40 + 12.5 × 16 + 17.5 × 10 + 22.5 × 8 (= 920) or 65 + 300 + 200 + 175 + 180 (= 920) [lower bound products are: 0, 200, 160, 150, 160] [sum of lower bound products is: 670] [products using 3, 8, 13, 18, 23 are: 78, 320, 208, 180, 184] [sum of products using 3, 8, 13, 18, 23 is: 970] [upper bound products are: 130, 400, 240, 200, 200] [sum of upper bound products is: 1170]		4	M2 for at least 4 correct products added (need not be evaluated ie can be in the form 2.5 × 26 + 7.5 × 40 +) If not M2 then award: M1 for consistent use of values within interval (including end points) for at least 4 products added (need not be evaluated ie can be in the form 5 × 26 + 10 × 40 +) or correct midpoints used for at least 4 products and not added
	"920" ÷ "100" Correct answer scores full marks (unless from obvious	9.2		M1 (dep on at least M1) Allow division by their Σf provided addition or total under column seen A1 0 1 46
	Correct answer scores full marks (unless from obvious incorrect working)	9.2		$\begin{array}{c} \text{oe eg } 9{5} \text{ or } {5}\\ \text{SCB2 for answer of 6.7 or 9.7}\\ \text{or } 11.7 \end{array}$
				Total 5 marks

2 (a)	4 × 6 × 80 (= 1920)	$4 \times 6 (= 24)$ or $2160 \div 80 (= 27)$	$2160 \div (80 \times 4) (= 6.75)$		4	M1	for method to work out total income or income from one box or expenditure for one box or income per cup
	2160 – "1920" (= 240) or $\frac{2160}{"1920"}$ (= 1.125)	"27" - "24" (= 3) or "27" "24" (=1.125)	"6.75" – 6 (= 0.75) or $\frac{"6.75"}{6}$ (=1.125)			M1	for working out the profit or income ÷ expenditure
	$\frac{"240"}{"1920"}(\times 100)$ or $0.125 (\times 100)$ or $\left(\frac{2160}{"1920"} - 1\right)(\times 100)$ or $("1.125" - 1) (\times 100)$ or $"1.125" \times 100 (= 112.5)$	$ \frac{"3"}{"24"} (\times 100) $ or $0.125 (\times 100)$ or $\left(\frac{"27"}{"24"} - 1\right) (\times 100)$ or $("1.125" - 1) (\times 100)$ or " $1.125" \times 100 (= 112.5)$	$\frac{"0.75"}{6} (\times 100)$ or $0.125 (\times 100)$ or $\left(\frac{"6.75"}{6} - 1\right) (\times 100)$ or $("1.125" - 1) (\times 100)$ or $"1.125" \times 100 (= 112.5)$			M1	for a method to reach one step from the answer ie getting to $\frac{1}{8}$ oe or 0.125 or 112.5
	Working required		L	12.5		A1	dep on M1
(b)				8.5	1	B1	cao
(c)				125	1	B1	allow 124.9 or 124.99
							Total 6 marks

eg on on	360 – (148 + 50) (= 162) 180 – 50 (= 130) 180 – 148 (= 32) 3180 – "162" (= 18) 148 – "130" (= 18) 50 – "32" (= 18) 360 ÷ "18"	eg $180(n-2) = "16$ or $180(n-2) \div n =$	"162"			4		for method to interior angle of the polygon or start to the method of finding the exterior angle of the polygon for method to find the exterior angle or for setting up an equation using sum of interior angles formula
	orking required	$eg(n =) 360 \div (180)$	- 102)	20			A1	for a complete method dep on M1
"	orking required			20			711	Total 4 marks
			L					2200
4 (a)			12	1	B1	acc	ept x^{1}	2
(b)			5	1	B1	acc	ept y ⁵	
(c)			$125a^{12}r^6$	2	B2	for	125 <i>a</i> ¹	$^{2}r^{6}$
					(B1	<i>p</i> or Allo	<i>q</i> are	duct in the form ka^pr^q where 2 from k , a correct eg $5a^{12}r^6$ (5 a^{12} or $125r^6$ or $a^{12}r^6$ so as ot added to any other terms)
							5 ***	Total 4 marks
5	eg 1 – 0.28 (= 0.72) oe or 0 or 100(%) – 28(%) (= 72(%) or $\frac{198}{72}$ (= 2.75) oe			3	M1	for a	corre	ect first step
	eg ($x = $) 198 ÷ "0.72" oe or 198 ÷ "72" × 100 oe or "2.75" × 100				M1	for a	com	plete method
	Correct answer scores full i obvious incorrect working)	marks (unless from	275		A1	cao		
								Total 3 marks

