## Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

Simplify e + e + e + e + e

(Total for Question 1 is 1 mark)

2 Write  $\frac{3}{4}$  as a decimal.

0.75

(Total for Question 2 is 1 mark)

Change 60 millimetres into centimetres.

6 centimetres

(Total for Question 3 is 1 mark)

Write down a multiple of 8 that is between 25 and 35

(Total for Question 4 is 1 mark)

Angle A is  $53^{\circ}$ 

What type of angle is angle *A*?

(Total for Question 5 is 1 mark)



6 Samina works in a shop that sells pens.

The table shows the number of blue pens and the number of red pens Samina sold in each of three months.

| Month | Blue pens | Red pens |  |
|-------|-----------|----------|--|
| April | 33        | 20       |  |
| May   | 40        | 14       |  |
| June  | 27        | 15       |  |

(a) Work out the total number of blue pens and red pens Samina sold in June.

42

(1)

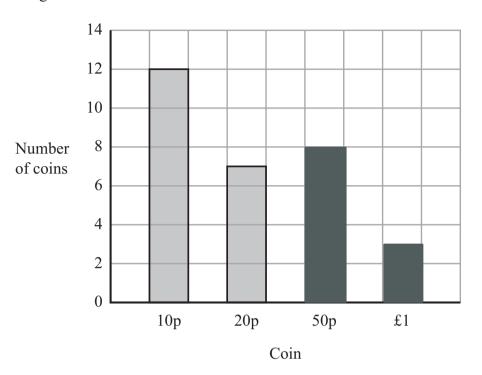
Samina says,

"In these three months, in total, I sold more than twice as many blue pens as red pens."

(b) Is Samina correct?

You must show how you get your answer.

$$2 \times red = 49 \times 2$$


(3)

(Total for Question 6 is 4 marks)



7 There are only 10p coins, 20p coins, 50p coins and £1 coins in a bag.

The bar chart shows information about the number of 10p coins and the number of 20p coins in the bag.



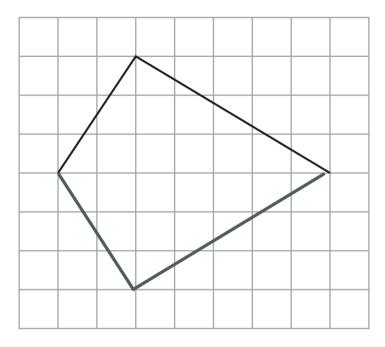
There are eight 50p coins in the bag. There are three £1 coins in the bag.

(a) Use this information to complete the bar chart.

**(2)** 

(b) Show that the total amount of money in the bag is less than £10

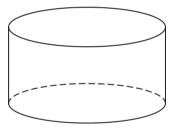
$$12 \times 10p = £1.20$$
  
 $7 \times 20p = £1.40$   
 $8 \times 50p = £4$   
 $3 \times £1 = £3$ 


£9.60 < £10

(3)

(Total for Question 7 is 5 marks)




8 The diagram shows two sides of a kite.



(a) On the grid, complete the kite.

(1)

(b) What is the mathematical name of this solid shape?





(Total for Question 8 is 2 marks)

9 Greg is x years old.

Greg is 5 years older than Katy.

(a) Write down an expression, in terms of x, for Katy's age.

Carl is twice as old as Greg.

(b) Write down an expression, in terms of x, for Carl's age.

(c) Solve 4y = 12

$$y = 3$$

(Total for Question 9 is 3 marks)

**10** (a) Write 23619 to the nearest 1000

(b) Work out an estimate for the value of  $5.9 \times 98.1$ 



(Total for Question 10 is 3 marks)

11 (a) Work out 
$$\frac{5}{8} - \frac{1}{4}$$

(b) Work out  $\frac{2}{5}$  of 40



(Total for Question 11 is 4 marks)

12 Here is part of a train timetable from Liverpool to Birmingham.

| Liverpool     | 0807  | 0847  | 09 07 |
|---------------|-------|-------|-------|
| Runcorn       | 0825  | 09 03 | 0926  |
| Crewe         | 0853  | 09 22 | 09 55 |
| Stafford      | 09 11 | 0951  | 1014  |
| Wolverhampton | 0930  | _     | 1031  |
| Birmingham    | 0950  | 1034  | 1050  |

(a) Which train should take the least time to go from Liverpool to Crewe? You must show how you get your answer.

The 0847 train takes the least time.