6	(a)	$6x - 24 = 3 + 2x$ or $x - 4 = \frac{3}{6} + \frac{2}{6}x$ oe		3	M1	for correct removal of fraction and expansion of bracket in a correct equation
						or separating fraction (RHS) in an equation
		$6x - 2x = 3 + 24 \text{ or } 4x = 27$ or $-24 - 3 = 2x - 6x \text{ or } -27 = -4x \text{ oe}$ or $x - \frac{2}{6}x = \frac{3}{6} + 4 \text{ oe}$ or $-4 - \frac{3}{6} = \frac{2}{6}x - x \text{ oe}$			M1ft	
		Working required	$\frac{27}{4}$		A1	oe eg 6.75 or $6\frac{3}{4}$, dep on M1
	(b)(i)	$(y \pm 6)(y \pm 5)$ or $(6 \pm y)$ $(5 \pm y)$ or $y(y - 6) - 5(y - 6)$ or $y(y - 5) - 6(y - 5)$		2	M1	for $(y \pm 6)(y \pm 5)$ or $(6 \pm y)$ $(5 \pm y)$ or for $(y + a)(y + b)$ where $ab = 30$ or $a + b = -11$ or $y(y + a) + b(y + a)$ or $y(y + b) + a(y + b)$ where $ab = 30$ or $a + b = -11$
		Correct answer scores full marks (unless from obvious incorrect working)	(y-6)(y-5)		A1	oe, allow any letter for y
	(ii)		(y =) 6, (y =) 5	1	B1	must ft from their answer in (b)(i) ft from their factors in the form $(y + a)(y + b)$
						Total 6 marks

7	$3892 = \pi \times 8^2 \times h$ or $\pi \times 8^2 (= 64\pi = 201)$		3	M1 allow use of 3.14 or $\frac{22}{7}$ for π
	$(h=)\frac{3892}{\pi \times 8^2}$ oe eg 3892 ÷ 64 = 60.8 and 60.8 ÷ π			M1 allow use of 3.14 or $\frac{22}{7}$ for π
	Correct answer scores full marks (unless from obvious incorrect working)	19.4		A1 allow 19.3 – 19.4
				Total 3 marks

8	a)	5.2×10^{8}	1	B1
	b)	0.000 087 9	1	B1
	c) 35×10^{-138} or $3.5 \times 10 \times 10^{-138}$		2	M1
	or 3.5×10^n where $n \neq -137$			
	Correct answer scores full marks (unless from	3.5×10^{-137}		A1
	obvious incorrect working)			
				Total 4 marks

9	eg $12\sin 60 \left(=6\sqrt{3}=10.3(9)\right)$ or $\sqrt{12^2 - "6"^2} \left(=6\sqrt{3}=10.3(9)\right)$ or (Area $ADC=$) $\frac{1}{2} \times 12 \times 47 \times \sin 60 (=244.2)$		5	M1	for a method find the height of the trapezium or the area of triangle <i>ADC</i> The first two M1 marks can be awarded in either order
	eg $12\cos 60 (=6)$ or $\sqrt{12^2 - ("6\sqrt{3}")^2} (=6)$			M1	(indep) for a method find the base of the triangle, condone missing brackets around " $6\sqrt{3}$ " The first two M1 marks can be awarded in either order
	eg (AB =) 47 – "6" (= 35)			M1	(dep on previous M1) for method to find the length of <i>AB</i>
	eg (Trapezium =) $\frac{1}{2} \times (47 + "35") \times "10.3(9)"$		-	M1	for a complete method
	or (Rectangle + 2 × Triangle =) "35" × "10.3(9)" + 2× $\frac{1}{2}$ × "6"×"10.3(9)" or (Rectangle + 2 × Triangle =) "35" × "10.3(9)" + 2× $\frac{1}{2}$ × "6"×12×sin 60 or (Triangle ADC + Triangle ABC =) "244.2"+ $\frac{1}{2}$ × 12×"35"× sin 120				There are other methods and marks should be awarded for a complete method that should give the correct area
	2				
	oe eg (47-"6")×"10.3(9)"				
	Working required	426		A1	(dep on M1) allow 420 – 427 from correct working
					Total 5 marks

10 (a)		-30, 15	1	B1	for -30 and 15 in the correct place,
					this may be awarded if plotted
					correctly on the graph
(b)			2	M1ft	for at least 6 points plotted correctly
					(within the circles on the overlay)
					ft their incorrect table
	40	Correct graph		A1	for correct curve between
	30				x = -3 and x = 3
					(clear intention to go through all the
	20				points and which must be curved)
	10				
					Ignore to the left of $x = -3$ and to the
	-3 -2 -1 0 1 2 3				right of $x = 3$
	-10				
	70				Note : If a fully correct graph is shown,
					but a blank table is shown in (a), then
	30				award the mark for (a)
	Correct answer scores full marks (unless from				
	obvious incorrect working)				
	Obvious incorrect working)				Total 3 marks
					1 Otai 5 Iliarks

11	$eg \pi \times 16^2 \times \frac{140}{360}$ oe $eg 256\pi \times \frac{7}{18}$		2	M1 allow use of 3.14 or $\frac{22}{7}$ for π $\frac{140}{360}$ may be seen as an equivalent fraction or decimal eg $\frac{7}{18}$ or 0.38 $0.388(8)$ or 0.389
	Correct answer scores full marks (unless from obvious incorrect working)	313		A1 accept 311.8 – 313
				Total 2 marks

12	eg $\frac{5(6x)}{24x} + \frac{4(x-3)}{24x}$ oe or $\frac{5(6x)}{4(6x)} + \frac{4(x-3)}{4(6x)}$ oe or $\frac{30x}{24x} + \frac{4(x-3)}{24x}$ oe or $\frac{30x+4(x-3)}{24x}$ oe or $\frac{15x}{12x} + \frac{2(x-3)}{12x}$ oe or $\frac{15x+2(x-3)}{12x}$ oe		3	M1 for two correct fractions with common denominator or a single correct fraction
	eg $\frac{30x+4x-12}{24x}$ oe or $\frac{30x}{24x} + \frac{4x-12}{24x}$ oe or $\frac{30x}{24x} + \frac{4x}{24x} - \frac{12}{24x}$ oe or $\frac{34x}{24x} - \frac{12}{24x}$ oe or $\frac{34x-12}{24x}$ oe or $\frac{15x+2x-6}{12x}$ oe			M1 for correct fraction(s) with bracket(s) expanded correctly
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{17x-6}{12x}$		A1 oe but must be simplified $eg \frac{-6+17x}{12x}$ do not ISW incorrect simplification $eg \frac{17x-6}{12x} = \frac{11}{12} \text{ is M2A0}$
				Total 3 marks

13	$750000 \times (1-0.04) \ (=720000) \ \text{oe}$ and "720 000" × $(1-0.065) \ (=673200)$ or $750000 \times (1-0.04) \times (1-0.065) \ (=673200)$ or $750000 \times 0.96 \times 0.935 \ (=673200)$		3	M1	(NB: accept $\left(1 - \frac{4}{100}\right)$ for 0.96 but not $(1 - 4\%)$ and accept $\left(1 - \frac{6.5}{100}\right)$ for 0.935 but not $(1 - 6.5\%)$) Calculations may be seen as part of an equation eg $750\ 000 \times 0.96 \times 0.935 \times \left(1 + \frac{x}{100}\right) = 698\ 445$
	eg $\frac{698445 - "673200"}{"673200"} (\times 100) \ (= 0.0375)$ or $\frac{698445}{"673200"} - 1 \ (= 0.0375)$			M1	1.0375 or 25245 imply M1 for a method to reach value one step away from <i>x</i> ie a method leading to 0.0375 or 103.75
	or $1.0375 - 1 = 0.0375$ oe or $\frac{698445}{673200} \times 100 = 103.75$	3.75		A1	oe eg $3\frac{3}{4}$ or $\frac{15}{4}$
	obvious incorrect working)				Total 3 marks

14 (a)	0.4 win 0.6 lose 0.8 win 0.6 lose 0.6 lose	Correct probabilities	2	B2 for all 3 correct pairs of probabilities on the correct branches for 1 or 2 correct pairs of probabilities (B1 on the correct branches) Allow equivalent fractions or percentages
(b)	"0.3" × "0.6"		2	M1ft (Both probabilities must be less than 1)
	Correct answer scores full marks (unless from obvious incorrect working)	0.18		A1ft oe eg $\frac{18}{100}$ or $\frac{9}{50}$ or $\frac{0.18}{1}$ or 18%
				Total 3 marks