(3)

Rose gets to the station in Wolverhampton at 0925 She wants to catch the next train to Birmingham.

This train is delayed by 35 minutes.

(b) How many minutes does Rose have to wait for the train?

minutes

(Total for Question 12 is 5 marks)



13 Here is a number machine.



(a) Find the output when the input is 6

(1)

(b) Find the input when the output is -11

(2)

(Total for Question 13 is 3 marks)

14 A road has a length of 1.6 kilometres. = 1600m

The road is shown on a map with a scale of 1:20000

Work out the length, in centimetres, of this road on the map.

8 centimetres

(Total for Question 14 is 3 marks)

**15** Work out  $1.35 \times 48$ 

6480

64.8

(Total for Question 15 is 3 marks)



E 40°

70°

70°

AED and BCD are straight lines. ED = EC

Show that *EC* is parallel to *AB*. Give a reason for each stage of your working.

base angles in an isosceles mangle are equal

so ECD = ABD because corresponding angles are equal in parallel lines.

(Total for Question 16 is 4 marks)



17 Sam wants to use this recipe to make 15 pancakes.

## 5 pancakes

100 ÷ 2 = 509

200 ÷ 2 = 100g

40 ÷ 2 = 20g

2 = 2 = 1egg

Sam has

200 g flour 250 ml milk 70 g butter 5 eggs

## **Ingredients for 10 pancakes**

100 g flour 200 ml milk 40 g butter 2 eggs 15pancakes 100 + 50 = 1509 200 + 100 = 3009 20 + 40 = 609 2 + 1 = 3eggs.

Does Sam have enough flour, enough milk, enough butter and enough eggs to make 15 pancakes?

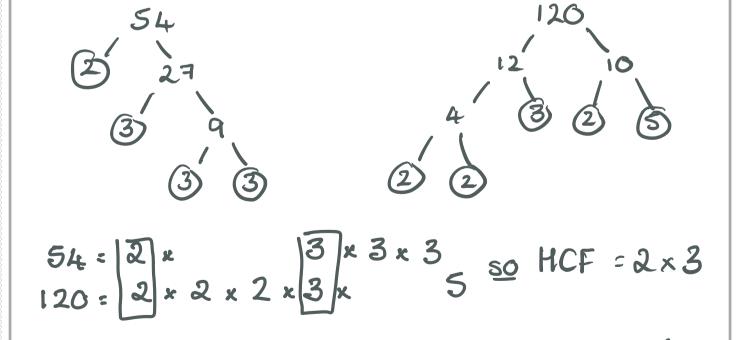
You must show all your working.

Has 200g Hour needs 150g /
has 250ml mulk needs 300ml x
has 70g butter needs 60g /
has 5eggs needs 3eggs /

Sam does not have enough milk, but has enough floor, butter and eggs.

(Total for Question 17 is 3 marks)




18 Here are the heights, in cm, of 12 children.

| 146 | 135 | 142 | 150 | 138 | 149 |
|-----|-----|-----|-----|-----|-----|
| 152 | 146 | 137 | 154 | 147 | 144 |

Show this information in a stem and leaf diagram.

(Total for Question 18 is 3 marks)

19 Find the highest common factor (HCF) of 54 and 120



(Total for Question 19 is 2 marks)

20 There are only red counters, white counters, blue counters and green counters in a bag.

Chris is going to take at random a counter from the bag.

The table shows the probability that he will take a red counter and the probability that he will take a white counter.

|             |     |       |      | 20    |
|-------------|-----|-------|------|-------|
| Colour      | red | white | blue | green |
| Probability | 0.3 | 0.1   | 0.4  | 0.2   |
|             |     |       |      |       |

There are twice as many blue counters as there are green counters in the bag.

(a) Work out the probability that Chris will take a blue counter.

0.4

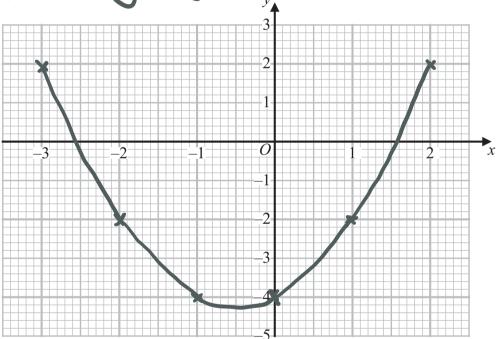
(3)

There are 45 red counters in the bag.

(b) Work out the total number of counters in the bag.