15 (a)		9	1	B1	allow $9\sqrt{3}$
(b)	$21 3+\sqrt{2} \qquad 21 -3-\sqrt{2}$		3	M1	for explicitly multiplying the numerator and
	$\frac{21}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}} \text{ or } \frac{21}{3-\sqrt{2}} \times \frac{-3-\sqrt{2}}{-3-\sqrt{2}}$				the denominator by $3+\sqrt{2}$ or $-3-\sqrt{2}$
	eg $\frac{21(3+\sqrt{2})}{9-3\sqrt{2}+3\sqrt{2}-2}$ or $\frac{21(3+\sqrt{2})}{3^2-2}$			M1	dep on M1 (denominator may be 4 terms which all need to be correct)
	or $\frac{21(3+\sqrt{2})}{9-2}$ or $\frac{21(3+\sqrt{2})}{7}$				$\frac{21}{3 - \sqrt{2}} \times \frac{3 + \sqrt{2}}{3 + \sqrt{2}} = 9 + 3\sqrt{2} \text{ scores M1M0}$
	or $\frac{63+21\sqrt{2}}{9-2}$ or $\frac{63+21\sqrt{2}}{7}$				
	Working required	$9 + \sqrt{18}$		A1	dep on M2
					SCB1 for $9+\sqrt{18}$ gained with no method marks awarded
					SCB2 for $9+\sqrt{18}$ gained if you would award 1 st M1 but not 2 nd M1 (total 2 marks)
					Total 4 marks

16	(a)		6	1	B1	cao
	(b)	$9 - \sqrt{4x^2} \left(< 0 \right)$		3	M1	for substituting $g(x)$ in $f(x)$, allow incorrect inequality sign or = sign
		eg $9-2x(<0)$ or $9<2x$ or $81<4x^2$ or $9^2<4x^2$			M1	for removing the square root, allow incorrect inequality sign or = sign
		Working required	$x > \frac{9}{2}$		A1	(dep on M1) oe eg $x > 4.5$, $\frac{9}{2} < x$, $4.5 < x$
						Total 4 marks

	T		ı		1	
17	freq density \times mins	counting small squares		3	M1	for finding the area of at least 2 bars
	$10 \times 2.5 (= 25)$	$10 \times 25 \ (= 250)$				
	$5 \times 4 \ (= 20)$	$5 \times 40 \ (= 200)$				either using freq density \times mins
	$15 \times 3.6 \ (= 54)$	$15 \times 36 \ (= 540)$				
	$20 \times 0.5 (= 10)$	$20 \times 5 \ (= 100)$				or
	$10 \times 1.7 (= 17)$	$10 \times 17 \ (= 170)$				_
	$10 \times 0.5 = 5$ (area of 40 to 50 bar)	$10 \times 5 = 50$ (area of 40 to 50 bar)				use of counting small squares or cm ²
	counting cm ²					Values may be seen on the diagram
	$2 \times 5 = 10$					-
	$1 \times 8 \ (= 8)$					22 or 220 or 8.8 implies M1
	$3 \times 7.2 (= 21.6)$					-
	$4 \times 1 \ (= 4)$					
	$2 \times 3.4 (= 6.8)$					
	2×1 (= 2) (area of 40 to 50 bar)					
	$(10 \times 2.5) + (5 \times 4) + (15 \times 3.6) + (26)$	0×0.5) + (10×1.7) (= 126)			M1	for method to find total number of
	or	12.0				people (allow one error or omission)
	"25" + "20" + "54" + "10" + "17" (=	= 126)				or
	or					total number of small squares/ cm ² for
	"250" + "200" + "540" + "100" + "1	70" (= 1260)				method used (allow one error or
	or					omission)
	"10" + "8" + "21.6" + "4" + "6.8" (=	50.4)				
	Connect angular scores full manks (uless from obvious incorrect working)	11		A1	22 220
	Correct answer scores juli marks (un	uess from ovvious incorrect working)	$\frac{11}{63}$		AI	oe eg $\frac{22}{126}$ or $\frac{220}{1260}$ or $0.174(60)$ or
			03			
						0.175 or 17.4(60)% or 17.5%
						or 22 out of 126
						If $\frac{22}{126}$ is seen in the workings and 22
						is on the answer line, award M2A0
						Total 3 marks

18	$y = \frac{k}{x^3}$	$hy = \frac{1}{x^3}$		4	M1	do not award for $y = \frac{1}{x^3}$ Constant of proportionality must be a symbol such as k Condone use of ∞ for method marks
	$4 = \frac{k}{3^3}$ or $k = 4 \times 3^3$ (= 108)	$h \times 4 = \frac{1}{3^3}$ or $h = \frac{1}{4 \times 3^3} \left(= \frac{1}{108} \right)$			M1	for substitution of x and y into a correct formula Condone use of ∞ for method marks
	eg $(x^3 =)$ $\frac{4 \times 3^3}{864} \left(= \frac{1}{8} \right)$ or $(x^3 =)$	$\frac{"108"}{864} \left(= \frac{1}{8} \right)$ oe			M1	for method to find x^3 Condone use of ∞ for method marks
	Correct answer scores full mark. working)	s (unless from obvious incorrect	0.5		A1	oe Total 4 marks

19 (i)	8, –9	1	B1 cao
(ii)	4, -12	1	B1 cao
			Total 2 marks

20	$(BD^2 =)9.4^2 +12.8^2 -2 \times 9.4 \times 12.8 \times \cos 72 (= 177.8)$		5	M1	for applying cosine rule
	or $(BD^2 =)88.36+163.84-2\times9.4\times12.8\times\cos72 \ (=177.8)$ oe				
	or $(BD =) \sqrt{9.4^2 + 12.8^2 - 2 \times 9.4 \times 12.8 \times \cos 72}$				
		(BD =)13.3		A1	allow $13.3 - 13.342$ or $\sqrt{177.8}$
					or $\sqrt{178}$
	eg $\frac{BC}{\sin 39} = \frac{\text{"13.3"}}{\sin 54}$ or $\frac{\sin 39}{BC} = \frac{\sin 54}{\text{"13.3"}}$			M1ft	for applying the sine rule, allow use of their <i>BD</i>
	$\left(BC = \right) \frac{"13.3"}{\sin 54} \times \sin 39$			M1ft	for method to find BC using the sine rule allow use of their BD
	Correct answer scores full marks (unless from obvious incorrect working)	10.4		A1	allow 10.3 – 10.4
					Total 5 marks