150

(2)


(Total for Question 20 is 5 marks)

21 (a) Complete the table of values for  $y = x^2 + x - 4$ 

|   |    |    |    |    | /  |    | _      |
|---|----|----|----|----|----|----|--------|
| x | -3 | -2 | -1 | 0  | 1  | 2  |        |
| у | 2  | -2 | -4 | -4 | -2 | 2, | 22+2-1 |

(b) On the grid, draw the graph of  $y = x^2 + x - 4$  for values of x from -3 to 2

Yourgraph may vary slightly



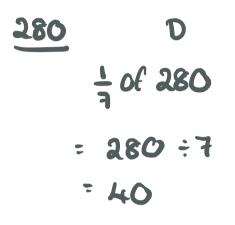
**(2)** 

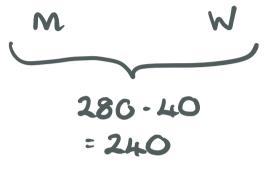
**(2)** 

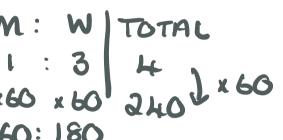
(c) Write down the coordinates of the turning point of the graph of  $y = x^2 + x - 4$ 

(Total for Question 21 is 5 marks)

22 There are 280 chocolates in a box.


There are only dark chocolates, milk chocolates and white chocolates.


 $\frac{1}{7}$  of the 280 chocolates are dark chocolates.


The number of milk chocolates: the number of white chocolates = 1:3

The number of white chocolates: the number of dark chocolates = n:1

(a) Work out the value of *n*. You must show all your working.







RATIO

G: W

180:40

÷10 ÷10

18:4

9:2

4.5: 1 son: 4.5

$$n = 4.5$$

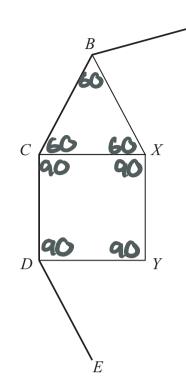
10 milk chocolates from the box are eaten.

(b) Does this affect your answer to part (a)? Give a reason for your answer.

No, because the number of white and dork character does not charge

(1)

(Total for Question 22 is 6 marks)



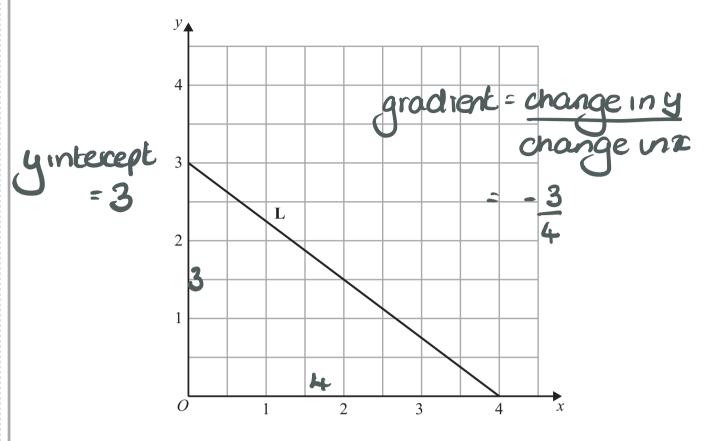

23 Work out  $5.7 \times 10^2 + 9.8 \times 10^3$  Give your answer in standard form.

1.037 × 104

(Total for Question 23 is 3 marks)

**24** AB, BC, CD and DE are four sides of a regular polygon with n sides.




BCD = 60+90 = 150

BCX is an equilateral triangle. CDYX is a square.

Work out the value of *n*. You must show all your working.

(Total for Question 24 is 4 marks)

25 The straight line L is shown on the grid.



Find an equation for L. Give your answer in the form y = mx + c

 $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}$ (Total for Question 25 is 3 marks)

**Turn over for Question 26** 

$$\mathbf{26} \ \mathbf{c} = \begin{pmatrix} 7 \\ 4 \end{pmatrix} \qquad \mathbf{d} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Work out 2c + 3d

Give your answer as a column vector.

$$= \begin{pmatrix} 14 \\ 8 \end{pmatrix} + \begin{pmatrix} 6 \\ -3 \end{pmatrix} = \begin{pmatrix} 14+6 \\ 8+-3 \end{pmatrix}$$

20 5

(Total for Question 26 is 2 marks)

**TOTAL FOR PAPER IS 80 MARKS**