	<u> </u>				
21			3	M1	for finding one
	eg (P(RRY) =) $\frac{9}{20} \times \frac{8}{19} \times \frac{7}{18} \left(= \frac{504}{6840} = \frac{7}{95} \right)$ oe or (P(RRG) =) $\frac{9}{20} \times \frac{8}{19} \times \frac{4}{18} \left(= \frac{288}{6840} = \frac{4}{95} \right)$ oe				correct product, does
	20 19 18 (6840 95) 20 19 18 (6840 95)				not need to be labelled
	$\mathbf{or} \ (P(RRR) =) \ \frac{9}{20} \times \frac{8}{19} \times \frac{7}{18} \left(= \frac{504}{6840} = \frac{7}{95} \right) \ \text{oe} \ \mathbf{or} \ (P(RRR') =) \ \frac{9}{20} \times \frac{8}{19} \times \frac{11}{18} \left(= \frac{792}{6840} = \frac{11}{95} \right) \ \text{oe}$				labelled
	$\frac{\text{of } (F(KKK)^{-})}{20} \frac{19}{19} \frac{18}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{20} \frac{19}{19} \frac{18}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{20} \frac{1}{19} \frac{1}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{20} \frac{1}{19} \frac{1}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{20} \frac{1}{19} \frac{1}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{20} \frac{1}{19} \frac{1}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{20} \frac{1}{19} \frac{1}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{20} \frac{1}{19} \frac{1}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{20} \frac{1}{19} \frac{1}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{19} \frac{1}{18} \left(-\frac{6840}{6840} - \frac{95}{95} \right) \text{ of } (F(KKK)^{-}) \frac{1}{19} \frac{1}{18} \frac{1}{1$				or
	7,6,9 (378 21) $7,6,4$ (168 7)				for an answer of 17
	$\mathbf{or} \ (P(YYR) =) \ \frac{7}{20} \times \frac{6}{19} \times \frac{9}{18} \left(= \frac{378}{6840} = \frac{21}{380} \right) \ \text{oe} \ \mathbf{or} \ (P(YYG) =) \ \frac{7}{20} \times \frac{6}{19} \times \frac{4}{18} \left(= \frac{168}{6840} = \frac{7}{285} \right) \ \text{oe}$				for an answer of $\frac{17}{76}$
	7 6 5 (210 7) 7 6 13 (546 91)				oe eg 0.22(3)
	$\mathbf{or} \ (P(YYY) =) \frac{7}{20} \times \frac{6}{19} \times \frac{5}{18} \left(= \frac{210}{6840} = \frac{7}{228} \right) \text{ oe } \mathbf{or} \ (P(YYY') =) \frac{7}{20} \times \frac{6}{19} \times \frac{13}{18} \left(= \frac{546}{6840} = \frac{91}{1140} \right) \text{ oe }$				or 22(.3)%
	4 3 9 (108 3) 4 3 7 (84 7)				or $\frac{65}{76}$ oe
	$\mathbf{or} \ (P(GGR) =) \ \frac{4}{20} \times \frac{3}{19} \times \frac{9}{18} \left(= \frac{108}{6840} = \frac{3}{190} \right) \ \text{oe} \ \mathbf{or} \ (P(GGY) =) \ \frac{4}{20} \times \frac{3}{19} \times \frac{7}{18} \left(= \frac{84}{6840} = \frac{7}{570} \right) \ \text{oe}$				eg 0.85(5)
					or 85(.5)%
	$\mathbf{or} \ (P(GGG) =) \ \frac{4}{20} \times \frac{3}{19} \times \frac{2}{18} \left(= \frac{24}{6840} = \frac{1}{285} \right) \ \text{oe} \ \mathbf{or} \ (P(GGG') =) \ \frac{4}{20} \times \frac{3}{19} \times \frac{16}{18} \left(= \frac{192}{6840} = \frac{8}{285} \right) \ \text{oe} $,
	or $(P(RGY) =) \frac{9}{20} \times \frac{7}{19} \times \frac{4}{18} \left(= \frac{252}{6840} = \frac{7}{190} \right)$ oe				
	20 17 10 (0010 170)				
	(2 9 8 11) (2 7 6 13) (2 4 3 16)			M1	for a complete
	$ (P(RRR' \text{ or } YYY' \text{ or } GGG') =) \left(3 \times \frac{9}{20} \times \frac{8}{19} \times \frac{11}{18}\right) + \left(3 \times \frac{7}{20} \times \frac{6}{19} \times \frac{13}{18}\right) + \left(3 \times \frac{4}{20} \times \frac{3}{19} \times \frac{16}{18}\right) oe $				calculation
	or (P(RRY or RRG or YYR or YYG or GGR or GGY) =)				
	$\left(3 \times \frac{9}{20} \times \frac{8}{19} \times \frac{7}{18}\right) + \left(3 \times \frac{9}{20} \times \frac{8}{19} \times \frac{4}{18}\right) + \left(3 \times \frac{7}{20} \times \frac{6}{19} \times \frac{9}{18}\right) +$				
	$\left(3 \times \frac{7}{20} \times \frac{6}{19} \times \frac{4}{18}\right) + \left(3 \times \frac{4}{20} \times \frac{3}{19} \times \frac{9}{18}\right) + \left(3 \times \frac{4}{20} \times \frac{3}{19} \times \frac{7}{18}\right)$ oe				
	or (1 – P(RRR or YYY or GGG or RGY) =)				
	$1 - \left(\left(\frac{9}{20} \times \frac{8}{19} \times \frac{7}{18} \right) + \left(\frac{7}{20} \times \frac{6}{19} \times \frac{5}{18} \right) + \left(\frac{4}{20} \times \frac{3}{19} \times \frac{2}{18} \right) + \left(6 \times \frac{9}{20} \times \frac{7}{19} \times \frac{4}{18} \right) \right) \text{oe}$				
	Correct answer scores full marks (unless from obvious incorrect working)	51	f	A1	oe eg 0.67(1)
	SCB1 for an answer of $\frac{669}{1000}$ oe eg 0.66(9) or 66(.9)%	76			or 67(.1)%
	1000				
					Total 3 marks
L					**

22	0.0	20		5	M 1	for substitution of $y = x + 2$
22	eg	eg		3	M1	· .
	$x^{2} + 3(x+2) + (x+2)^{2} = 7$	$(y-2)^2 + 3y + y^2 = 7$				(or $x = \pm y \pm 2$) into $x^2 + 3y + y^2 = 7$
						to obtain an equation in x only (or y
				_		only)
	eg	eg			M1ft	dep on previous M1 for multiplying
	$2x^2 + 7x + 3 = 0$	$2y^2 - y - 3(=0)$				out and collecting terms, forming a
	$2x^2 + 7x = -3$	$2y^2 - y = 3$				three term quadratic in any form of $ax^2 + bx + c$ (= 0) where at least 2
		29 9 3				ax + bx + c (= 0) where at least 2 coefficients (a or b or c) are correct
	eg	eg		_	M1ft	
						their 3 term quadratic using any
	(2x+1)(x+3)(=0)	(y+1)(2y-3)(=0)				correct method (allow one sign error
	or	or				and some simplification – allow as
	$-7 \pm \sqrt{(7)^2 - 4 \times 2 \times 3}$	$y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 2 \times -3}}{-(-1) \pm \sqrt{(-1)^2 - 4 \times 2 \times -3}}$				far as eg $\frac{-7 \pm \sqrt{49 - 24}}{4}$
	$x = \frac{1}{2 \times 2}$	or $y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 2 \times -3}}{2 \times 2}$				4
	or	or				or $\frac{1 \pm \sqrt{1 + 24}}{4}$
	$\left(x + \frac{7}{4}\right)^2 - \left(\frac{7}{4}\right)^2 = -\frac{3}{2}$	$(1)^2 (1)^2 3$				or
	$\left \left(x + \frac{1}{4} \right) - \left(\frac{1}{4} \right) \right = -\frac{1}{2}$	$\left(\begin{array}{c} y-\overline{4} \end{array}\right) - \left(\overline{4}\right) - \overline{2}$				or if factorising allow brackets
	$\left(x = -\frac{1}{2} \text{ and } x = -3\right)$	(, , 3)				which expanded give 2 out of 3
	$\left x = -\frac{1}{2} \text{ and } x = -3 \right $	$y = -1$ and $y = \frac{1}{2}$				terms correct)
						or correct values for x
						or correct values for y
	1 (3)	r-" 1" 2(- 2)		┨	M1ft	dep on previous M1 for substituting
	$y = "-\frac{1}{2}" + 2\left(=\frac{3}{2}\right)$	x = "-1"-2(=-3)			1/1111	their 2 found values of x or y into
	and	and				one of the two given equations
	y = "-3"+2(=-1)	$x = \frac{3}{2} - 2 = \frac{1}{2}$				or fully correct values for the other
	y = -3 + 2(=-1)	2 (2)				variable (correct labels for x / y)
	TT7 1 · · · · · ·		1 2	↓ 	A 1	or for one correct pair of values
	Working required		$x = -\frac{1}{2}$ and $y = \frac{3}{2}$		A1	oe dep on M2 (allow coordinates)
			x = -3 and $y = -1$			
			$\lambda = 3 \text{ and } y = -1$	+		Total 5 marks
	the velves of a but think they o		1.1.0			Total 5 Illal Ks

If they find the values of y but think they are the values of x then the maximum mark is 3 tyrionpapers.com for more resources

23	(a)		-12a + 8b	1	B1	oe
	(b)	$(\overrightarrow{PR} =) 6\mathbf{a} + 3("-12\mathbf{a} + 8\mathbf{b}") (= -30\mathbf{a} + 24\mathbf{b})$ oe		4	M1	for method to find \overrightarrow{PR} or \overrightarrow{RP} ,
		or $(\overrightarrow{RP} =)-3("-12\mathbf{a} + 8\mathbf{b}") - 6\mathbf{a} (= 30\mathbf{a} - 24\mathbf{b})$				ft their \overrightarrow{AB}
		$(\overrightarrow{PQ} =) - 6\mathbf{a} + n\mathbf{b}$ oe eg $(\overrightarrow{PQ} =) - 6\mathbf{a} + m \times 8\mathbf{b}$			M1	for method to find \overrightarrow{PQ} or \overrightarrow{OQ}
		or $(\overrightarrow{OQ} =)$ 6a + $k(\text{``-30a} + 24b\text{''})$ or $(\overrightarrow{AQ} =) -12a + nb$				or \overrightarrow{AQ}
		$\overrightarrow{PQ} = \lambda \overrightarrow{PR} \text{ eg } -6\mathbf{a} + n\mathbf{b} = \lambda ("-30\mathbf{a} + 24\mathbf{b}")$			M1	for setting up an equation to find the value of the unknown
		$\mathbf{or} - 6 = -30\lambda \text{ oe } \mathbf{or} \ \lambda = \frac{1}{5} \text{ oe}$				coefficient(s)
		OR $\mu \overrightarrow{PQ} = \overrightarrow{PR}$ eg $\mu(-6\mathbf{a} + n\mathbf{b}) = "-30\mathbf{a} + 24\mathbf{b}"$				
		or $-6\mu = -30$ oe or $\mu = 5$				
		OR $\overrightarrow{OQ} = \overrightarrow{OP} + k\overrightarrow{PR}$ eg $n\mathbf{b} = 6\mathbf{a} + k("-30\mathbf{a} + 24\mathbf{b}")$				
		or $0 = 6 - 30k$ or $k = \frac{1}{5}$ oe				
		$\mathbf{OR} \ \overrightarrow{AQ} = \overrightarrow{AR} + x\overrightarrow{RP} \ \text{eg}$				
		$-12\mathbf{a} + n\mathbf{b} = 3("-12\mathbf{a} + 8\mathbf{b}") + x("30\mathbf{a} - 24\mathbf{b}")$				
		or $-36+30x = -12$ or $x = \frac{4}{5}$ oe				
		Working required	4.8		A1	oe eg $\frac{24}{5}$, dep on M1
						Total 5 marks

24	123 = a + (20 - 1)d or $123 = a$	a + 19d		5	M1	for using $U_n = a + (n-1)d$
	$2880 = \frac{30}{2} (2a + (30 - 1)d)$				M1	for using $S_n = \frac{n}{2} (2a + (n-1)d)$
	or $2880 = \frac{30}{2}(2a + 29d)$					
	or $192 = 2a + 29d$					
	eg 192 = 2a + 29d 123 = a + 19d (× 2) 246 = 2a + 38d Subtracting 54 = 9d or 192 = 2(123 - 19d) + 29d oe or d = 6	eg $192 = 2a + 29d (\times 19)$ $123 = a + 19d (\times 29)$ 3648 = 38a + 551d 3567 = 29a + 551d Subtracting 81 = 9a or $192 = 2a + 29\left(\frac{123 - a}{19}\right)$ oe or a = 9			M1	(dep on M2) for a correct method to find <i>a</i> or <i>d</i> : coefficients of <i>a</i> or <i>d</i> the same in correct equations and correct operator to eliminate selected variable resulting in an equation in <i>a</i> only or in <i>d</i> only or writing <i>a</i> or <i>d</i> in terms of the other variable and correctly substituting (condone missing brackets)
	eg $192 = 2a + 29("6")$ oe	eg 192 = 2("9") + 29d oe			M1	(dep on M3) for substituting their
	or $123 = a + 19("6")$ oe	or $123 = "9" + 19d$ oe			1011	found value of a or d into a correct equation
	Working required	·	a = 9		A1	dep on M2
			<i>d</i> = 6			a and d must be clearly identified
						Total 5 marks

25	$\left(\frac{4+8}{2}, \frac{7-5}{2}\right)$ oe or $(6, 1)$		5	M1	for finding the midpoint of <i>PR</i>
	$\frac{75}{4-8} \left(= -\frac{12}{4} = -3 \right)$ oe			M1	for method to find the gradient of <i>PR</i>
	"-3"× $m = -1$ oe or $(m =) \frac{-1}{"-3"}$ or $(m =) \frac{1}{3}$			M1ft	for finding the gradient of <i>QS</i> , may be seen embedded in an equation, ft their gradient of <i>PR</i>
	"1" = " $\frac{1}{3}$ "("6") + c oe or c = -1 or $y-1=\frac{1}{3}(x-6)$ or $y=\frac{1}{3}x-1$			M1ft	(dep on previous M1) for finding the equation through QS , ft their gradient of PR and their midpoint of PR , do not allow $(4, 7)$ or $(8, -5)$ as midpoint PR
	Correct answer scores full marks (unless from obvious incorrect working)	3y = x - 3		A1	oe eg $6y = 2x - 6$ or $3y - x + 3 = 0$ etc but must be integer coefficients accept $a = 3$, $b = 1$, $c = -3$
					Total 5 marks

